

Ada User Journal Volume 26, Number 3, September 2005

ADA
USER
JOURNAL

Volume 26
Number 3

September 2005

Contents
Page

Editorial Policy for Ada User Journal 146

Editorial 147

News 149

Conference Calendar 171

Forthcoming Events 177

Articles
 John Barnes

“Rationale for Ada 2005: 4 Tasking and Real-Time” 180
 John Barnes

“Rationale for Ada 2005: 5 Exceptions, generics etc.” 198
 Alan Marriott and Urs Maurer

“Ada Bug Finder” 214
 Burkhard Stadlmann

“Ada Development for a Basic Train Control System for Regional Branch Lines” 220

Ada-Europe 2005 Sponsors 224

Ada-Europe Associate Members (National Ada Organizations) Inside Back Cover

146

Volume 26, Number 3, September 2005 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal – The Journal for the
international Ada Community – is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the first of the
month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 147

Ada User Journal Volume 26, Number 3, September 2005

Editorial

I take pleasure in presenting this AUJ issue to our readership. Once again we had to go to 80 pages to accommodate all of the
valuable material that was in schedule. A sizeable proportion of this issue is devoted to the new instalment of John Barnes’
Rationale for Ada 2005. (Our readers will recall that the June 2005 meeting of the WG9 deliberated that “Ada 2005” should
be the vernacular name of the new Ada language revision, so the title of John’s volume is quite right!) As in the past, this new
instalment is made of two chapters, one addressing my favourite topic, that is “Tasking and Real-Time”, the other covering
exceptions, generics and (restriction) pragmas. In addition to continuing the publication of Rationale instalments, starting
with this issue we also commence the publication of material from the Industrial Presentation track of the Ada-Europe 2005
conference. The industrial track was a primer in the history of our yearly conference and those who attended know how
successful the whole conference was, including the industrial track itself. While the regular papers feed the formal
proceedings, published by Springer in the prestigious Lecture Notes in Computer Science series, the industrial-track
presentations are being turned into short articles for publication in the AUJ. In this issue we host two such publication: one by
Alan Marriott and Urs Maurer, lead members of the revised Ada-in-Switzerland association, who report about a utility of
their own conception named “Ada Bug Finder”; and another by Burkhard Stadlmann, from the Upper Austrian University of
Applied Sciences, which presents the Ada development of a operational train control system. The remainder of this issue is
taken by the usual wealth of News and Calendar sections, respectively prepared by Santiago Urueña, our young news editor,
and Dirk Craeynest, a long-timer of the AUJ.

Enjoy the reading and long live Ada!

Tullio Vardanega
Padova

September 2005
Email: tullio.vardanega@math.unipd.it

 149

Ada User Journal Volume 26, Number 3, September 2005

News
Santiago Urueña
Technical University of Madrid. Email: suruena@datsi.fi.upm.es

Contents

Ada-related Events 150
Ada-related Resources 151
Ada-related Tools 152
Ada-related Products 155
Ada and CORBA 162
Ada and GNU/Linux 162
Ada and Microsoft 163
References to Publications 164
Ada Inside 164
Ada in Context 166

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
-- su]

Nov 16 - SIGAda Awards
From: John McCormick

<mccormick@cs.uni.edu>
Date: 31 Aug 2005 07:11:11 -0700
Subject: Invitation to Nominate Candidates

for SIGAda Awards
Newsgroups: comp.lang.ada
On Wednesday, 16 November 2005, the
2005 SIGAda Awards will be presented in
a special morning plenary session at the
SIGAda 2005 conference in Atlanta,
Georgia. (See
http://www.acm.org/sigada/conf/sigada20
05 if you have somehow missed
announcements of this year's annual
SIGAda international conference.)
We welcome your nominations of
deserving recipients.
The ACM SIGAda Awards recognize
individuals and organizations who have
made outstanding contributions to the
Ada community and to SIGAda. The two
categories of awards are:
(1) Outstanding Ada Community
Contribution Award -- For broad, lasting
contributions to Ada technology & usage.
(2) ACM SIGAda Distinguished Service
Award -- For exceptional contributions to
SIGAda activities & products.
Please consider who should be nominated
this year. You may nominate a person for
either or both awards, and as many people

as you think worthy. One or more awards
will be made in both categories.
Please visit
http://www.acm.org/sigada/exec/awards/a
wards.html#Recipients and peruse the
names of past winners. This may help
you think about the measure of
accomplishment that is appropriate. You
may be aware of people who have made
substantial contributions that have not yet
been acknowledged. Nominate them.
Consider what you believe to be the best
developments in the Ada community or
SIGAda in the last year; the last 5 years;
since Ada's inception. Who was
responsible? Nominate them.
Please note that anyone who has received
either of the two awards remains eligible
for the other. Perhaps there is an
outstanding SIGAda volunteer who has
won our Distinguished Service Award
and who has also made important
contributions to the advance of Ada
technology, or visa versa. Nominate him
or her!
The nomination form is available on the
SIGAda website at
http://www.acm.org/sigada/exec/awards/a
wards.html. (You need to visit this
website to see past award winners' names,
and also a picture of the statuette which is
the award among other things, so you
don't nominate someone who has already
won an award in a category.) Submit
your nomination as an e-mail attachment
to SIGAda-Award@acm.org. You may
also submit nominations on-line at:
http://www.acm.org/sigada/cgi-bin/ICRS-
Register.cgi?Awards
The ACM SIGAda Awards Committee,
comprised of volunteers who have
previously won an award, will determine
this year's recipients from your
nominations.
Call our attention to the people who are
most deserving, by nominating them.
And please nominate by OCTOBER 15!
Your participation in the nominations
process will help maintain the prestige
and honor of these awards.
John McCormick, Chair ACM SIGAda
[See also same topic in AUJ 25-1 (Mar
2004), p.5. --su]

Jun 5-9 - Ada-Europe 2006
From: Dirk Craeynest

<dirk@heli.cs.kuleuven.ac.be>
Date: 11 Aug 2005 23:20:47 +0200

Subject: 2nd CFP Conf. Reliable Software
Technologies, Ada-Europe 2006

Organization: Ada-Europe, c/o Dept. of
Computer Science, K.U.Leuven

Summary: Now is the time to prepare your
submissions!

Newsgroups:
comp.lang.ada,fr.comp.lang.ada

2nd CALL FOR PAPERS
11th International Conference on Reliable
Software Technologies - Ada-Europe
2006, 5 - 9 June 2006, Porto, Portugal.
http://www.ada-europe.org/conference
2006.html
Organised, on behalf of Ada-Europe, by
Instituto Superior de Engenharia do Porto,
in cooperation with ACM SIGAda
(approval pending).
Ada-Europe organizes annual
international conferences since the early
80's. This is the 11th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05).
General Information
The 11th International Conference on
Reliable Software Technologies (Ada-
Europe 2006) will take place in Porto,
Portugal. Following the usual style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops
and tutorials on Monday and Friday.
Schedule
30 October 2005: Submission of papers,
workshop/tutorial proposals
20 January 2006: Notification to authors
20 February 2006: Camera-ready papers
required
5-9 June 2006: Conference
Topics
[…] For papers, tutorials, and workshop
proposals, the topics of interest include,
but are not limited to:
- Methods and Techniques for Software
Development and Maintenance:
Requirements Engineering, Object-
Oriented Technologies, Formal Methods,
Re-engineering and Reverse Engineering,
Reuse, Software Management Issues

150 Ada and Educat ion

Volume 26, Number 3, September 2005 Ada User Journal

- Software Architectures: Patterns for
Software Design and Composition,
Frameworks, Architecture-Centered
Development, Component and Class
Libraries, Component-Based Design
- Enabling Technology: CASE Tools,
Software Development Environments and
Project Browsers, Compilers, Debuggers
and Run-time Systems
- Software Quality: Quality Management
and Assurance, Risk Analysis, Program
Analysis, Verification, Validation,
Testing of Software Systems
- Critical Systems: Real-Time,
Distribution, Fault Tolerance, Information
Technology, Safety, Security
- Mainstream and Emerging Applications:
Multimedia and Communications,
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation
- Ada Language and Technology:
Programming Techniques, Object-
Oriented Programming, Concurrent
Programming, Distributed Programming,
Bindings and Libraries, Evaluation &
Comparative Assessments, Critical
Review of Language Enhancements,
Novel Support Technology, HW/SW
platforms
- Experience Reports: Experience
Reports, Case Studies and Comparative
Assessments, Management Approaches,
Qualitative and Quantitative Metrics,
Experience Reports on Education and
Training Activities with bearing on any of
the conference topics
Submissions
Authors are invited to submit original
contributions. Paper submissions shall be
in English, should be complete and should
not exceed 20 double-spaced pages in
length. Authors should submit their work
via the Web submission system accessible
from the conference Home page. The
preferred format for submission is PDF.
Postscript can also be accepted, as long as
it was generated selecting the "optimize
for portability" option in the used printer
driver. Submissions by other means and
formats will *not* be accepted. If you do
not have easy access to the Internet, or
you do not have an appropriate Web
browser, please contact the Program Co-
Chair Luís Miguel Pinho, whose address
details are on this call as well as on the
conference Home page.
Proceedings
The authors of accepted papers shall
prepare their camera-ready submissions in
full conformance with the LNCS style,
not exceeding 12 pages and strictly by
February 20, 2006. Authors should
refer to:
http://www.springer.de/comp/lncs/authors
.html for format and style guidelines.
Failure to comply will prevent the paper
from appearing in the conference
proceedings. The conference proceedings

including all accepted papers will be
published in the Lecture Notes in
Computer Science (LNCS) series by
Springer Verlag, which will be available
at the start of the conference.
Awards
Ada-Europe will offer honorary awards
for the best paper and the best
presentation, which will be presented
during the banquet and at the close of the
conference respectively.
Call for Tutorials
Tutorials should address subjects that fall
within the thrust of the conference and
may be proposed as either half- or a full-
day events. Proposals should include a
title, an abstract, a description of the
topic, a detailed outline of the
presentation, a description of the
presenter's lecturing expertise in general
and with the proposed topic in particular,
the proposed duration (half day or full
day), the intended level of the tutorial
(introductory, intermediate, or advanced),
the recommended audience experience
and background, and a statement of the
reasons for attending. Proposals should
be submitted by e-mail to the Tutorial
Chair Jorge Real. The providers of full-
day tutorials will receive a complimentary
conference registration as well as a fee for
every paying participant in excess of 5;
for half-day tutorials, these benefits will
accordingly be halved. The Ada User
Journal will offer space for the
publication of summaries of the accepted
tutorial in issues preceding and/or
following the conference.
Call for Workshops
Workshops on themes within the
conference scope may be arranged to
discuss matters of immediate technical
interest as well as to foster action on
longer-term technical objectives.
Proposals may be submitted for half- or
full-day workshops, to be scheduled on
either ends of the main conference.
Workshop proposals should be submitted
by e-mail to the Conference Chair Luís
Miguel Pinho. The workshop organizer
shall also commit to preparing
proceedings for timely publication in the
Ada User Journal.
Exhibition
Commercial exhibitions will span the
three days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair José Ruiz as soon as
possible for further information and for
allowing suitable planning of the
exhibition space and time.
Reduced Fees for Students
A small number of grants are available for
students who will (co-)author and present
papers at the conference. A reduction of
25% will be made to the conference fee.

Contact the Conference Chair Luís
Miguel Pinho for details.
[Also see the full Call for Papers in this
AUJ issue. --su]

Ada and Education
Tutorial about the Ada 2005
standard container library
From: Matthew Heaney

<matthewjheaney@earthlink.net>
Date: Tue, 28 Jun 2005 13:28:07 GMT
Subject: Ada 2005 standard container

library tutorial available
Newsgroups: comp.lang.ada
The Ada 2005 standard container library
tutorial that I presented at Ada-Europe
2005 is now available:
http://charles.tigris.org/ai302_tutorial.ppt
http://charles.tigris.org/ai302_tutorial.pdf
The links appear under the "Related
resources" section in the Description part
of the Charles library CVS repository
home page: <http://charles.tigris.org/>
The standard container library is specified
by AI-302, the drafts of which are
maintained here: http://www.ada-
auth.org/cgi-bin/ cvsweb.cgi/AIs/AI-
20302.TXT
From: Matthew Heaney

<mheaney@on2.com>
Date: Tue, 28 Jun 2005 14:14:02 -0400
Subject: Re: No deques?
Newsgroups: comp.lang.ada
> Have deques been dropped from the

container library? I seem to remember
seeing them mentioned in the past, and
both Charles and the C++ STL have
them.

There are no deques in the Ada 2005
standard container library. (They were in
my original proposal, but were quickly
dropped in order to keep the library to a
manageable size.)

Public Ada 95 Courses
From: Ed <colbert@abssw.com>
Date: 11 Aug 2005 08:46:39 -0700
Subject: Public Ada 95 Courses 19-23

September in Carlsbad CA
Newsgroups: comp.lang.ada
Absolute Software will be holding a
public Ada 95 course during the week of
19 September 2005 in Carlsbad, CA. You
can find a full description and registration
form on our web-site, www.abssw.com.
Click the Public Courses button in the left
margin. (We also offer courses on
software architecture-based development,
safety-critical development, object-
oriented methods and other object-
oriented languages.)
If there is anything you'd like to discuss,
please call, write, or send me E-mail.

Ada-related Resources 151

Ada User Journal Volume 26, Number 3, September 2005

[See also same topic in AUJ 25-4 (Dec
2004), p.184. --su]

How difficult is Ada to
learn?
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Thu, 30 Jun 2005 07:11:17 +0200
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
> How difficult is the Ada programming

language to learn? I have Pascal/Object
pascal experience, and want to move to
a new language soon. C/C++ is too
scary for my tastes. I was considering
either Ada or Modula-2 as my next
language. How does Ada compare in
power to Modula-2 and the Borland's
dialect of Pascal?

I would say:
Pascal < Modula-2 < Object-Pascal < Ada
But, if you know Object-Pascal, learning
Ada won't be too difficult for you. The
main areas where you'll learn new things
are tasking and the Ada way of doing
OOP.
I suggest you read the following article,
which will help you:
http://homepage.sunrise.ch/mysunrise/gd
m/pascada.htm
From: Gene

<eugene.ressler@frontiernet.net>
Date: 30 Jun 2005 07:19:10 -0700
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
There are really two answers. If you
intend to structure programs as in the
other languages, then it's quite easy to
shift sideways into Ada syntax. If you
want to exploit Ada's full power, then
you'll have to figure out the Ada way to
do things and learn the parts of the
language that are not found elsewhere---
task types for example. In that regard,
one of the best things about Ada is that
the language designers put their thinking
in the rationale documents and then
Cohen took the whole art of explaining
how to use a language to a new level.
There is so much glop out there on the
language-of-the-week that these two
books really stand out.
Most people who start with Borland
Pascal miss the built-in set and string data
types. Ada gets the same effects with
packages, but the syntax is far less elegant
and readable. (Disclaimer: I have no real
Modula-2 experience.)
From: svaa@ciberpiula.net
Date: 30 Jun 2005 12:36:20 -0700
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
If you have experience with Pascal, I don't
think that will be very difficult to learn.
There are some new concepts like
generics, discriminants and tasks. You
will find things different like objects and

pointers, and you'll miss some things like
an easy strings management, sets, and
little more.
In the other hand, I like Ada syntax for
blocks, that is, you don't see a cascade of
wild "end", you see "end nameprocedure"
or "end if" etc. I like the restrictions of
types, harder than Pascal (and much
harder than C). I like that the standard has
a lot, a big lot of functions that are
standard in any Ada compiler.
There is also a new way of doing things in
Ada. You will need some experience to
get the touch.
If you use Borland's products, you will
miss a good IDE. Nowadays languages
have libraries (packages in Ada) some
standard, some added by vendor, and
some added by yourself. There are
thousands of functions, procedures and
data structures, all that information is
difficult to handle without good tools.
Borland is a master in this matter, good
integrated help, fast access to record
fields and to methods of an object, etc.
There is nothing like that in Ada, and
that's a big problem, specially for a
beginner.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Fri, 01 Jul 2005 05:39:53 GMT
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
> Not very much. I found it easy to learn

from a pascal background, so you
should have no problem.

The US Military Academy (West Point)
did a controlled study that concluded that
Ada was a better 1st language than Pascal.
Presumably that means Ada's easier to
learn than Pascal.
From: Dennis Lee Bieber

<wlfraed@ix.netcom.com>
Date: Fri, 01 Jul 2005 06:54:57 GMT
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
Or might just mean that they didn't have
to "unlearn" all the bad habits of Pascal,
afterwards.
The confusing "prefetch" of Pascal I/O (at
least in the UCSD version my college
used). And how many blocks end with a
nil statement because one ended a
statement with a ;
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Thu, 30 Jun 2005 18:43:12 +0200
Subject: Re: How difficult is Ada to learn?
Newsgroups: comp.lang.ada
Well I have Pascal/Modula-2 experience
and found Ada a perfect replacement for
the two. Ada really is the Pascal for
grown ups having all the features which
where missing in Pascal. Even Turbo-
Pascal comes close to Ada's Power. As for
Modula-2: Apart from the nice support for
modules the feature set was in fact
reduced when compared to Pascal.

If you want to learn more about Ada look
at:
http://en.wikibooks.org/wiki/Programmin
g:Ada
There are 192 Web Pages of tutorial
material out there.

Ada-related Resources
Ada Wikibook is "Book of
the month"
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Fri, 02 Sep 2005 17:18:50 +0200
Subject: Wikibook Ada Programming won

"Book of the month"
Newsgroups: comp.lang.ada
The Wikibook "Ada Programming" has
won the "Book of the month for
September 2005" contest.
"Ada Programming" had twice a many
votes then the next contestant - including
many votes from outside the
programming comunity for which we are
particular grateful.
"Ada Programming" will be featured on
the main page of Wikibooks for the
duration of the next month which
hopefully will raise awareness of Ada.
Links
Wikibooks Main Page:
http://en.wikibooks.org/wiki/Main_Page
Ada Programming:
http://en.wikibooks.org/wiki/Ada_Progra
mming
Book of the month winner for 2005:
http://en.wikibooks.org/wiki/Wikibooks:B
ook_of_the_month/2005
Votes and Results September 2005:
http://en.wikibooks.org/wiki/Wikibooks:B
ook_of_the_month/September_2005_voti
ng
From: Stephane Riviere

<stephane@rochebrune.org>
Date: Thu, 08 Sep 2005 09:24:21 +0200
Subject: Re: Wikibook Ada Programming

won "Book of the month"
Newsgroups: comp.lang.ada
Very good news!
I congratulate you, Martin, and also all
other contributors!
I wasn't really aware about this wiki book.
It's a great work...
[See also "Ada at Wikipedia &
Wikibooks" in AUJ 26-1 (Mar 2005), p.8.
--su]

Online Ada Books
From: PeterK <Peter_Kitson@hotmail.com
Date: 12 Aug 2005 13:49:49 -0700
Subject: Collection of Online Ada Books
Newsgroups: comp.lang.ada

152 Ada-related Tools

Volume 26, Number 3, September 2005 Ada User Journal

A collection of published Ada
programming books that the authors have
generously allowed to be available for
free downloads: http://www.computer-
books.us/ada95.php
Let me know of other Ada books to add.
From: Manuel G. R. <mgrojo@ya.com>
Date: Wed, 17 Aug 2005 22:55:13 +0200
Subject: Re: Collection of Online Ada Books
Newsgroups: comp.lang.ada
I recently got news of this one:
http://stwww.weizmann.ac.il/g-cs/benari/
books/index.html#ase
Ada for Software Engineers. John Wiley
& Sons, 1998. ISBN 0-471-97912-0.
But take into account the copyright
permissions that I paste here for
reference:
"You may download, display and print
one copy for your personal use in non-
commercial academic research and
teaching. Instructors in non-commercial
academic institutions may make one copy
for each student in his/her class. All other
rights reserved. In particular, posting this
document on web sites is prohibited
without the express permission of the
author."

Ada-related Tools
Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 24 Jul 2005 16:30:37 +0200
Organization: cbb software GmbH
Subject: Simple components v2.0
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers, sets,
maps, stacks, tables, string editing,
unbounded arrays and expression
analyzers: http://www.dmitry-
kazakov.de/ada/components.htm
In the version 2.0 tools were added to
ease creation of parsers matching a word
from a list keywords. Get_Token
procedure does this using a user-provided
table. The package Keywords generates a
keyword matching parser from an
enumeration type, which literals are the
keywords to match.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 14 Aug 2005 19:35:22 +0200
Subject: ANN: Simple Components v 2.1
Organization: cbb software GmbH
Newsgroups: comp.lang.ada
The current version provides
implementations of smart pointers, sets,
maps, stacks, tables, string editing,
unbounded arrays and expression
analyzers. It is here: http://www.dmitry-
kazakov.de/ada/components.htm
Changes made:

Behavior of arguments sublists separators
was clarified. The call-back Enclose is
now called for each sublist with the
parameters indicating the brackets or
separators that starts and ends the sublist.
Parsers.Multiline_Source.Get_Line raises
End_Error at the source end (instead of
Constraint_Error).
[See also same topic in AUJ 26-1 (Mar
2005), pp.9-10. --su]

Strings Edit
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Organization: cbb software GmbH
Date: Sat, 25 Jun 2005 11:46:06 +0200
Subject: ANN: Strings Edit v1.7
Newsgroups: comp.lang.ada
This library provides I/O facilities for
integer, floating-point, Roman numbers,
and strings. Both input and output
subroutines support string pointers for
consequent stream processing. The output
can be aligned in a fixed size field with
padding. Numeric input can be checked
against expected values range to be either
saturated or to raise an exception. For
floating-point output either relative or
absolute output precision can be specified.
UTF-8 encoded strings are supported.
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
Changes to the previous version:
- Ada-style quoted strings support was
added;
- Bug fix in Trim (Trim raised
Constraint_Error with an empty string).

XML EZ Out - XML-
formatted output
From: Marc A. Criley <mc@mckae.com>
Date: Tue, 14 Jun 2005 08:29:27 -0500
Subject: ANN: XML EZ Out 1.03 posted
Newsgroups: comp.lang.ada
XML EZ_Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.
XML EZ Out is available at
http://www.mckae.com/xml_ezout.html.
Changes since 1.02:
Fixed bug dealing with "&" for "&"
substitution.
From: Marc A. Criley <mc@mckae.com>
Date: Thu, 16 Jun 2005 10:26:05 -0500
Subject: XML EZ Out 1.04 Posted
Newsgroups: comp.lang.ada
XML EZ_Out is a small set of packages
intended to aid the creation of XML-
formatted output from within Ada
programs. It basically wraps the tags and
data provided to it with XML syntax and
writes them to a user-supplied medium.

XML EZ Out is available at
http://www.mckae.com/xml_ezout.html.
Changes since 1.03:
Added quote and apostrophe substitution
(""" and '") within attribute
values.
From: Marc A. Criley <mc@mckae.com>
Date: Wed, 15 Jun 2005 08:13:56 -0500
Subject: Re: ANN: XML EZ Out 1.03 posted
Newsgroups: comp.lang.ada
> One question. The code is GMGPL as

the source suggests? Is it OK to
distribute the library source code with a
program that uses it? Do you want any
special files to be included or it is ok as
is?

Yes, it is GMGPL. You can distribute the
source code with a program using it.
Please keep it together in a single
directory and keep the String_Stream and
Text_File child packages in there, even if
you're not using them, so that the users of
your app would see XML EZ Out as a
utility they could pick up and use as well.
In that folder you can omit the tmeztf.adb
test program, as well as the README,
but I would appreciate a link somewhere
in your README or other documentation
pointing back to www.mckae.com.
From: Marc A. Criley <mc@mckae.com>
Subject: Re: ANN: XML EZ Out 1.03 posted
Date: Wed, 15 Jun 2005 10:58:25 -0500
Newsgroups: comp.lang.ada
> I was thinking to put all in a mckae

folder. Could you perhaps make the
packages with a bottom folder. If one
unpack the packages now all files goes
into current directory. A bit more tidy if
there is a hierarchy like:
- mckae/README
- mckae/mckae.ads
-

Actually, that's exactly the hierarchy I
have on my developmental machine, I've
just neglected to distribute it in that form.
So that's a good point, and I'll ensure that
gets done for future releases.

PragmARC - PragmAda
Reusable Components
From: PragmAda Software Engineering

<pragmada@earthlink.net>
Date: Tue, 14 Jun 2005 13:59:59 GMT
Subject: Ann: PragmAda Reusable

Components Release
Newsgroups: comp.lang.ada
PragmAda Software Engineering is proud
to announce a new release of the
PragmAda Reusable Components. This
release corrects an error with
PragmARC.Get_Line when used with
standard input, modifies
PragmARC.Matrix_Math to not assume
that multiplication is commutative for the
element type, and adds two new "safe"
components.

Ada-related Tools 153

Ada User Journal Volume 26, Number 3, September 2005

You may find the PragmARCs at
http://home.earthlink.net/~jrcarter010/pra
gmarc.htm
Error reports, comments, and suggestions
are always welcome at
pragmada@earthlink.net.
[See also same topic in AUJ 26-1 (Mar
2005), p.10. --su]

Tables for Ada
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 6 Jun 2005 21:23:29 +0200
Organization: cbb software GmbH
Subject: ANN: Tables for Ada v1.4
Newsgroups: comp.lang.ada
This library provides an implementation
of tables indexed by strings. The binary
search is used for names of known length.
It is also possible to search a table for
names of unknown length, i.e. to parse a
string using some table. Table elements
can be of any private type. Key-
insensitive tables are supported.
http://www.dmitry-kazakov.de/ada/tables.
htm
Changes to the version 1.3:
- Function IsIn was added to provide
membership test;
- Bug fixes in the test programs.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Organization: cbb software GmbH
Date: Sat, 20 Aug 2005 19:54:03 +0200
Subject: ANN: Tables for Ada v1.5
Newsgroups: comp.lang.ada
The library provides an implementation of
tables indexed by strings. The binary
search is used for names of known length.
It is also possible to search a table for
names of unknown length, i.e. to parse a
string using some table. Table elements
can be of any private type. Key-
insensitive tables are supported.
http://www.dmitry-kazakov.de/ada/tables.
htm
Changes:
The package Tables.Names can now be
instantiated with the parameter specifying
the set of characters considered blank.

GNAT GPL 2005 Edition
From: Jamie Ayre <ayre@adacore.com>
Date: Thu, 15 Sep 2005 08:50:39 +0200
Subject: GNAT GPL 2005 Edition is now

available
Newsgroups: comp.lang.ada
AdaCore announces the immediate
availability of the GNAT GPL 2005
Edition.
AdaCore is pleased to announce the
release of the GNAT GPL 2005 Edition to
provide Free Software developers, that is
developers that distribute their work
under the GPL (GNU General Public

License), the latest and most advanced
Ada 2005 software development
environment.
As many of you know, the Ada
programming language is undergoing a
revision, called Ada 2005. Many of the
new features in the revision are available
in the GNAT GPL 2005 Edition, notably:
New language level features:
- Abstract interface types to provide
multiple inheritance
- Task, protected and synchronized
interfaces
- Limited-with and Private-with clauses
- Prevention of accidental overloading
when overriding
- Object.operation notation
- General use of anonymous access
subtypes
- Limited aggregates
- Access to constant parameters and null-
excluding access subtypes
- Unchecked_Unions for C interfacing
- Nested type extensions
- Support for 16-bit and 32-bit characters.
New standard libraries:
- Container library
- Complete definition of string
subprograms (fixed, bounded,
unbounded)
- Directory operations.
The GNAT GPL 2005 Edition, which is
available free of charge from
http://libre.adacore.com/, is licensed for
Free Software development under the
terms and conditions of the GNU General
Public License (GPL). Implementation of
the new Ada 2005 features is also
available in GNAT Pro, which is licensed
for all types of software development.
For more information visit the following
links:
* Ada 2005:
http://www.adacore.com/ada_2005.php/
* GNAT GPL 2005 Edition:
http://libre.adacore.com/
* GNAT Pro:
http://www.adacore.com/gnatpro_summar
y.php/
[See also "ACT - New Public Release
GNAT 3.15p" in AUJ 24-1 (Mar 2003),
p.17. --su]
From: Jeffrey Carter <jrcarter@acm.org>
Date: Tue, 13 Sep 2005 10:03:43 -0700
Subject: Re: GNAT GPL 2005 Edition
Organization: Raytheon Company
Newsgroups: comp.lang.ada
Interesting. In the past, AdaCore's public
releases were suitable for producing non-
GPL SW. I wonder if "This new Edition
will provide Free Software developers,
that is developers that distribute their
work under the GPL" means the runtime
and libraries will be GPL, rather than
GMGPL, forcing the resulting
executables to be GPL.

From: Björn Persson
<rombo.bjorn.persson@sverige.nu>

Date: Wed, 14 Sep 2005 00:00:39 GMT
Subject: Re: GNAT GPL 2005 Edition
Newsgroups: comp.lang.ada
David Trudgett wrote:
> Does the libstdc++ exception permit

dynamic linking?
Yes. The intent of the exception is to
allow people to compile proprietary
software using gcc.
[...] that would be a matter of library
licensing, and not of GNAT's licence
itself.

Exactly. Until now, the license of Gnat's
implementation of the standard Ada
library has had an exception just like
libstdc++. Now this announcement
appears to say that the new edition will
only be useful for building GPL software,
and that makes Jeffrey Carter and me
wonder if perhaps that exception has been
removed.
From: David Trudgett

<wpower@zeta.org.au.nospamplease>
Date: Wed, 14 Sep 2005 09:33:38 +1000
Subject: Re: GNAT GPL 2005 Edition
Newsgroups: comp.lang.ada
Even if it is the case (and I have no idea)
that the modified GPL is not used, it still
does not mean that resulting executables
are "GPL". It would only mean (at most --
see below) that those executables couldn't
be formally distributed except under the
GPL. This means that in-house
proprietary software is completely
unaffected by the GPL.
"The GPL permits anyone to make a
modified version and use it without ever
distributing it to others." ...
"It is essential for people to have the
freedom to make modifications and use
them privately, without ever publishing
those modifications."
http://www.gnu.org/licenses/gpl-faq.html
That said, I believe the spirit of the GPL
(applied to compilers like GNAT) is (or
should be) to protect the software itself
(compiler) from being hijacked by
proprietary interests. The GPL doesn't
apply to the output of programs, and an
executable binary is just the output of the
compiler. Therefore, according to this
logic, programs compiled by a GPL'ed
compiler are not themselves under the
GPL (unless you make them so).
In that regard, note:
Can I use GPL-covered editors such as
GNU Emacs to develop non-free
programs? Can I use GPL-covered tools
such as GCC to compile them?
Yes, because the copyright on the editors
and tools does not cover the code you
write. Using them does not place any
restrictions, legally, on the license you use
for your code.

154 Ada-related Tools

Volume 26, Number 3, September 2005 Ada User Journal

Some programs copy parts of themselves
into the output for technical reasons--for
example, Bison copies a standard parser
program into its output file. In such cases,
the copied text in the output is covered by
the same license that covers it in the
source code. Meanwhile, the part of the
output which is derived from the
program's input inherits the copyright
status of the input.
As it happens, Bison can also be used to
develop non-free programs. This is
because we decided to explicitly permit
the use of the Bison standard parser
program in Bison output files without
restriction. We made the decision because
there were other tools comparable to
Bison which already permitted use for
non-free programs.
So, the only possible grey areas with
GNAT would be (a) if it copies parts of
itself into its output; or (b) statically or
dynamically links to GPL'ed libraries. In
regard to libraries, we note in the case of
GCC:
Does the libstdc++ exception permit
dynamic linking?
Yes. The intent of the exception is to
allow people to compile proprietary
software using gcc.
So, can anyone comment on whether (a)
or (b) actually applies to GNAT? I have
my doubts that (a) would apply, since it
doesn't seem to apply to GCC. As for (b),
that would be a matter of library
licensing, and not of GNAT's licence
itself.

VC_View and PCHIF -
SPARK Proof Tools
From: JP Thornley

<jpt@diphi.demon.co.uk>
Date: Mon, 6 Jun 2005 17:51:52 +0100
Subject: A couple of tools for SPARK Proof
Newsgroups: comp.lang.ada
I've developed a couple of tools to help
when doing Spark proof - called
VC_View and PCHIF.
The purpose of VC_View is to make it
easier to read and interpret Spark VCs. It
does this in two ways:
1. Only immediately relevant hypotheses
are initially shown
2. User identifiers are replaced by upper
case letters.
The hypotheses that are shown initially
are those that share an identifier with a
conclusion. These can then be selectively
extended.
Other features allow the hypotheses to be
restricted to just those for a single
conclusion, and give access to the rules
file for the VCs.
The main purposes of PCHIF are to make
it easier to recall and edit previously
entered commands and to give better

control over the commands that are
stored.
As well as making it easier to create proof
scripts, PCHIF should also simplify the
creation of 'clean' scripts - i.e. ones
without failed inferences, etc. (A long
term ambition for PCHIF is to simplify
the maintenance of proof scripts by
providing a 'stop on fail' feature - to make
it easier to pinpoint commands that need
changing.)
At present PCHIF is an experimental
prototype and has a number of limitations
- the main one is that it only handles input
to the Checker. (In order to handle the
output from the Checker it must be piped
to another program - when this is done the
Checker prompts don't appear down the
pipe until after the Checker has received
the input that it is prompting for.)
Both tools are 100% Ada, and compiled
with GNAT 3.15p. Only MS Windows
executables are provided (XP Pro, but
may work on other versions).
However they use GtkAda so it should be
possible to compile them for other
platforms. (The sources aren't currently
provided for download but I intend to
make them available once they've been
made fit for public view.)
The download page can be reached from
www.sparksure.com.
If you try the tools, please use the contact
email address given on the sparksure
pages to send me comments.

Profiling GNAT programs
with gprof
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Tue, 07 Jun 2005 19:00:12 +0200
Subject: Re: Profiling GNAT programs with

gprof
Newsgroups: comp.lang.ada
Alfred Hilscher wrote:
> Has someone experience with gprof and

GNAT? It seems to work when I profile
sequential programs, but if I have tasks
in my code then the result of gprof
seem invalid. E.g. a procedure called
only three times at all is listed as about
10000 calls. And while the over all
runtime of the prog is about 2 sec,
gprof shows the consumed time for this
procedure with a few thousands
seconds. It looks like as if the statistic
counters were not initialized. What
have I to do to get correct results? I use
GNAT 3.15p and Windows 2000.

I did this in the past in the same platform
as you, also with a multitasking program.
I don't remember seeing unexpected
counter values. Have you a simple test
program to highlight this problem? I
could try to run it and compare results.
If I'm not mistaken, the timing problem
can arise from the way gprof computes

time: each call is given a fixed differential
duration. So that can artificially inflate the
times reported. But you should check this
in the documentation, I may be confused
about this behavior.
From: Jeff Creem <jcreem@yahoo.com>
Date: Wed, 08 Jun 2005 07:31:26 -0400
Subject: Re: Profiling GNAT programs with

gprof
Newsgroups: comp.lang.ada
I have had good luck with gprof on non-
tasking programs though in most cases I
ended up either having to increase the
systems default interrupt clock rate to get
good results or wrapping the main code I
cared about in a loop to get good results
(this was needed even for non-trivial
programs that were not all that fast to
complete).
Also to get reasonable results I often have
to revert to using the -F option (better
when possible) or a series of -f options
(still ok but not great when -F is really
needed)
As for tasking programs... There is a lot
of info on the web about gprof failing
with threads/forks/etc and a few platform
specific workarounds appear to exist.
The failure mechanisms also seem
somewhat platform specific as well.
http://sam.zoy.org/writings/programming/
gprof.html
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Wed, 08 Jun 2005 09:22:59 +0200
Subject: Re: Profiling GNAT programs with

gprof
Organization: Adalog
Newsgroups: comp.lang.ada
Marius Amado Alves wrote:
> I also have experienced erroneous

Gprof results. Functions *never* called
listed as called. I gave up on Gprof.
Sorry not being of help. Just telling my
experience. Next time I need profiling I
think I'll try another tool e.g.
RootCause, or instrument my code.
Good luck to you with Gprof.

I had obviously wrong results with gprof
both with tasking and non-tasking
programs, and I gave up using it.
Note that if you just want to time some
procedure calls (not full profiling), you
can use the facilities from Debug.Timing
package, available as part of Adalog's
Debug package. See
http://www.adalog.fr/compo2.htm

Ada Plug-in for Eclipse
From: Jeff Creem <jcreem@yahoo.com>
Date: Thu, 28 Jul 2005 07:27:08 -0400
Subject: Re: Ada Plug-in for Eclipse

Ada-related Products 155

Ada User Journal Volume 26, Number 3, September 2005

Newsgroups: comp.lang.ada
> Are there any open source Ada plugins

for Eclipse? I've been developing one
and I wonder if it is the only available.

There has been some discussion on the
eclipse CDT plug-insite that they would
like to support Ada and there appears to
be some people working on it (hard to tell
how much).
It might be nice if you drop in there and
see if you can help.
I think many of us would be interested.
From: Adrien Plisson <aplisson-

news@stochastique.net>
Date: Wed, 27 Jul 2005 16:58:56 +0200
Subject: Re: Ada Plug-in for Eclipse
Newsgroups: comp.lang.ada
An Ada Plug-in for Eclipse is currently
developed by Aonix. Unfortunately, it
does not seem to be freely available.
[See also "Aonix - Eclipse-based Ada
IDE for Mission- and Safety-Critical
Development" in AUJ 25-4 (Dec. 2004),
p.194. --su]
From: "Dan McLeran"

<danmcleran@yahoo.com>
Date: 27 Jul 2005 07:30:22 -0700
Subject: Re: Ada Plug-in for Eclipse
Newsgroups: comp.lang.ada
I was working on this as well. I'd like to
see how far you've gotten. Maybe I have
some code that can be used.
From: Phill <crazyphill@gmail.com>
Date: 27 Jul 2005 15:14:03 -0700
Subject: Re: Ada Plug-in for Eclipse
Newsgroups: comp.lang.ada
Like I said earlier, I plan on having a
builder (using GNAT) and syntax
highlighting working. Right now, syntax
highlighting is almost complete, I just
have a few problems with numerical
literals in certain situations--these are
easy to fix, but I'm working on the builder
now.
The builder will hopefully auto compile
the sources as they're modified (Like the
Java plug-in) and will build the
executable on command.
I've also created a barebones perspective
and will be creating a project wizard to
help support the builder.
What have you done so far?
From: Dan McLeran

<danmcleran@yahoo.com>
Date: 27 Jul 2005 15:22:16 -0700
Subject: Re: Ada Plug-in for Eclipse
Newsgroups: comp.lang.ada
I got pretty much as far as you've gotten.
My plug-in was creating gnat project files
to manage the build as the user set certain
options. I also planned to create wizards
for dlls, exes, etc.

Ada Application Support
Component Library
From: Michael Erdmann

<michael.erdmann@snafu.de>
Date: Tue, 28 Jun 2005 21:53:14 +0200
Subject: Announcing *** Release of

AdaPlugin Version 0.1.0 **
Newsgroups: comp.lang.ada
Adaplugin allows you to easily build
plug-ins with Ada 95 on a Linux box for
GNAT.
The source code and binaries for Linux
are available for download at:
http://sourceforge.net/projects/ascl
I am sorry in the current version the
documentation is quite insufficient but
this will change in the next two weeks.
[The objective of the ASCL project is:
* Creation of an Ada support library
which ranges from light weight packages
(e.g. linked lists) to heavy weight package
like configuration management packages.
The central idea of this project is not to
develop every thing from scratch but to
integrate what is already existing.
* In the long term the library should
become a de facto standard for the Ada
community because of its intensive use in
the community.
* In the long term the library should be
available together with some of the most
popular Ada 95 compilers.
From the web page
(http://ascl.sourceforge.net/) --su]

Database Source Name
Parser
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Wed, 15 Jun 2005 14:38:59 +0200
Subject: Update of data source name parser
Newsgroups: comp.lang.ada
The DSN library can be used to parse
URL like database connection strings.
News:
* unified grammar
* internationalization
* Ada 200Y version added
Assume GMGPL. The sources and docs
are available at
http://home.arcor.de/bauhaus/Tools/dsn.ht
ml
[See also the same topic in AUJ 26-1
(Mar. 2005), pp.11-13. --su]

Scout - Ada utility for
Google Earth & NASA
World Wind
From: Tom Moran <tmoran@acm.org>
Date: Sat, 30 Jul 2005 15:28:00 -0500
Subject: Ada utility for Google Earth, NASA

World Wind

Newsgroups: comp.lang.ada
I've posted at
home.comcast.net/~tommoran4/scout091.
zip a zip file with readme.txt, Zoo.spc,
and Scout.exe I'll add the Ada source code
after a bit of cleanup.
Scout aids finding locations and paths
with Google Earth or NASA World Wind
by interconverting latitude & longitude
decimal or degrees, minutes, seconds,
State Plane Coordinates, Metes and
Bounds (only straight lines for now).
Given a list of points in any of those
forms, it will create the Google Earth or
World Wind path files to draw a path
from point to point. It also can read
Google Earth lat/lon format and convert
to World Wind format, or vice versa. The
current version is 0.91 and I'm adding to it
(and will post that code).
Suggestions welcome.

Ada-related Products
AdaCore Implements New
Ada Standard
Leading Ada technology provider brings
Ada 2005 to software developers
http://www.adacore.com/pressroom_22.php
NEW YORK, August 29, 2005
AdaCore today announced the first
implementation of the upcoming new
version of the Ada programming
language. Known as Ada 2005 and
anticipated for official international
standardization under ISO next year, the
new definition advances the state-of-the-
art in programming language design while
meeting the goal of compatibility with
earlier versions of Ada.
"AdaCore is leading the way with Ada
2005," said Robert Dewar, president of
AdaCore. "Many of the new features will
make our customers' programming jobs
simpler, and the language’s integration of
object-oriented and concurrency facilities
is truly innovative. By officially including
the Ravenscar tasking profile, Ada 2005
will help users write portable high-
integrity programs. Of course, because of
Ada 2005's high degree of upward
compatibility, our customers can use our
latest development tools not only for the
new Ada language version, but also for
Ada 95 and Ada 83."
AdaCore has implemented many of Ada
2005's enhancements, including Java-like
interfaces, 32-bit character support, and
new standard libraries. These are
currently available in the GNAT Pro
development environment, as well as in
the GNAT edition for the GNAT
Academic Program (GAP). Aimed at
spreading the use of Ada for teaching and
research, GAP is an AdaCore initiative
within the academic community. Ada

156 Ada-related Products

Volume 26, Number 3, September 2005 Ada User Journal

2005 offers many advantages as a
language in computer science education,
and the GAP program makes it easier for
universities to bring Ada into their
curricula. Many of the new features in the
revision are also available in the GNAT
GPL 2005 Edition, intended for Free
Software developers.
About Ada
Ada is a modern programming language
designed for large, long-lived applications
- and embedded systems in particular -
where reliability and efficiency are
essential. It was originally developed in
the early 1980s (generally known as Ada
83) and then revised and enhanced in an
upward compatible fashion in the mid
1990s under the auspices of the
International Organization for
Standardization (ISO). The resulting
language, Ada 95, was the first
internationally standardized Object-
Oriented Language and is currently seeing
significant usage worldwide in the high-
integrity / high-performance domains,
including commercial and military aircraft
avionics, air traffic control, railroad
systems, and medical devices. Ada also
serves as an excellent teaching language
for both introductory and advanced
computer science courses, and has been
the subject of significant university
research, particularly in the area of real-
time technologies.
About Ada 2005
Ada 2005 offers a number of new
capabilities while meeting the
requirement of compatibility with Ada 95.
Reflecting advances in Object-Oriented
technology over the past decade, the
language's enhancements include a Java-
like interface mechanism and a syntax for
inheritance that prevents accidental
overloading. The needs of the real-time
and high-integrity communities have been
addressed; support in these areas include
new task control mechanisms and the
definition of the Ravenscar tasking profile
in the standard. Additionally, Ada 2005
expands the predefined library (including
generic "container" packages that improve
upon C++'s STL) and makes a number of
improvements in the access type area.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial, open-source
software solutions for Ada, a modern
programming language designed for
large, long-lived applications where
reliability, efficiency and safety are
absolutely critical. AdaCore's flagship
product is GNAT Pro, the commercial-
grade open-source Ada development
environment, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see
http://www.adacore.com/customers.php
for more information.

Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including commercial and
defence aircraft avionics, air traffic
control, railroad systems, financial
services and medical devices. AdaCore
has North American headquarters in New
York and European headquarters in Paris.
www.adacore.com

AdaCore - KC-767A Maiden
Flight
Mission Control System Team Member
AdaCore Lauds KC-767A Maiden Flight
http://www.adacore.com/pressroom_21.php
PARIS, Paris Air Show, June 13, 2005
AdaCore joins Boeing, Smiths Aerospace,
and Wind River Systems in celebrating
the maiden flight of Boeing’s advanced
aerial refueling tanker, the Italian Air
Force KC-767A, which took place on
May 21, 2005. AdaCore serves as a key
member of Smiths Aerospace’s
development team for the tanker’s
mission control system (MCS), which
manages the aircraft’s unique flight
guidance, navigation, and
communications capabilities. The Italian
Air Force was Boeing’s first KC-767
customer, ordering four of the world's
newest and most advanced tankers.
The KC-767 MCS is the first avionics
application in flight to use the Software
Common Operating Environment
(SCOE), which consists of a safety-
critical-certified ARINC653 operating
system from Wind River, the GNAT Pro
for VxWorks 653 Ada compilation
system from AdaCore, and infrastructure
software developed by Smiths Aerospace.
"AdaCore was chosen as a key member of
the SCOE development team after an
extensive evaluation of several Ada
compiler vendors," said Dudrey Smith,
manager of support software at Smiths
Aerospace. “Over the multi-year
development, AdaCore has proven
instrumental in the success of both the
‘SCOE’ and the 767 Tanker program."
AdaCore was specifically selected by the
MCS development team for its superior
technical expertise with both Ada
compilation systems and with avionics
application development environments.
With fast compilation speed, quality code
generation, and an extensive set of
switches and pragmas (compilation
control directives), AdaCore’s GNAT Pro
specifically addressed the KC-767’s need
for mission-critical robustness and
flexibility.
"The close cooperation between AdaCore
and Wind River that enabled the
successful development of the Boeing
KC-767 mission control system
demonstrates the value real partnerships
bring to the development of device
software," said John Fanelli, vice

president of products, Wind River. "With
device software complexity rising
exponentially, only dedicated partnerships
that provide true technology integration
and optimization of best-of-breed
products will provide companies like
Smiths Aerospace and Boeing with the
technology to deliver their products faster,
better, at lower cost and more reliably."
In addition to flight-management tasks,
the KC-767 MCS takes in such data as
flight control, fuel storage and fuel flow
as well as refuelling orbit patterns,
rendezvous points, and other mission-
specific data. The KC-767 MCS consists
of two flight-management computers
(FMCs) connected to multipurpose
control display units (MCDUs). The
VME-based MCS computer is
implemented using a dual, open
architecture with an ARINC653-
compliant partitioned operating system
that enhances safety-critical redundancy
and isolation through temporal, physical
and bandwidth segregation (schedule,
memory and I/O throughput).
“The partitioned-OS tanker project is a
perfect illustration of how mission-critical
aerospace systems must be architected to
ensure safety-critical compliance and
reliability,” said Robert Dewar, president
of AdaCore. “The successful first flight of
the KC-767 is the culmination of an
exceptional effort put forth by the entire
development team.”

AdaCore - GNAT Pro on
Intel Itanium 2
AdaCore Implements Ada on Intel
Itanium 2-based HP Integrity Servers
Running HP-UX 11i and Linux
Eases transition for customers upgrading
from other platforms
http://www.adacore.com/pressroom_23.php
NEW YORK, September 6, 2005
AdaCore announced today the availability
of its GNAT Pro Ada development
environment on Intel® Itanium® 2-based
HP Integrity servers running either the
HP-UX or Linux operating systems. With
GNAT Pro, Ada users can take full
advantage of the performance, security,
and flexibility offered by the HP servers.
And Ada users with applications running
on the AlphaServer and PA-RISC
platforms can look forward to a smooth
transition to HP-UX 11i and Linux on
HP's Integrity servers.
GNAT Pro is the first Ada development
environment available on the Itanium 2
architecture. Its implementation on HP-
UX 11i and Linux for HP Integrity
servers was conducted by AdaCore under
a contract from HP.
"AdaCore’s implementation of GNAT
Pro on Itanium-based platforms sends an
important message to the Ada market,"

Ada-related Products 157

Ada User Journal Volume 26, Number 3, September 2005

said Robert Dewar, president of AdaCore.
"First, Ada is clearly a significant
language for major computer makers, and
second, AdaCore’s commercial open
source software approach makes the most
sense for supporting Ada users."
"HP Integrity servers provide an agile,
standards-based platform for HP-UX and
Linux, as evidenced by the more than
5,000 applications now available on these
systems," said Don Jenkins, vice president
of marketing, Business Critical Servers,
HP. "AdaCore's port of their GNAT Pro
Ada development environment to HP
Integrity servers provides customers even
more choices in enterprise solutions, and
accelerates their journey toward becoming
an Adaptive Enterprise."
AdaCore’s GNAT Pro for HP-UX 11i v2
and Linux (Red Hat® and SUSE®) is
immediately available from AdaCore on
HP’s Integrity servers.

AdaCore - New GNAT Pro
Toolsuite for ERC32
http://www.adacore.com/pressroom_24.php
Paris, September 15, 2005
GNAT Pro for ERC32, a flexible cross-
compilation environment supporting the
Ravenscar tasking profile on top of a bare
ERC32 computer, is now available. It is
designed for mission-critical real-time
space applications, including those that
have to meet safety standards.
Developed under ESA (European Space
Agency) sponsorship, AdaCore targeted
the development environment to ESA's
standard processor for spacecraft on-
board computer systems, the ERC32,
which is a radiation-tolerant SPARC V7
processor. Available host platforms are
x86 Linux and SPARC Solaris.
"ESA favours, beside proprietary
solutions, the existence of open source
technologies provided that they are
properly maintained." Explains Morten
Nielsen, ESA Technical Officer, "GNAT
Pro implements this policy with a
competitive high quality compilation
environment and run times for the space
SPARC based radiation hardened CPUs
that are used in current and future ESA
space programmes."
The static and simple tasking model
defined by the Ravenscar profile allows a
streamlined implementation of the Ada
run-time library directly on top of bare
computers. Its reduced complexity,
together with its configurability, make it
an excellent choice for mission-critical
space applications in which certification
or small size is needed. Unused code and
data can be removed from the final
executable, helping reducing the footprint
and simplifying the certification process.
The developer can choose from several
predefined run-time libraries, each

corresponding to a particular set of run-
time Ada features, or, even more flexibly,
configure a tailored library reflecting
exactly the set of features that are used.
Also as part of the ESA contract, an
extensive verification and validation
campaign was carried out to meet the
ESA requirements for such products.
AdaCore has developed a comprehensive
test suite that checks compliance with the
Ravenscar profile and correct behavior of
specialized features (such as the last-
chance exception handler mechanism) and
supplemental tools (such as the
debugger).
IPL (www.ipl.com) were also involved in
the development providing their
AdaTEST 95 tool targeting the ERC32
compiler.
"We are very pleased with this
development which more than ever opens
the space market to Ada, and to the use of
a state-of-the-art software development
environment for mission-critical
applications." - Dr. Jose Ruiz, AdaCore
Project Manager.
About ESA
The European Space Agency is Europe's
gateway to space. Its mission is to shape
the development of Europe's space
capability and ensure that investment in
space continues to deliver benefits to the
citizens of Europe. ESA has 16 Member
States. By coordinating the financial and
intellectual resources of its members, it
can undertake programmes and activities
far beyond the scope of any single
European country.
What does ESA do?
ESA's job is to draw up the European
space programme and carry it through.
The Agency's projects are designed to
find out more about the Earth, its
immediate space environment, the solar
system and the Universe, as well as to
develop satellite-based technologies and
services, and to promote European
industries. ESA also works closely with
space organisations outside Europe to
share the benefits of space with the whole
of mankind.

Aonix - ObjectAda for
Windows Update
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
Date: Thu, 26 May 2005 20:18:14 -0700
To: intel-objectada@aonix.com
Subject: Intel-OA: New ObjectAda Update

(1102V722-U18)
A new update for the Aonix ObjectAda
for Windows product, 1102V722-U18, is
now available at
http://www.aonix.com/ada_patches.html.
All general product updates for the 7.2.2
release are cumulative. In other words,
corrections and enhancements in this

update will include those from all
previous updates. Please see the Release
Notes for further details on the corrections
made and installation instructions. The
release notes can viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/7.2.2/U18/1102V722-U18.Release_
Notes
The upcoming ObjectAda for Windows
8.0 release will, of course, also contain
any corrections and enhancements in this
update.
From: Owner-Intel-ObjectAda <owner-

intel-objectada@aonix.com>
To: intel-objectada@aonix.com
Date: Wed, 14 Sep 2005 16:29:01 -0700
Subject: Intel-OA: New ObjectAda Update

(1102V722-U19)
A new update for the Aonix ObjectAda
for Windows product, 1102V722-U19, is
now available at
http://www.aonix.com/ada_patches.html.
All general product updates for the 7.2.2
release are cumulative. In other words,
corrections and enhancements in this
update will include those from all
previous updates. Please see the Release
Notes for further details on the corrections
made and installation instructions. The
release notes can be viewed at
ftp://ftp.aonix.com/pub/adats/outgoing/11
02/7.2.2/U19/1102V722-U19.Release_
Notes
The upcoming ObjectAda for Windows
8.2 release will contain all corrections and
enhancements in this update.
[See also "ObjectAda Update" in AUJ 25-
3 (Sep. 2004), p.125. --su]

Aonix - ObjectAda tools to
be used for Joint Strike
Fighter Project
Aversan Selects Aonix® Software for
Joint Strike Fighter Project
http://www.aonix.com/pr_08.16.05.html
San Diego, USA, August 16, 2005
Aonix®, a provider of safety critical and
mission critical software solutions,
announces that Aversan, a Canadian
company offering real-time embedded
solutions, selected Aonix ObjectAda®
RAVEN™ safety-critical Ada95
environment, certifiable for DO-178B
Level A certification, and AdaCAST
testing tools. Aonix products will be used
to support Aversan’s work on the F-35
(Joint Strike Fighter) PTMSC Controller
software design and embedded test
software design and verification. Aversan
selected Aonix tools based on selection
and specification of ObjectAda for safety
critical software design to MIL-STD-490.
“DO-178B Level A certification requires
the most stringent safety-critical
requirements,” noted Ted Sherlock,

158 Ada-related Products

Volume 26, Number 3, September 2005 Ada User Journal

Software Manager at Aversan. “When we
evaluate a supplier’s technology, we are
primarily concerned with the quality of
the products, the responsiveness of the
subcontractor, and whether the software is
technically adequate to meet our needs.
Aonix fulfilled all of these requirements”.
Aversan’s selection of Aonix tools for
safety-critical software design continues
Aonix’ long successful history of
delivering certifiable applications to both
commercial and government safety-
critical projects in avionics, space, high
speed rail, and nuclear industries. Aonix
gained its solid reputation in the safety-
critical field by designing tools that
comply with market standards and has
provided safety-critical solutions to a
myriad of commercial and defense
projects including International Space
Station, Boeing 777, Rafale Multi-Role
Combat Fighter, C130-J Hercules, Airbus
A 330-340, and NH90 Helicopter.

ARTiSAN - ARTiSAN
Studio Version 6.0
ARTiSAN launches ARTiSAN Studio
Version 6.0
Adds Ergonomic Profiling, DODAF
profile, Change tracking, new code
generation options.
www.artisansw.com/press/2005/v6.0.asp
Cheltenham, UK — July 13, 2005 —
ARTiSAN Software Tools, Inc. has today
launched ARTiSAN Studio version 6.0
which introduces more new features and
functionality than any previous ARTiSAN
release. ARTiSAN Real-time Studio has
been renamed ARTiSAN Studio in line
with ARTiSAN’s strategy to build an
industry-wide UML 2.0 and SysML
compliant tool.
At the core of the new product is the
concept of Ergonomic Profiling, the
ability to build a compelling environment
based on the needs of specific domains or
applications of UML. Using Ergonomic
Profiling, ARTiSAN Studio will take on
new menus and explorer windows based
on the UML profiles the user is working
with, including new icons, item types, and
diagrams. This level of extensibility is
unmatched in the industry, and enables
ARTiSAN or its customers to provide
multiple environments tailored to real
customer need.
Also available with the introduction of
ARTiSAN Studio 6.0 is an industry-
leading profile for modeling compliant
Department of Defense Architectural
Frameworks (DoDAF). The DoDAF
Profile customizes Studio's easy-to-use
interface to provide an out-of-the-box
solution for creating DoDAF-compliant
models. The DoDAF profile allows
modelers to describe DoDAF-compliant
architectures using DoDAF diagrams and
graphical notation, based on industry-

leading UML 2.0 modeling techniques
and technology. The complete range of
framework products can be modeled in a
single multi-user repository, ensuring
architectural consistency and
completeness across the Operational
(OV), Systems (SV), and Technical
Views (TV). This means a common tool
can be used across an organization for
both DoDAF and non-DoDAF
deliverables, dramatically improving
productivity and flow-down into
implementation.
A further key and unique feature of
ARTiSAN Studio 6.0 is the inclusion of
multi-user Change Tracking, extending
ARTiSAN Studio's powerful client-server
repository in support of a quality-assured
process. Based on the understanding that
models are complex pieces of interwoven
data, changes are automatically tracked on
each model element, rather than an
artificial granularity imposed by a
Configuration Management (CM) tool. As
ARTiSAN's customers state, multi-user
development improves productivity by
enabling collaborative teams to build
coherent and consistent models fast and
easily, a significant process improvement
for high-level systems and software
engineering work. ARTiSAN Studio
scales from single laptop to large multi-
site/multi-user configurations with ease.
In addition to extending its proven
systems engineering capabilities to
include the modeling of architectural
frameworks, ARTiSAN has increased
support at the implementation end.
ARTiSAN Studio now offers choices of
code generation: On-demand Code
Synchronization (OCS), in which a user
chooses when code is generated from, or
reversed into the model; or Automatic
Code Synchronization (ACS), which
provides instantaneous synchronization of
model and code. ACS allows one to work
simultaneously in both ARTiSAN Studio
and any IDE of choice. In keeping with
ARTiSAN’s policy of open architecture
and extensibility, both code generators are
template-based, allowing users to modify
the format and content of the generated
code. 'Out of the box', ACS and OCS
support C, C++, Java, and optionally Ada
83, Ada 95 and SPARK.
Other improvements include a web
publisher for generating models that can
be browsed using Microsoft Internet
Explorer, a Component Sharing Wizard
for improving the workflow associated
with sharing parts of models in other
models, as well as a host of customer
requested usability and workflow
enhancements.
Jeremy Goulding, CEO of ARTiSAN
Software stated, "With the release of
Studio 6.0, ARTiSAN raises the bar in the
UML and SysML tools arena. The
powerful concept of Ergonomic Profiling
makes UML accessible to domain

specialists and project stakeholders and
also provides a robust and consistent
solution for DODAF modelers thanks to
the underpinning of UML 2 and SysML.
Several of the new feature introductions,
such as change tracking, SysML support,
and the DoDAF Profile, come naturally to
a tool that had its origins in systems
modeling and further show the value of
the tool's already highly acclaimed multi-
user repository."
About ARTiSAN Software Tools
ARTiSAN is the leading supplier of
collaborative modeling tools for
requirements analysis, specification,
design and development of complex
applications. The company provides
standards-based, multi-user tool support
from architectural frameworks through
systems design to software
implementation. ARTiSAN offers
products, services and a process for
systems and software modeling to
accelerate the development of next-
generation real-time systems while
ensuring that they always meet
requirements. ARTiSAN enables
engineering teams to visualize, design and
validate systems before building them,
and simplifies implementation with code
generation and software reuse. Winner of
the 2005 SD Times 100 award in the
Modeling category for bringing UML and
SysML to real-time embedded systems,
ARTiSAN offers the most advanced tools
for complex applications development.
ARTiSAN Software Tools, Inc., founded
in March 1997, is privately held with
headquarters in Cheltenham, United
Kingdom. The company has regional
sales offices and distributors throughout
the world. For more information, call +44
(0)1242 229300 internationally, or
1(888)511-7975 from the US; or visit
www.artisansw.com

ARTiSAN - Software
Development on Meteor
missile program
ARTiSAN Studio Selected by MBDA for
Software Development on Meteor missile
program
www.artisansw.com/press/2005/MBDA.asp
Cheltenham, UK — September 6, 2005
— ARTiSAN Software Tools, a global
leader for UML 2 and SysML-based, real-
time systems and software modeling
tools, announced today that ARTiSAN
Studio has been selected by the Seeker
Division of MBDA, the world’s leading
missile systems manufacturer, as their
modeling tool for software development
on the Meteor missile.
Jointly owned by BAE Systems, EADS
and Finmeccanica, MBDA is the prime
contractor on the six-nation Meteor
missile program. Meteor is a highly
maneuverable, fast, Beyond Visual Range

Ada-related Products 159

Ada User Journal Volume 26, Number 3, September 2005

(BVR) air-to-air weapon system capable
of operation by night or day, in all
weather and in dense electronic warfare
environments. The Seeker software
design on Meteor, the most complex part
of the missile, required engineers to take
existing C code, re-purpose it and
generate new functionality in Ada 95.
According to MBDA: "We looked at tools
from several vendors and were
immediately attracted by ARTiSAN
Studio's excellent support for real-time
software engineering and the strong
integration with other software tools.
Other factors influencing the decision-
making process were its support for code
generation for both Ada and C and the
ability to combine them within the same
UML model. ARTiSAN's continuing
commitment to Ada and UML
development was also an important factor
in the selection."
An additional factor in the selection of
ARTiSAN Studio was the ability of the
tools to bring together the electronics and
software components of the project
design. The Hardware Architecture
Diagram provided an intuitive view of the
Electronics Architecture enabling the
hardware engineers to readily define the
bus interfaces, memory maps and details
of how the electronics interfaced to the
software.
Jeremy Goulding, President and CEO of
ARTiSAN commented, "MBDA was
extremely attracted to ARTiSAN's
support for multiple languages within a
single model, and particularly our
pedigree with and support for Ada. Our
continued commitment to support an Ada
oriented process with UML2 and SysML
modeling tools is a direct result of
coupling the need to add the latest
standards-based functionality, together
with addressing the long-term support
needs of our customers on major defense
programs."
About MBDA
MBDA operates in all of the major world
markets, and is the only company in its
sector able to design and produce missile
systems for land-based, naval and
airborne requirements. The group offers
customers high technology solutions and
has unrivalled capability in key
technologies. MBDA Seeker Division is
an 'in-house' supplier of key missile
elements. Its role is to design, develop,
produce, and integrate RF seekers and
fuzes and to merge existing capabilities
and skills creating a 'Center of Excellence'
and international skill pool. MBDA is
jointly owned by BAE SYSTEMS
(37.5%), EADS (37.5%) and
FINMECCANICA (25%). For more
information about MBDA, visit
www.mbda.net

DDC-I - Upgrading DACS'
Microsoft Visual Studio
Support
Phoenix Arizona, March 1, 2005 --
According to DDC-I Senior Software
Engineer Richard Frost, the company's
proven DACS product has always offered
support for objects created by Microsoft
Visual Studio. A conversion utility was
used to "fix up" an object file for
compatibility with the DACS linker.
Unfortunately, later releases of Visual
Studio - including .Net - have added
incompatibilities in the LIBC library, as
well as to the initialization code for the
Run Time System (RTS).
"Addressing the increasing issues
experienced by a growing customer base
using a combination of development tools
hosted on Windows became a priority,"
explains Frost, who's Windows
experience includes leading the rehosting
program for DDC-I's TADS product line.
With the DACS 4.7.16 release, DDC-I
now provides two versions of the DACS
RTS. The default product is built with the
standard DACS assembler and fully
compatible with the standard target linker
provided with DACS. An optional RTS,
built with Microsoft Visual Studio, is
available to every DACS customer.
Due to legal limitations, DDC-I is not
able to ship the "link.exe" component of
Visual Studio. Instead, a template file is
provided which calls the linker and uses
the Microsoft compiled version of the
DACS RTS, eliminating incompatibilities
and providing the customer an easy
integration path for Microsoft Visual
Studio and .Net.
About DDC-I
DDC-I is a global supplier of software
development tools, custom software
development services, and legacy
software system modernization. DDC-I's
customer base is an impressive "who's
who" in the commercial, military,
aerospace, and safety-critical industries.
Tools include compiler systems and run-
time systems for C, Embedded C++, Ada,
JOVIAL and Fortran applications
development. For more information
regarding DDC-I products, contact DDC-I
at: 400 North Fifth Street, Phoenix,
Arizona 85004; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com; or visit www.ddci.com.

DDC-I - DDC-I Joins the
Eclipse Foundation
Offers Integrated Solution for Safety
Critical Software Developers
June 1, 2005 – Phoenix, AZ – DDC-I, a
global leader in safety critical software
tools for embedded applications,
announced today they have joined the

Eclipse Foundation, and will market their
SCORE development tools for VxWorks
under the Eclipse Integrated Development
Environment.
DDC-I joins the Foundation as an Add-in
Provider, and is in the process of creating
Eclipse-based products optimized for
Wind River's VxWorks RTOS. The final
product, due to release in Q3, will be an
integrated solution which means one GUI
/ one feel under Workbench, Wind River's
Eclipse based development environment.
"The fact that our solution will truly be
integrated is what sets us apart from our
competitors," states David Mosley, DDC-
I Engineering Manager and SCORE®
Product Champion. "This new product
will offer world-class SCORE compilers
& a wide range of third party tools being
integrated into Eclipse."
"The goal of Eclipse is to create a
universal development platform enabling
global enterprises to develop software
more efficiently," explains Eclipse
Foundation Executive Director Mike
Milinkovich. "DDC-I brings over twenty
years of experience with safety-critical
embedded system software to the Eclipse
platform. Their SCORE product's close
integration with Eclipse Strategic
Developer Wind River's Workbench and
VxWorks RTOS offers embedded
developers even greater flexibility."
Founded in November 2001 by industry
heavyweights IBM, Borland, Red Hat and
others -- including Oracle, SAP and Intel -
- the Eclipse Foundation's open source
development environment is gaining
traction in the enterprise market and
reaching into embedded systems, where a
number of vendors are adopting Eclipse
technology.
Dedicated to providing an industry-wide
platform for the development of highly
integrated tools, the independent Eclipse
"ecosystem" is built atop royalty-free
technology and universal tool integration,
using a plug-in based framework making
it easier to create, integrate and utilize
software tools. By collaborating and
exploiting core integration technology,
tool producers like DDC-I and Wind
River are leveraging platform reuse and
concentrating on core competencies to
create new development technology for
safety-critical software programmers.

DDC-I - DDC-I Tools for
Ongoing Bradley Upgrades
Bradley Fighting Vehicle: Precision
Targeting On The Cutting Edge
Key Subcontractors Harness DDC-I Tools
for Ongoing Bradley Upgrades
May 02, 2005 - Phoenix, AZ - Developed
and enhanced over the last twenty-five
years, the Bradley Fighting Vehicle is a
mainstay of American ground forces,
delivering personnel, firepower and

160 Ada-related Products

Volume 26, Number 3, September 2005 Ada User Journal

battlefield telemetry in challenging
environments around the globe. Earning a
reputation as one of the finest fighting
vehicles in the world, its mobility,
survivability and shoot-on-the-move
capability are the result of continual
enhancement to meet and exceed the
requirements of the changing battlefield.
DDC-I's proven DACS development tools
continue to contribute directly to Bradley
development, most recently responsible
for embedded software for the turret drive
and electronic transmission control units
in the newest Bradley A3. Estimated to be
an order of magnitude more challenging
than previous Bradley programs, the A3
upgrade involved development of
hardware and software by a large number
of subcontractors located around the
world. Efforts were magnified by the
estimated 1.5M lines of code necessary to
make everything go.
Safety-critical embedded code generated
with DACS spins the improved A3 turret
design and keeps the Bradley's gears
turning. The turret's 360- degree
continuous traverse enhances automatic
dual target tracking, automatic gun target
adjustment, automatic sighting,
hunter/killer and day-and-night vision
capabilities. The GM-Allison hydro-
mechanical automatic transmission
harnesses a 600 hp Cummins diesel
engine, with a top land speed of 38 mph
(61 km/h), amphibious capability and a
cruising range of 250 miles.
In addition to standard combat roles,
variants of the Bradley serve many others,
from air defense support (M6 Linebacker)
and troop and cargo transport (M993
Carrier) to the medical AMEV/AMTV
(Armored Medical Evac/Treatment
Vehicle). The M4 Command and Control
Vehicle (C2V) provide commander and
staff with a protected environment at the
pace of today's armored forces. Providing
protected transport of an infantry squad
on the battlefield and watching over
firefights to support dismounted infantry,
the Bradley can suppress and defeat
enemy tanks, reconnaissance vehicles,
infantry fighting vehicles, armored
personnel carriers, bunkers, dismounted
infantry and attack helicopters.
Scouting, essential fire support, and laser-
sighting missions are a crucial capability
on the emerging 21st century battlefield.
Incorporating the latest improvements,
taking lessons learned during recent
deployment of vehicles in the Middle
East, the Bradley is engaged in ongoing
project development and DACS remains
involved.

DDC-I - DDC-I Releases
v.6.2.0 for TADS-960
Offers New License and Installation
Options

August 1, 2005 – Phoenix, AZ – DDC-I, a
global leader in safety critical software
tools for embedded applications,
announces today a new release for the
TADS Ada Development System
targeting i960. TADS-960 for Windows
V.6.2.0 includes the introduction of the
FLEXnet 10.1 licensing system along
with Distributed TADS for Windows and
unbundled tools.
"The upgrades made in this version of
TADS offer our customers a product
that’s easier to use, from a smooth
installation to support for multiple users,"
states Stephen Hunter, Senior Software
Engineer and TADS Product Champion.
"We are dedicated to providing our clients
with quality tools and services as well as
customizing solutions as needed for their
individual requirements," Hunter
concludes.
FLEXnet 10.1 supports all of the latest
licensing models including triple
redundant license servers, MAC address
host ID’s, hardware dongles, license
borrowing, and a host of other licensing
models tailored to the customer's needs.
Distributed TADS for Windows allows a
TADS-960 Universe to be installed on
one Universe server, and then to be shared
by any number of client installations on
other Windows machines. This will allow
different users on different machines to
easily share projects and libraries making
software project management easier to
implement.
The Windows installation procedures
have been re-engineered to allow for easy
re-licensing of the product. The various
licensing models supported can easily be
changed through the installation
procedure without the need to uninstall or
reinstall the product.
The Stand-Alone AdaScope (debugger),
Link Retargeting Kit, and Runtime Source
Kits are now all available as separate
shippable packages. Each may be
purchased and installed separately or as
part of the main development system.

DDC-I - TADS Windows for
M680x0 & Mil-Std-1750A
New Upgrade Release for TADS
Windows Targeting M680x0 & Mil-Std-
1750A - Now Available
Offers upgraded licensing, shared projects
and unbundled tools.
August 29, 2005 – Phoenix, AZ – DDC-I,
a global leader in safety critical software
tools for embedded applications,
announces today a new release for the
TADS Ada Development System
targeting Motorola 68K and Mil-Std-
1750A processors.
"This release completes V.6.2.0 upgrades
to the entire TADS Windows
Development Suite (TADS-i960, TADS-

1750A, and TADS-680x0), states Stephen
Hunter, Senior Software Engineer. "The
upgrades offer our customers a product
that is easier to use, from a smooth
installation to support for multiple users,"
Hunter concludes.
Features:
FLEXnet 10.1 supports all of the latest
licensing models including triple
redundant license servers, MAC address
host ID’s, hardware dongles, license
borrowing, and a host of other licensing
models tailored to the customer's needs.
Distributed TADS for Windows allows a
TADS-680x0 or TADS-1750A Universe
to be installed on one Universe server,
and then to be shared by any number of
client installations on other Windows
machines. This will allow different users
on different machines to easily share
projects and libraries making software
project management easier to implement.
The Windows installation procedures
have been re-engineered to allow for easy
re-licensing of the product. The various
licensing models supported can easily be
changed through the installation
procedure without the need to uninstall or
reinstall the product.
Unbundled Tools: For TADS-680x0, the
Stand-Alone AdaScope (debugger), Link
Retargeting Kit, Protocol Retargeting Kit
and Runtime Source Kits are now all
available as separate shippable packages.
For TADS-1750A, The Math Package,
Stand-Alone AdaScope (debugger),
Emulator Support Kit (PDU), Link
Retargeting Kit, Protocol Retargeting Kit,
and Runtime Source Kits are also all
available as separate shippable packages.
Each may be purchased and installed
separately or as part of the main
development system.

DDC-I - SCORE® Gives
State-of-the-Art Ada
Support to VxWorks
As a standalone product, SCORE®
(DDC-I’s Safety Critical Object-oriented
Real-time Embedded Software
Development Environment) has been able
to meet the needs of most of DDC-I’s
customers. It’s ability to seamlessly
integrate and debug code written in
multiple languages (Ada 95, C,
Embedded C++, and FORTRAN),
together with a small-real time kernel has
provided a stable platform on which
applications are built. Having a small
real-time kernel is a significant advantage
of SCORE®, but at the same time it’s
smallness is a liability to customers
wanting more device drivers,
communication stacks, disk management,
and other middleware functions.
Now SCORE® has been integrated with
VxWorks (Wind River’s leading
Embedded Real-Time Operating System)

Ada-related Products 161

Ada User Journal Volume 26, Number 3, September 2005

- you can get the proven SCORE® code
generation ability plus all the rich features
and middleware of the top-of-the-line
RTOS. Not only has this integration been
done on the target, but the development
environments are integrated as well. No
more launching one tool from another; the
entire edit, build, and debug activities are
all controlled from within Workbench -
the new Wind River Integrated
Development Environment (IDE).

ICS - BX/Ada V6
From: Mark <mhatch@ics.com>
Date: 10 Aug 2005 12:29:27 -0700
Subject: Announce: BX/Ada - Motif GUI

builder for Ada w/Motif bindings
Newsgroups:

comp.lang.ada,comp.windows.x.motif
ICS announces the release of BX/Ada V6
which augments BX PRO, the industry
leading GUI builder, with the ability to
generate Ada code. BX/Ada provides a
complete solution for GUI developers
using Ada. It includes all the features of
BX PRO, plus a set of Motif/Ada
bindings, support for most major Ada
compilers and 15 add-on Motif widgets
from EnhancementPak for developing
top-quality user interfaces.
This release extends to Ada developers all
the conveniences in creating user
interfaces that BX PRO has provided
C/C++ developers for years. Features
such as WYSIWYG development,
resource editors, styles, support for
localization and internationalization,
integration of third party widgets, and
more are now available to Ada developers
who will be able to generate clean,
readable and portable Ada code with the
push of a button.
For more information or an evaluation
copy of BX/Ada, visit
http://www.ics.com/products/motif/bxada

PegaSoft - BUSH AdaScript
Business Shell
From: dan <dan@cogeco.ca>
Date: Wed, 31 Aug 2005 13:24:21 -0400
Subject: BUSH Business Shell

announcement New Version 1.0.3
Newsgroups: comp.lang.ada
BUSH (Business Shell) combines the
capabilities of BASH, PHP, GCC, and
databases into a uniform design for
rapidly building secure, reliable Web
sites. Based on an ISO standard, it
promotes code reuse: scripts and
templates can be compiled with GCC or
ported to JVM or .Net using third party
tools with only minor changes. It can also
replace BASH as an interactive command
shell with SQL support, and is a general
purpose scripting language. BUSH
supports Linux, FreeBSD, PostgreSQL
and MySQL.

Changes for version 1.0.3: New built-in
GNAT-compatible directory_operations
package. Serious memory leak problem
with pragma prompt_script repaired that
could cause an interactive session to
crash.
The BUSH home page is at
http://www.pegasoft.ca/bush.html
[See also same topic in AUJ 26-1 (Mar.
2005), p.17. --su]

Praxis HIS - Merge of Praxis
High Integrity Systems and
Aspect Assessment
The Merger of Praxis High Integrity
Systems and Aspect Assessment
14 September 2005
UK based Praxis High Integrity Systems
has announced its intention to merge with
Aspect Assessment. The merger confirms
the firm’s position as the foremost world
specialist in critical systems engineering.
The new firm will continue to trade as
Praxis High Integrity Systems.
The firm will provide high value services
in such areas as Ultra Low Defect
Software Development, Systems Safety,
Systems Security, Advanced Systems
Engineering Tools, Independent Safety
Assessment and Notified Body Services.
A good example of Praxis High Integrity
Systems’ capability is provided by its
recent work for the US. National Security
Agency where it developed a
demonstrator biometrics system that was
independently tested and zero software
defects were identified. The Praxis
approach to developing critical systems
has been cited by the US National Cyber
Security Partnership (NCSP) as one of
only three approaches world-wide which
is capable of developing the ultra low
defect software needed to improve US
Cyber Security. The US NCSP was
formed in response to the White House
National Strategy to Secure Cyber Space.
Aspect Assessment focuses on the
independent risk evaluation of critical
systems – a powerful complement to the
core services offered by Praxis. Recently,
Aspect completed the safety and
conformance approval of the Tilt
Authorisation and Speed Supervision
(TASS) system for Virgin’s tilting
Pendalino trains. Tilting trains are
required on the UK West Coast Mainline
between London and Glasgow in order to
reduce journey times, and the TASS
system ensures they tilt safely on specific
sections of the railway line.
Keith Williams, Managing Director of
Praxis High Integrity Systems, says:
“Praxis High Integrity Systems has over
twenty years of market-leading expertise,
delivering very high integrity, ultra low
defect systems for applications such as
Air Traffic Control, Weapons Systems,

Railway Signalling, Telecommunications
and Secure Financial applications. “
“Now, with the added expertise of Aspect
Assessment, we have the very strongest
capability in safety and environmental
engineering. It allows us to offer a world
beating approach to Independent Safety
Assessment, which is a service line we
remain strongly committed to. It is a most
formidable combination.”

Praxis HIS - SPARK and
SCADE Suite for Rapid
Development
Praxis High Integrity Systems and Esterel
Technologies Commit to Integrate
SPARK and SCADE Suite for Rapid
Development Compliant with Def. Stan.
00-56 Requirements
BATH (UK) and ELANCOURT (France)
— June 15, 2005
Praxis High Integrity Systems—a world-
leading company providing products and
services for the engineering of high
integrity systems—and Esterel
Technologies—a world-leading supplier
of model based-design, validation, and
verification tools for safety-critical
embedded software applications—today
announced their collaboration to combine
the SPARK toolset from Praxis HIS with
the SCADE Suite toolset from Esterel
Technologies.
This tool integration will combine
SCADE Suite’s safe design capture,
simulation, formal design verification,
with the widely used SPARK
programming language and associated
analysis tool, the SPARK Examiner. By
combining the best in modelling, code
generation and language-based analysis,
this integration will effectively enable
rapid development that is in full
compliance with Defence Standard 00-56
objectives and other demanding
standards.
“Given the rapidly growing market share
of SCADE in both Europe and the United
States, Praxis HIS is delighted to
collaborate with Esterel Technologies on
this tool integration. It will allow our joint
customers to benefit from both Esterel
Technologies and Praxis HIS experience
in safety- and reliability- critical systems,
in particular for those designing systems
that must comply to Defence Standard 00-
56” said Peter Amey, Praxis’s Chief
Technical Officer.
“As we are deploying SCADE towards
same market and customers as Praxis HIS
with SPARK, it was an obvious move, for
the best interest of our respective
customer base, to cooperate with Praxis
and combine our technologies and skills
better to address specifics of safety
critical systems. In particular we are very
pleased to be able to provide a consistent
flow to UK military accounts, with a fully

162 Ada and GNU/Linux

Volume 26, Number 3, September 2005 Ada User Journal

compliant Def. Standard 00-56 design
flow” said Eric Bantegnie, the Esterel
Technologies’ CEO.
The SPARK language and supporting tool
set provide the most precise environment
for the implementation and verification of
high-integrity software. The SPARK
Examiner allows vital safety and security
properties of the implementation to be
rigorously demonstrated and provides an
industrial-strength technology for proving
that all potential run-time errors have
been eliminated.
SCADE Suite, a design environment for
safety-critical embedded software
applications, provides graphical
specification capture and simulation,
along with the capability to check safety
properties at the model level. In addition,
the SCADE KCG qualified code
generator has achieved compliance with
the highest safety standards, IEC 61508
and RTCA DO-178B, enabling rapid
deployment of SCADE-generated
designs.
About Esterel Technologies
Esterel Technologies’ tools create
unambiguous specifications that produce
correct-by-construction, automated
implementation in software and/or
hardware. Today, SCADE Suite is the
standard for the creation of RTCA DO-
178B, EUROCAE ED-12B, and IEC
61508 safety-critical embedded software
in the civilian avionics and transportation
industries. SCADE Drive is the emerging
standard for the creation of safety-critical
embedded software in the automotive
industry. Esterel Studio enables
electronics hardware designers to create
golden specification models that can be
automatically implemented in RTL or C.
Esterel Technologies is a privately held
company with headquarters in Mountain
View, California, USA, and Elancourt,
France, with direct sales offices in
Germany, the United Kingdom, and
China. For additional information, visit
the Esterel Technologies website at
www.esterel-technologies.com.
About Praxis High Integrity Systems
Praxis High Integrity Systems has
developed a global reputation in the fields
of systems and requirements engineering,
software development, safety assurance,
information security and risk management
and works with many of the leading
aerospace companies and other
organizations. The Company’s roots are
in the application of sound engineering
principles to the development of high-
integrity software systems whether safety-
, business- or security-critical. Its unique
approaches, tools and products have
evolved from practical experience in the
most effective approaches to developing
such systems. The Company has now
diversified into several new markets
including financial services,

telecommunications, utilities and
automotive. For more information, please
visit www.praxis-his.com.

Ada and CORBA
Development version of
PolyORB
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 31 Aug 2005 01:22:23 -0700
Subject: Re: PolyORB, GCC, and Debian

(was Re: Recompiling?)
Newsgroups: comp.lang.ada
Vadim Godunko wrote:
> Current development version of

PolyORB require at least GCC 3.4.1.
May be it will be work with GCC 4.0.2.
:(

This is bad news, but it seems that
PolyORB 1.2r can be compiled with
GNAT Pro 3.16a1, so perhaps 3.15p may
be able to compile it as well, with some
patching.
I don't think that a package maintainer
would be very interested in following the
CVS HEAD of PolyORB, unless they
were a PolyORB developer themselves.
> The DSA personality (replacement of

GLADE) may work with GCC 4.0.2 if
someone integrate several related
patches from GCC HEAD. Even you
are use PolyORB's DSA personality
you need the gnatdist program from
GLADE (the current development
version of GLADE does have the
correct version of this tool).

This sounds like a packager's nightmare.
Personally, I have rather negative views
on the way AdaCore does configuration
management. They seem to go out of
their way to make packager's jobs more
difficult.
Note that the reason why I didn't package
PolyORB is that it is a generic
middleware; I felt that I had to provide
either all personalities, or none at all.
Providing no personality was easier :)
Also, I don't use it myself, and I would
have done a lousy job of supporting it for
Debian users.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 31 Aug 2005 01:25:13 -0700
Subject: Re: PolyORB, GCC, and Debian

(was Re: Recompiling?)
Newsgroups: comp.lang.ada
(Posted on behalf of Vadim Godunko)
Current stable version of PolyORB is
1.3a. I think AdaCore release 1.3r
(publicy available version) in near future.
This version have many code cleanup and
remove many GNAT 3.15p workarounds.
Thus it require GNAT Pro 5 or GCC 3.4.

I think the right way is provide only stable
personalities, for now (PolyORB 1.3):
- application: CORBA MOMA
- protocol: GIOP SOAP
- services: Event IR Naming Notification
Time
The DSA personality still unstable up to
1.4. More whan, it require
synchronization between it support inside
GNAT compiler, GLADE's gnatdist and
PolyORB. :(This is too complex task for
provide it outside of AdaCore products. :(
From: Jerome Hugues

<hugues@nephilim.enst.fr>
Date: Wed, 31 Aug 2005 09:55:54
Subject: Re: PolyORB, GCC, and Debian

(was Re: Recompiling?)
Organization: ENST, France
Newsgroups: comp.lang.ada
Note we got some feedback of people
playing with PolyORB, DSA and GCC
4.0.1, so things are possible, given enough
resources are provided.
Note that providing a personality means
providing a few fields to configure, and
packaging the libraries that are built, there
is no other black magic behind. The
process might be similar to other
packages. The libraries are loosely
coupled, and the dependences are easy to
track after some analysis.
You can join polyorb-users@ to discuss
these issues if you're interested.
[See also "ACT - PolyORB 1.1r" in AUJ
25-3 (Sep 2004), p.124-125. --su]

Ada and GNU/Linux
GNAT and Fedora Core 3
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Tue, 28 Jun 2005 19:56:04 GMT
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada
Reinert Korsnes wrote:
> Did anybody try "gnatmake" under an

up to date (28 June 2005) Fedora Core
3?

Yes, and it works.
(To be honest, my system is *almost* up-
to-date. I just now updated selinux-policy-
targeted to version 1.17.30-3.13, but then
I could hardly run anything at all because
dynamic libraries couldn't be loaded, so I
quickly reverted to 1.17.30-3.9. That's
obviously not the same problem as yours.)
Have you tried it with GCC 4?
From: Reinert Korsnes

<reinert.korsnes@chello.no>
Date: Wed, 29 Jun 2005 14:13:50 +0200
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada

Ada and Microsoft 163

Ada User Journal Volume 26, Number 3, September 2005

>> Did anybody try "gnatmake" under an
up to date (28 June 2005) Fedora Core
3 ?

> Yes, and it works.
(To be honest, my system is *almost*
up-to-date. I just now updated selinux-
policy-targeted to version 1.17.30-3.13,
but then I could hardly run anything at
all because dynamic libraries couldn't
be loaded, so I quickly reverted to
1.17.30-3.9. That's obviously not the
same problem as yours.)

Under kernel-2.6.11-1.27_FC3 and
previous it *did work* for me also. The
problem started yesterday after I did an
"up2date". If I start with the previous
kernel, then I again can use Ada on
Fedora. So the problem seems to be
associated with the very very last
updates....
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Wed, 29 Jun 2005 20:45:58 GMT
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada
> Under kernel-2.6.11-1.27_FC3 and

previous it *did work* for me also.
Oh, the kernel! I forgot that I haven't
rebooted after the latest kernel update.
2.6.11-1.27_FC3 is still running. Sorry.
From: Björn Persson

<rombo.bjorn.persson@sverige.nu>
Date: Wed, 29 Jun 2005 23:27:42 GMT
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada
>> Under kernel-2.6.11-1.27_FC3 and

previous it *did work* for me also.
> Oh, the kernel! I forgot that I haven't

rebooted after the latest kernel update.
2.6.11-1.27_FC3 is still running. Sorry.

Under Linux 2.6.11-1.35_FC3 I get the
same error as Reinert when I run
Gnatmake on a tiny test program -
Storage_Error at a-textio.ads:53:9.
This is line 53 of a-textio.ads:
type File_Mode is
 (In_File, Out_File,
 Append_File);

From: brian.b.mcguinness@lmco.com
Date: 29 Jun 2005 05:26:37 -0700
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada
I tried the same thing last night, with
similar results.
Among other things, Fedora Core 3 kernel
2.6.11-1.35_FC3 breaks gcc (GCC) 3.4.3
20050227 (Red Hat 3.4.3-22.fc3), which I
use to compile Ada programs, and the
APLX 1.1 APL interpreter.
They seem to work OK with kernel
2.6.11-1.27_FC3.
I recommend keeping an older kernel
version that is known to be good
whenever upgrading to a new kernel, as

this sort of thing happens from time to
time.
From: Duncan Sands <baldrick@free.fr>
Date: Thu, 30 Jun 2005 08:43:13 +0200
Subject: Re: gnat and fedora these days ?
Newsgroups: comp.lang.ada
Maybe it's all that non-executable stack /
stack randomisation stuff that I hear Red
Hat use in their kernel?

Ada and Microsoft
AIDE - Ada Instant
Development Environment
for Windows
From: Stephane Riviere

<stephane@rochebrune.org>
Date: Mon, 22 Aug 2005 15:07:55 +0200
Subject: Lettre d'information n°3 - AIDE -

Ada Instant Development Environment
Organization: Rochebrune
Newsgroups: fr.comp.lang.ada
[Translated from French.] AIDE 1.03 is
now available!
AIDE is an Ada development
environment for Windows, which uses
multi-platform libre-software utilities
only for creating multi-platform
applications as either libre or commercial
purposes, in textual and/or graphical
mode and also for use via Internet.
AIDE is intended for teaching and
development. It can be used by multiple
programmers concurrently and all of their
specific environment and preferences will
be separately and individually maintained.
AIDE permits to select among three
development environment options: a
general IDE based on Emacs (Glide); an
Ada-specific graphical IDE (GPS); a
simple command-line mode (MSys, Bash
compatible).
AIDE is unique thanks to its licence,
integration, absence of negative impact on
the system:
- all the necessary utilities are libre
software, pre-integrated and already
configured;
- AIDE is immediately usable after a
simple installation;
- no modification whatsoever to the
system directories;
- no system variable created nor modified
outside the inner scope of AIDE.
AIDE includes a production chain for
complete and cohesive documentation,
based on Texinfo, which generates from a
single source all in-line help folders
(HTML) and all user manuals (PDF).
AIDE uses the AdaCore Ada technology
(http://www.adacore.com).
Main novelties

AIDE is installed by means of a multi-
volume installation program.
Simplified packaging: AIDE itself and
AIDE-SRC (the collection of all its
sources).
Simplified configuration: one single
directory for Glide, GPS and MSys.
New GPS version (2.1).
OpenGL was integrated in AIDE with
numerous examples (all tested).
A Texinfo module has been added to the
AdaDoc document generator, which
permits to automatically include any
specification within Texinfo
documentation. The source comments
may embed Texinfo instructions for
improving presentation.
Important update of the user manual,
which currently contains 110 pages.
Two new chapters were added.
Translation to English has started.
Program examples and associated
documentation were all updated. The Ada
95 reference manual was added.
Numerous other updates included.
Integration of various utilities (Unix
compatible safeguard multi-volume for
Afio and CD-R burning with cdrecord and
mkisofs).
Download from:
http://stephane.rochebrune.org -> rubrique
AIDE.
[See also same topic in AUJ 23-3 (Sep
2002), p.18 and "Ada Starter CD-ROM
for MS-Windows" in AUJ 24-1 (Mar
2003), p.25. --su]

A# and the PocketPC
From: Rob Veenker <veenker@xs4all.nl>
Date: Sun, 04 Sep 2005 23:55:20 +0200
Subject: Re: SIGAda Workshop
Newsgroups: comp.lang.ada
> > Has anyone built an application with

A#?
> Depending on what you call an

application. I built an Hello World like
A# program and run it on GNU/Linux
Mono. Worked fine. I wanted to have it
executed on a PocketPC platform, but I
was never able to do so...

The .Net compact framework indeed has
limitations that also affect the A# runtime.
A special monitor class was added to
allow tasking to work with A# as well. I
have successfully built applications for
the .Net compact framework using A#
and run on a PocketPC device (including
the emulated device that comes with the
Visual Studio :-)
As I recall there was a problem with A#
for the .Net compact framework regarding
the reference to the right mscorlib for
PocketPC.

164 Ada Inside

Volume 26, Number 3, September 2005 Ada User Journal

[See also "A# for Mono" in AUJ 25-4
(Dec 2004), p.197. --su]

References to
Publications
DDC-I Online News
[Excerpts from the table of contents. See
elsewhere in this News section for
selected items. -- su]
From: jc <jcus@ddci.com>
To: 27 May 2005 Online News US

<jcus@ddci.com>
Date: Mon, 2 May 2005 14:36:45)
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News - Real-Time Industry
Updates - May 2005, Volume 6, Number
5 -
[http://www.ddci.com/news_vol6num5.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* DDC-I in Action
Bradley Fighting Vehicle: Precision
Targeting On The Cutting Edge
* In the News
Things are Heating Up
* Partner Update
Wind River 2005 Worldwide User
Conference
* Tech Talk
Ada Subunits and Efficiency in SCORE®
* Something to Think About
Positive Deviants
From: jc <jcus@ddci.com>
To: 28 June_July 2005 Online News US

<jcus@ddci.com>
Date: Fri, 3 Jun 2005 0:50:15
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News - Real-Time Industry
Updates - June/July 2005, Volume 6,
Number 6 -
[http://www.ddci.com/news_vol6num6.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* For Immediate Release - DDC-I Joins
the Eclipse Foundation
Offers Integrated Solution for Safety
Critical Software Developers
* In The News
What Consumes Most of an Embedded
Developer's Time?
* Tech Talk
The Ada Business of Importing and
Exporting

* Something to Think About
Leave 'em Laughing
From: jc <jcus@ddci.com>
To: 31 Aug_Sept 2005 Online News US

<jcus@ddci.com>
Date: Tue, 2 Aug 2005 1:03:11
Organization: DDC-I
Subject: Real-Time Industry Updates - News

from DDC-I
DDC-I Online News - Real-Time Industry
Updates - August/September 2005,
Volume 6, Number 7 -
[http://www.ddci.com/news_vol6num7.sh
tml] A monthly news update dedicated to
DDC-I customers & registered
subscribers.
This Month:
* DDC-I In Action - Aircraft Condition
Analysis and Management System
(ACAMS)
SCORE(R) from DDC-I Helping Develop
"Health-Conscious" Planes
* For Immediate Release
TADS-960 v.6.2.0 Now Available
* In The News
Programming for Parallel Processors
* Something To Think About:
We are Happier When We're in Control

SPARK in IEEE Spectrum
Magazine
Praxis High Integrity Systems Press
Release
Leading technology publication praises
Praxis High Integrity Systems
Global recognition for UK Company from
IEEE Spectrum
Praxis High Integrity Systems (Praxis
HIS), a world-leading company providing
products and services for the engineering
of high integrity systems, has received
high praise and global recognition from
IEEE Spectrum magazine, the flagship
publication of the Institute of Electrical
and Electronics Engineers (The IEEE), in
its September issue.
In the article, called ‘The Exterminators’,
contributing editor Philip E. Ross features
the British firm, highlighting their
approach to the development of ultra-
reliable computer systems. The article
showcases the MULTOS CA—an ultra-
secure smartcard certification authority
that was developed by Praxis HIS for
MasterCard International.
Praxis HIS has developed a world-class
reputation within the software world for
producing near defect-free software.
Using mathematically based techniques,
known as formal methods, Praxis HIS
builds software with a simple creed: that
defects should be systematically tracked
down and ruthlessly exterminated during
all stages of a project.

Although Praxis HIS is tiny when
compared to the software giants such as
Microsoft, Oracle and SAP it has
developed some highly complex and
customized systems that need to be
incredibly reliable. This includes air-
traffic control systems and, more recently,
a highly secure demonstration system for
the NSA—the U.S. signals intelligence
and cryptographic agency.
Commenting on Praxis HIS, John C.
Knight, Editor-in-Chief of IEEE
Transactions on Software Engineering
and Professor of Computer Science at the
University of Virginia, said, “They’re
very, very talented, with a very different
approach.” Praxis’s founders, he says,
believed building software wasn’t as hard
as people made it out to be, “They
thought it isn’t rocket science, just very
careful engineering.”
Peter Amey, Praxis Chief Technical
Officer commented, “We’re delighted that
IEEE Spectrum has chosen to highlight
the success of Praxis HIS. To be the focus
of such a prestigious publication is a real
coup for everyone connected with the
company.”
IEEE Spectrum, with more than 360,000
readers in over 150 countries, explores the
development, applications, and
implications of new technologies and
trends in engineering and science,
providing a forum for understanding,
discussion, and leadership in these areas.
About Praxis High Integrity Systems
Praxis High Integrity Systems has
developed a global reputation in the fields
of high integrity software development,
systems engineering, systems safety and
security. The Company’s roots are in the
application of sound engineering
principles to the development of high-
integrity software systems whether safety,
security or business critical. Its unique
approaches, tools and products have
evolved from practical experience in the
most effective approaches to developing
such systems. The Company operates in
the defence, aerospace, transport,
telecommunications, finance and
automotive markets. For more
information, please visit www.praxis-
his.com.

Ada Inside
Indirect Information on Ada
Usage
[Excerpts from and translations of job-ads
and other postings illustrating Ada usage
around the world. -- su]
Date: 15 Jul 2005 14:00:00
USA - Ada Software Design Engineer
Experienced Design Engineer needed for
development of embedded real-time

Ada Inside 165

Ada User Journal Volume 26, Number 3, September 2005

software for electronics manufacturer.
Permanent full-time position in a
challenging R&D environment. Our client
seeks candidates with very strong
technical skills and those with
engineering or comp. sci. degrees are
preferred, though this is not mandatory.
Required Skills:
These include:
* Minimum of 5 years experience
developing embedded real-time system
software using Ada. Prefer those
candidates who also have C and or C++
as well as assembly language experience
* Must have excellent code-documenting
skills.
* Must have experience using
oscilloscopes, in-circuit emulators, logic
analyzers and real-time debuggers.
* Familiarity with performing formal
testing/integration a plus.
* Safety critical software and system
design skills preferred.
* Knowledge of hardware, ability to read
hardware schematics and ability to
perform minor hardware debugging a
plus.
* Prefer applicant to have been through a
full product life cycle from concept,
requirements captured through design,
implementation and testing phases.
Date: Fri, 10 Jun 2005 11:53:03 +0200
France - Development of Industrial and
Embedded Distributed Real-Time
Systems
[…] engineering company leader in
industrial, scientific and technical
applications now entering the aeronautic,
transport, automotive, space and avionic
domains, has openings for new projects.
In the respective sector, your mission will
be:
- the conception and realisation of
distributed real-time systems for industrial
on-board environments (Ada, C)
- the development of software
components
- the conception and realisation of
development support utilities
- the participation in the system-level
integration and the preparation for
deployment. […]
Date: 24 May 2005 10:46:26 -0700
USA - Ada Certification Tests
[We are] looking for experts to work on
the development of an Ada 95
certification test. We provide skill-based
tests that measure a person's core
knowledge in a specific field. [...] We
have 450 certification tests in several
categories including IT, Management,
Financial and Health Care. [...]
Date: Wed, 13 Jul 2005 18:29:36 +0200
VMS specialist.

PostFinance is a dynamic organization in
the Swiss financial industry, offering
services to over two million customers.
Your responsibility: for the "Customer
Core" domain (central systems) we look
for a Software Engineer to reinforce our
team. You are jointly responsible for
further development of the application
process control in the context of other
projects. You work independently in the
entire development cycle (design,
programming, module test, support) and
are jointly responsible for the safe
migration and upgrade of the application.
Your profile: you are a computer scientist
or engineer (FH/ETH/UNI) or possess an
equivalent training. You have several
years of experience in realizing large
computer projects, specialized knowledge
in software engineering as well as very
good OpenVMS experience.
Knowledge of the programming language
Ada is an advantage. [...]
[...] The work place is Bern.
Date: 23 Aug 2005 10:01:22 -0700
Italy - Engineer for Ada on-board
software unit testing
A software engineering company with a
strong presence in the international
markets and high growth profile looks for
a software engineer to be responsible for
the unit testing process of real-time,
safety-critical, on-board software for
avionics applications (helicopters).
She/He must be able to work
independently with minimal supervision.
Responsibilities
Software tests specification, planning and
execution. Testing team coordination.
Documentation of the test process and
results.
Qualifications and Experience
Engineering academic degree or relevant
professional experience; Must have
excellent documentation skills and master
of the English language. Very good
technology skills across Ada software
development Very good technology skills
across application testing (including unit
testing and test specification for real-time
applications). Must have Knowledge in
Ada 83 and/or Ada 95. Must have
Knowledge in AUnit, Adatest or other
Ada testing framework. Must have a
minimum 2 years of work experience

Ada Jobs
From: Flavius Vespasianus
Date: Wed, 20 Jul 2005 01:29:10 GMT
Subject: Ada Jobs
Newsgroups: comp.lang.ada
I have always wanted to work on an Ada
project. While working for a computer
vendor, I provided consulting to some
customers (now no longer in existence)
using Ada. I've written Ada programs for

learning purpose. However, most of my
work has been in C++ for the past 15
years.
The reason for my interest is that I also do
a lot of Object Pascal work and I find that
in spite of my very neat and careful C++
coding, whenever I port to Object Pascal I
discover a lot of errors in my C++ code.
I'm interest in seeing on a large scale any
Ada improved reliability.
The problem is I can never find any Ada
consulting work, let alone any where they
would take someone for a first real Ada
project.
Is anyone really using Ada in Northern
NJ?
From: Jeffrey Carter <jrcarter@acm.org>
Date: Wed, 20 Jul 2005 02:31:48 GMT
Subject: Re: Ada Jobs
Newsgroups: comp.lang.ada
I have certainly seen Ada jobs advertised
in NJ (not sure if they're N or not). Right
now there are 3 on dice.com. Be sure to
search for 'ada "software engineer"' or
you'll get every job with an Ada
disclaimer.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Wed, 20 Jul 2005 02:46:58 GMT
Subject: Re: Ada Jobs
Newsgroups: comp.lang.ada
I have certainly seen Ada jobs advertised
in NJ (not sure if they're N or not). Right
now there are 3 on dice.com. Be sure to
search for 'ada "software engineer"' or
you'll get every job with an Ada
disclaimer.
To be more precise, a search on Dice
turns up 3 listings in NJ. I didn't look at
the details. In practice, you'll see a lot of
"C++, Ada a plus" listings. I don't know
what that means, but it may mean they're
injecting errors into perfectly good
systems by rewriting them in C++. It
should be a crime to take such a job. But
1/3 or more of the listings are usually real
Ada jobs.
From: rcarnesiii

<reid_carnes@yahoo.com>
Date: Wed, 17 Aug 2005 14:42:43 -0400
Subject: Re: Ada Jobs
Newsgroups: comp.lang.ada
There are tons of Ada jobs in South
Jersey, the main part of the air traffic
control system is being re-written and
they're doing it in probably 80% Ada,
we're talking about several million lines
of code at least !
From: Marin David Condic

<mcondic@acm.org>
Date: Thu, 21 Jul 2005 12:28:32 GMT
Subject: Re: Ada Jobs
Newsgroups: comp.lang.ada
> Only hope for more Ada jobs is to have

more open source Ada projects start.
This will make Ada become popular
again, and will get more people

166 Ada in Context

Volume 26, Number 3, September 2005 Ada User Journal

interested in it, and eventually this will
carry over to commercial work.

I'd suggest that generating lots of open
source Ada projects is a rather circuitous
route to more Ada jobs. Its rather
uncertain that there is any direct
correlation between lines of open source
code available in a language and jobs
using that language. At best, that could
take a long time before it had the desired
effect.
Much more likely to create Ada jobs is to
create and market some kind of product in
which Ada is a factor. If a guy builds a
Furby and programs it in Ada and gets a
market going for Furbys, he hires more
Ada programmers. Even if its an "internal
product" - something used by your
company in its critical processes - it
creates jobs. The point is that if you have
numerous people using some end product
that they consider valuable, they come up
with the money to further its development
- and that makes jobs. It doesn't really
matter if the product has open source code
or extremely proprietary code. What
matters is that it is a _Product_ that is
Useful and for which people will
exchange _Money_. Otherwise, its all just
interesting academics that will never
produce a job for anyone.

Ada in Context
Ada 2005 Language
Reference Manual
From: Randy Brukardt

<randy@rrsoftware.com>
Subject: Re: Ada 2006 working documents
Date: Fri, 10 Jun 2005 14:12:00 -0500
Newsgroups: comp.lang.ada
Ludovic Brenta wrote:
> > A new version (draft 12) should be up

in the next week; watch for it.
> I was reading draft 11 and noticed that

it is technically an Amendment to ISO
8652:1995(E). Is it anticipated that
ISO will publish a new Edition, i.e. ISO
8652:2006?

That's up to ISO, not us. I've asked that
WG 9 consider making a
recommendation, but WG 9 has not yet
considered that request.
From: Ludovic Brenta

<ludovic.brenta@insalien.org>
Date: Sat, 11 Jun 2005 11:16:18 +0200
Subject: Re: Ada 2006 working documents
Newsgroups: comp.lang.ada
[I'm forwarding a response I received
from Dirk Craeynest:]
As you may remember, Ada-Europe is
sponsoring the production of a s.c.
"Consolidated Reference Manual", i.e. the
work that Randy is doing to produce the
RM and ARM drafts that you refer to.

In one of the letters I sent to the Ada-
Belgium members, I wrote:
"The work on the next Ada language
standard is progressing nicely and is on
track. The Ada-Europe organization, of
which you are an indirect member
through Ada-Belgium, is supporting the
standardization process in various ways,
among others by working to assure the
new standard will be freely available on-
line and will also be published by
Springer in the LNCS series, plus giving
extensive coverage in the Ada User
Journal of the vision, strategy and
progress of the s.c. Ada 0Y language
revision process. [...]"
What I can tell you as well, is that at the
next meeting of WG9 (later this month in
York), one item on the agenda is a motion
to request ISO to publish this consolidated
reference manual (in addition to the
amendment itself). But that decision is of
course up to ISO to take...
In any case, Ada-Europe is working to get
the consolidated reference manual printed
in Springer's Lecture Notes in Computer
Science series, which will make the RM
easily available in printed form world-
wide.

Ada and Supercomputing
From: jtg <jtg77@poczta.onet.pl>
Date: Thu, 23 Jun 2005 10:03:09 +0200
Subject: Re: Ada-friendly MPI
Newsgroups:

comp.lang.ada,comp.parallel.mpi
> I am looking at getting into a LAM-MPI

system running Ada 95 on Linux. Does
anyone have any learning / reference
info suggestions? Books? PDFs? etc?

I was looking for such a solution for a
long time until the obvious came to my
mind: MPI calls can be executed from C
code and everything else can be in Ada.
You can write one-line function in C for
every MPI call you want to use, then
gather these functions in separate .c file
and call them from Ada code. Simple,
quick and portable (if you support the
right .c file for each platform). What is
more, you can use all the abundant
learning/reference info intended for C
users.
From: jtg <jtg77@poczta.onet.pl>
Date: Thu, 23 Jun 2005 15:08:46 +0200
Subject: Re: Ada-friendly MPI
Newsgroups:

comp.lang.ada,comp.parallel.mpi
> Why not use the Distributed Annex

(Annex-E) and the Ada's built-in
parallelism support?

As far as I am concerned Ada Distributed
Annex is non-standard. :-(All three
supercomputers, that I had opportunity to
use, supported MPI only or MPI/PVM. I
had no clue how to use Ada built-in
parallelism in these environments. But I
am interested in the subject. Do you know

about environments where Ada
Distributed Annex is supported (and
used)? Do you use it yourself?
From: jtg <jtg77@poczta.onet.pl>
Date: Thu, 23 Jun 2005 22:26:17 +0200
Subject: Re: Ada-friendly MPI
Newsgroups:

comp.lang.ada,comp.parallel.mpi
> Depending on what you mean by

standard. Ada 95 is an ISO standard
and the distributed annex is part of it :)

So it's a pun: a standard that is not
standard :-) (An ISO standard that is not
standard feature in supercomputer
environments)
> What are your supercomputers ? Is that

a cluster ?
1. Cluster 15 x POWER2 RS/6000
2. Cluster 128 x PIII Xeon
3. I don't remember.
But all that was several years ago :-)
> I've used it myself for experimentation

on Windows, GNU/Linux and Solaris.
If your supercomputers are running
GNU/Linux I don't see why this won't
be working. What compiler are you
using ?

In supercomputer environments many
problems arise when you want to use Ada.
There are very fast communication links
between processors and MPI libraries are
especially optimized for hardware. You
should have Ada libraries for the
hardware and I haven't seen any such
library even mentioned. Another problem
is infrastructure. You need libraries, you
need running host processes at every node
(for starting your subtasks), you need task
spooling system etc. You need proper
configuration. But everything is suited for
MPI. For example: When you put your
parallel task on queue, the spooler
automatically starts subtasks on some
nodes as they become available,
establishes MPI communication between
them and assigns MPI number to every
subtask. Now, how to begin computations
using Ada built-in parallelism?
I don't even know how to establish Ada-
style communication between them. And
all the problems vanish when you use
simple C binding for MPI library...
From: jtg <jtg77@poczta.onet.pl>
Date: Fri, 24 Jun 2005 00:14:42 +0200
Subject: Re: Ada-friendly MPI
Newsgroups:

comp.lang.ada,comp.parallel.mpi
> Have you done some testing ? I know

some people using the Ada distributed
annex on some embedded platform
with something like hundred of nodes
for HPC (neutronics) without problem.

No performance testing. I had even no
idea how to run it.
> What do you call a parallel task ? A

process a thread ?

Ada in Context 167

Ada User Journal Volume 26, Number 3, September 2005

Errr... I should have said: job.
> Are you talking about an executable

(process) and using some batch
language LSF/PBM ? If so I don't see
the difference with Ada.

LSF/PBM
> I'm not talking about parallelism which

is more like OpenMP (shared memory)
than MPI (distributed memory). I'm
talking about Ada distributed annex.

OK... If you write your program for MPI,
you must run it with "mpirun" command
in mpi-enabled environment. If you write
your program for PVM, you must run it
with "pvmrun" command in pvm-enabled
environment. If you use Ada Distributed
Annex, there must be a command that
dispatches tasks and establishes
communication between them, and the
environment itself must be configured for
Ada Distribution Annex. On 15-processor
cluster I could pass a parameter, either
MPI or PVM. Funny thing: PVM was
available but not properly configured so
you had to use MPI.
On 128-processor cluster all jobs were by
default MPI tasks and I could not find a
way to change it. But even if I did, I'm
pretty sure the system was not configured
for Ada Distributed Annex.
> A program is a set of partitions

(executable), each partition will
communicate with others using the Ada
built-in Partition Communication
Subsystem.

That's automatic only if you run it in the
proper way and the environment is
configured. For instance if you run MPI
task with "pvmrun" or vice versa nothing
will be done automatic.
How do you run Ada distributed
programs? How are they dispatched to
other nodes (processors/computers)? Is
there a command like "adarun"
(analogous to mpirun and pvmrun)?
> Then use the same simple binding for

Ada. If the binding is simple you
should be able to create the Ada
counterpart without problem. Which
OS are you using ?

Now I use Windows/Debian on my
personal computer, both with Ada
installed.
Previously:
15-node cluster - AIX
128-node cluster - AFAIR TurboLinux
(no Ada installed, I had to install gnat in
my home directory)
Now they have Debian on it.
From: Pascal Obry <pascal@obry.net>
Date: 24 Jun 2005 08:39:20 +0200
Subject: Re: Ada-friendly MPI
Newsgroups:

comp.lang.ada,comp.parallel.mpi

Job dispatching on the different nodes are
handled by GLADE (the implementation
of Annex-E for GNAT). In fact, gnatdist
(the equivalent to gnatmake for building
distributed program) can generate a script
or Ada main that will run/dispatch the
different job/partitions on the different
nodes.
Then the boot-partition (a module in one
or more partition) is used to initialized the
distributed program. As you see MPI is
far more low-level than the Ada solution.
And the good news is that you can run
your Ada program in a single computer
(built with gnatmake) or in a distributed
environment (built with gnatdist) without
changing a single line of Ada code.
Looks like magic, but it is not. It is in my
opinion the right level of abstraction to
concentrate on your problem instead of
low-level stuff.
[...] GNU/Linux Debian is well supported
by GNAT. GNAT is maybe already on
your system as it is installed along with
the other GCC's compilers.

Differences between Ada 83
and Ada 95
From: Chris Albertson

<chrisalbertson90278@yahoo.com>
Date: Fri, 3 Jun 2005 13:32:47 -0700

(PDT)
Subject: Re: Ada compilers/ difference

between 83 and 95
Newsgroups: comp.lang.ada
[...] I'm curious, will Ada 83 programs not
compile under Ada 95?
If there is a problem where is it? What
part of the language spec changed in an
incompatible way? Yes I do have some
old code that currently runs on a VAX
and I'm like to get it running on a Duel
Xeon system under Solaris 10. I assumed
only minor work would be required. I
think gnat has a switch to disallow the '95
syntax.
I would not want to use an old compiler,
so much work has been done in recent
years it would be a shame not to take
advantage of it.
From: Jeff C <jcreem@yahoo.com>
Subject: Re: Ada compilers/ difference

between 83 and 95 - The answer
Date: Fri, 03 Jun 2005 21:44:29 -0400
Newsgroups: comp.lang.ada
Chris Albertson wrote:
> Sorry about the last message had no

text. Here it is again.
> I'm curious, will Ada 83 programs not

compile under Ada 95?
Some programs or packages from Ada 83
will indeed not compile but again it is
generally no more of a problem than
switching compiler vendors.
See this link:

http://www.adaic.org/learn/tech/8395com
p.html
Summary. Along with my experience
a) A few new reserved words. (Never ran
into this one)
b) New form required for indefinite
generic parameters (I hit this once)
c) Packages can not have a body if their
spec does not require it (I hit this once. It
was always a bad idea by the way_
d) Character now has 256 items instead of
128 (never hurt by this one)
e) Numeric_Error no longer unique. Now
renames of constraint error (Never hurt by
this one)
That is all the site listed. I believe I ran
into an additional problem with an
attribute that was renamed/removed on
floats ('small?) which is not listed on that
link.
Other issues you will run into (that will
happen regardless of the Ada 83 v.s. Ada
95 thing)
1) Use of vendor supplied packages - Can
be a big deal.
2) Use of vendor specific attributes or
pragmas - can be a moderate deal
3) Different level of support for rep-specs
- can be a big deal
4) Different approach for supporting
package Machine_Code insertions
5) Code that relies on buggy behavior of
the old compiler.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 04 Jun 2005 05:34:25 GMT
Subject: Re: Ada compilers/ difference

between 83 and 95
Newsgroups: comp.lang.ada
I've compiled lots of Ada-83 code with
Ada-95 compilers and never had a serious
problem. The important thing is that the
code was designed to be portable in the
first place. If you have lots of compiler or
platform dependencies in your code, it
becomes harder.
From: Keith Thompson <kst-u@mib.org>
Date: Sat, 04 Jun 2005 00:10:21 GMT
Subject: Re: Ada compilers/ difference

between 83 and 95
Newsgroups: comp.lang.ada
The biggest change is the new reserved
words that Ada 83 programs might use as
identifiers. (That's actually not a very
common problem, as far as I know).
The best way to find out is to try
compiling the code with an Ada 95
compiler and read the error messages.
From: Marin David Condic

<mcondic@acm.org>
Date: Mon, 06 Jun 2005 12:24:56 GMT
Subject: Re: Ada compilers/ difference

between 83 and 95
Newsgroups: comp.lang.ada
I've ported a LOT of VAX/VMS (DEC)
Ada 83 to Gnat Ada 95 and never
encountered anything that was a problem
between the two language versions. There

168 Ada in Context

Volume 26, Number 3, September 2005 Ada User Journal

may be some obscure corner-case rules
that trigger incompatibilities but in
practical use, I just never encountered
any. I did get some warnings about using
the package ASCII and maybe that's as
close to an incompatibility as I've seen.
Mostly, I had some issues where different
compiler writers had different views of
what to implement. A few instances
where DEC Ada handled unconstrained
types differently from Gnat Ada and, of
course, some vendor specific
implementation details once in a while
(like packages that may or may not be
there because they are vendor supplied)
but two observations: I don't recall
anything that got past the compiler that
ended up being an issue - so the compiler
is your friend here. I don't recall anything
that didn't run just fine when it finally
linked. I *have* had problems when
porting between two *different* platforms
- mostly with byte-sex issues, but that has
been minimal. (Ada 95 has some features
to help you out making byte-sex issues
portable as well, but I have not delved
into them lately)
Porting even a large body of Ada code (if
reasonably well written to be portable - no
fair throwing in compiler-specific things
in every unit & expecting zero effort)
even across platforms has not been much
of an issue in my experience. I've done a
few hundred thousand lines in a couple of
days & had it up and running - but it was
my code so I was familiar with it and I
have usually had the wisdom to isolate
any compiler specifics. Even a stranger's
code being moved across platforms and to
a different language standard ought to be
minimal fuss.
From: Pascal Obry <pascal@obry.net>
Date: 04 Jun 2005 10:38:09 +0200
Subject: Re: Ada compilers/ difference

between 83 and 95 - The answer
Newsgroups: comp.lang.ada
[...] So as you see going from Ada 83 to
Ada 95 is not that difficult. This was the
design decision when designing Ada 95:
It must be upward compatible. And in
practice it is.

Compiler Binary
Compatibility
From: Harald Korneliussen

<vintermann@gmail.com>
Subject: Recompiling?
Date: 29 Aug 2005 07:00:15 -0700
Newsgroups: comp.lang.ada
I have played around with Ada for some
time on Linux, but it seems every time I
upgrade the compiler I have to recompile
(or possibly re-link?) my programs.
It's a bit worrying that all my binaries stop
working every time. Anyone know why
this happens, and if anything can be done
about it?

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: 29 Aug 2005 08:26:56 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
Yes, every major release of GNAT,
historically, breaks binary compatibility
with previous releases. If your binary is
linked with one version of libgnat,
upgrading libgnat breaks your program.
The issue is the same with C++
compilers, BTW. For example, g++-3.3
and g++-3.4 are incompatible with each
other.
The answer to this is to have a policy
about when to switch compilers; one
version of the compiler must be
designated as "the system compiler" and
used by all software that must be
deployed together.
One example of such a policy for Ada and
GNAT can be found here:
http://www.ada-france.org/debian/debian-
ada-policy.html
Unfortunately, it looks like no other
GNU/Linux distribution has a policy for
Ada (they normally have one for C++).
From: Frank Piron <frank@konad.net>
Date: Tue, 30 Aug 2005 08:12:17 +0200
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
To get rid of the dependencies on libgnat
you can build a static version libgnat.a
and then link your program statically. I
did so on Solaris 2.8.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 30 Aug 2005 05:58:31 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
> Is the [Debian Ada Policy] page correct

in saying: "ASIS, Glade and Florist are
not currently available for GCC 3.4" or
is this now out of date?

The page is still correct, unfortunately. I
would have updated it if events had
warranted it.
> OK. I know this question gets asked a

lot, but things seem to be in continual
flux:

No, it is not; but you are correct that the
question is being asked a lot. Wishful
thinking alone does not change the
answer, however, and only creates this
illusion of "flux".
> Which free GNAT version would be

best for meeting these criteria:
1) Linux, x86 architecture
2) with GLADE, PolyORB, ASIS,
Florist
3) stable and robust for serious use
The answer seems to be to use GNAT
3.4, but you have to compile everything
yourself :(

No, the answer is GNAT 3.15p, and as a
consequence you don't have to compile

anything :) well, nobody has yet
volunteered to package PolyORB for
Debian, or any other distribution.
> What if I want x86_64 LP64 mode? Is

this straightforward?
Then you are out of luck. With GCC 3.4
or 4.0, you can have x86_64 LP64 mode
but not ASIS or GLADE.
> I'd much rather not spend the time and

effort trying to build a complete tool
chain and libraries :(Are we going to
see a suite of Debian packages in the
near future? I wish I had time to help
out!

Sarge (the current Debian stable
distribution) contains a full suite of Ada
packages, united together by the Debian
Policy for Ada. To my knowledge there
are 48 binary packages produced from 22
sources. In addition, the packages gnat-
3.3 and gnat-3.4 are provided for
experimental use.
You can help out in several ways:
1) Try to persuade AdaCore to release a
new "p" version of GNAT, based on a
recent GCC, with ASIS and GLADE.
This would trigger a change in compilers
in Debian (see section 2.8 of the Debian
Policy for Ada).
2) Package more software for Debian.
3) Experiment with Martin Krischik's
ASIS for GCC 4.0 and AdaCore's CVS
repository for GLADE, and package them
for Debian unstable. Note that neither of
these two projects have announced a
"stable, robust for serious use" release, so
this would be experimental. But Debian
"unstable" is appropriate for this. Also,
PolyORB might replace GLADE; you'd
want to coordinate with the developers of
PolyORB.
Note that etch has switched its default C
and C++ compilers to GCC 4.0; all C++
libraries are being recompiled with g++-
4.0. Also, gnat-4.0 is already in etch. If
and when ASIS and GLADE are provided
for it, I will declare it the new default Ada
compiler as well, and recompile all Ada
packages with it, even on the newly
supported architecture, amd64.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 30 Aug 2005 06:09:03 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
In case you don't know, "Etch" is the
code-name for the next release of Debian.
Etch is currently in testing. There are
several major changes scheduled to take
place before Etch becomes stable. One
such change is the transition from gcc-3.3
to gcc-4.0 as the system C compiler, and
g++-3.3 to g++-4.0 as the system C++
compiler. Another transition is from glibc
2.3.2 to 2.3.5, and a third is from XFree86
4.3 to X.org 6.8. The GCC transition is in
progress now, the other two will take
place later. Other scheduled transitions

Ada in Context 169

Ada User Journal Volume 26, Number 3, September 2005

include KDE (3.3 to 3.5) and GNOME
(2.8 to 2.12). So, Etch is currently very
much in a state of flux :)
As always with Debian, Etch will be
released "when it is ready".
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Tue, 30 Aug 2005 15:23:06 +0200
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
I think [that a release of a new "p" version
of GNAT] may be imminent, being really
a repackaging of the GAP releases. I
remember that Robert Dewar said in some
other list that there's really no problem in
people outside academic circles getting
the GAP release. I've been looking for the
exact post but I don't remember the
mailing list and have not found it. If
someone can point to it this would
become clear and not a remembrance of
mine (which may be imperfect :)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 1 Sep 2005 04:39:38 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
> > Are you trying to say that ASIS and

GLADE work well with GCC 3.4.2?
> At least ASIS (gnat-

asis.sourceforge.net) works well with
gcc-3.4.x.

> > Any supporting evidence?
> I successfully used gnatelim, which is

part of ASIS. AdaBrowse is a more
complex ASIS application and works
well, too.

Thanks. I'll change the system Ada
compiler for Etch, then. It seems that
gnat-3.4 is the best candidate, but
unfortunately it would be at odds with the
system C and C++ compilers, meaning
that it would not be possible to mix Ada
and C++ in the same program. If I choose
gnat-4.0 as the system Ada compiler, C++
works but ASIS breaks, right?
Thoughts?
Note that I will start the transition only
after Etch completes its glibc, g++, X.org,
GNOME and KDE transitions, because of
[1]. Note also that the GNAT transition
will take time as all packages will need to
be recompiled.
[1] http://lists.debian.org/debian-devel-
announce/2005/08/msg00014.html
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 01 Sep 2005 14:37:48 +0200
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
Given that the year 200X is coming
closer, I wonder whether the typical
Debian Ada user (to be defined) will be
more interested in ISO Ada tools,
possibly including GtkAda, PolyORB and

AWS (thinking of the SOA boom), than
in ISO ASIS based add-ons? If Ada is
used in a commercial setting, using
Debian as a development platform, then
the vendor/support will have a word with
the customers as to whether to use Ada
200X in preference, I guess, thus GCC
4.x. Is this the case?
A# (hence Ada for Mono, adding value
for the commercial Ada programmer),
"Now compiles with GNAT GAP
(Academic Edition) 1.0.0 (uses some Ada
2005 features)", that statement being
made about the October 2004 version of
A#. The latest release is from June this
year. I take this to be a trend indicator
towards GCC 4.

GNU Ada Environment
Specification Support
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 31 Aug 2005 04:00:55 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
Harald Korneliussen wrote:
> I see. On a side note, it's not the only

thing I have to fix when reinstalling.
The projects I've made with
autoconf/automake now refuse to work.
Pretty sweet for a system designed to
maintain compatibility, huh?

Yes, the autotools routinely break
compatibility with previous releases of
themselves. Isn't it ironic? Makefiles
were invented to circumvent the
deficiencies of C (namely the lack of
separate compilation); the autotools were
invented to circumvent the deficiencies of
make (namely the lack of portability), and
now the autotools are revealing their own
deficiencies.
> There's another pretty basic question I

want to ask, about the correct and
portable way to install something like
the Booch components as a shared
library. The package is just a bunch of
source files. I suppose I could copy
them to every project that I use booch
on, but that seems so unclean and
wasteful.
Any suggestions?

Package the Booch components for your
distribution. Follow the GNU Ada
Environment Specification [1]. Provide a
GNAT project file, as explained in detail
in [2].
[1] http://cert.uni-
stuttgart.de/projects/ada/gnae.php
[2] http://www.ada-
france.org/debian/debian-ada-policy.html
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: 1 Sep 2005 00:41:57 -0700
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada

Simon Wright wrote:
> Looked at your [1]; it looks very

"official" but it gives no context that I
can see. What organisation is proposing
it? what universe does it fit into? is it
only intended for Debian? what about
Windows? MacOS? what do AdaCore
think? FSF? It refers to a GNAT
Filesystem Hierarchy Standard
proposal by Jürgen Pfeifer but gives no
link? (perhaps this document _is_ the
FHS?)

GNAE is primarily written for
GNU/Linux, *BSD, and Unix platforms.
The FHS (Filesystem Hierarchy
Standard)[3] is a unifying standard for all
GNU/Linux distributions. The
organisation behind GNAE is Florian
Weimer, who is perhaps listening. He
took ideas from Jürgen Pfeifer, who led
the Ada for Linux team [4] for a while.
[3] http://www.pathname.com/fhs/
[4] http://www.gnuada.org/alt.html
Debian now implements part of the
GNAE. It implements the filesystem but
not the "adainstall" and "adaconfig"
commands, which are replaced with "apt-
get" and GNAT project files, respectively.
In fact, I would support a change in
GNAE to mandate project files and drop
"adaconfig".
I see that Martin Krischik offers RPM
packages of GNADE and other things for
SuSE and Red Hat, but I don't know if
these packages comply with the GNAE.
I'm not aware of a MacOS X distribution
of Ada packages, but if there is one, I
hope it follows the GNAE too.
The only Ada distribution I know for
Windows is AIDE, but it does not seem to
comply with GNAE (but I haven't looked
at 1.03).
I don't know what AdaCore or the FSF
think of GNAE. Florian?
From: Stephane Riviere

<stephane@rochebrune.org>
Date: Fri, 02 Sep 2005 10:02:59 +0200
Subject: Re: Recompiling?
Newsgroups: comp.lang.ada
> The only Ada distribution I know for

Windows is AIDE, but it does not seem
to comply with GNAE (but I haven't
looked at 1.03).

The next (2.0) AIDE release could be
GNAE compliant, as this new release is
planned to be multi-platform (Windows
and Debian GNU/Linux).
From the Windows side, the Unix root
directory /usr could be changed for a root
install directory chosen by the user...
Everything behind could strictly follow
GNAE recommendations.
[See also "Ada and the GNU Build
System" in AUJ 25-4 (Dec 2004), p.203-
204. --su]

Conference Calendar 171

Ada User Journal Volume 26, Number 3, September 2005

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference announcements for the international Ada community
at: http://www.cs.kuleuven.ac.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2005

October 02-05 25th IFIP WG 6.1 International Conference on Formal Techniques for Networked and

Distributed Systems (FORTE'2005), Taipei, Taiwan. Co-located with ATVA'2005. Topics include:
formal description techniques, embedded systems, tool supports, case studies on industrial projects,
etc.

October 02-07 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS'2005), Montego Bay, Jamaica. Formerly the UML series of conferences. Topics include:
Model-driven development methodologies, approaches, and languages; Empirical studies of modeling
and model-driven development; Tool support for any aspect of model-driven development or model
use; Semantics of modeling languages; etc.

October 03-07 19th Brazilian Symposium on Software Engineering (SBES'2005), Uberlândia, Brazil. Topics
include: Distributed Software Engineering; Generative Software Development; Multi-paradigm and
Multi-language Modelling and Programming; Object-oriented Techniques; Software Engineering for
Embedded and Real-time Software; Software Engineering Tools and Environments; Software
Maintenance; Software Quality; Software Reuse; Software Safety and Reliability; Software Security;
Software Verification, Validation and Inspection; etc.

October 04-07 3rd International Symposium on Automated Technology for Verification and Analysis
(ATVA'2005), Taipei, Taiwan. Co-located with FORTE'2005.

October 13 FNRS Contact Group Meeting on The Theory and Practice of Software Verification, Liège,
Belgium. Topics include: model checking, abstraction methods, static analysis, verification tools, and
modeling and specification formalisms; Applications and case studies; etc.

October 13-14 Workshop "Zuverlässigkeit in eingebetteten Systemen", Aachen, Germany.
Organized by Gesellshaft für Informatik e.V. Fachgruppe "Ada", and Gesellshaft
Mess- und Automatisierungstechnik Fachausschus 5.11 "Embedded Software".
Topics include (in German): Programmiersprache Ada und Profile (Raven, SPARK),
angeladene Hauptvorträge von Tucker Taft und Erhard Plödereder über den
kommenden Standard Ada 2005, etc.

☺ October 13-14 3rd Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER-3),
Paderborn, Germany. Topics include: Architectures/frameworks for platform independent, reusable
software components; Code-generation; Component interoperability; Formal verification at the model
and code level; Software components as products; Software quality; Standards and guidelines;
Respective trends in automotive software development; etc.

☺ October 16-20 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA'2005), San Diego, California, USA. Sponsored by ACM
SIGPLAN in cooperation with SIGSOFT.

☺ October 16 Workshop on Synchronization and Concurrency in Object-Oriented Languages
(SCOOL'2005). Topics include: Compiler transformations, Concurrent data structure
implementations, Expression of concurrency-related design intent, Languages and
semantics, Memory models for concurrent object-oriented languages, Synchronization
abstractions, etc.

☺ October 17-18 Architecture Analysis & Design Language (AADL) Workshop, Massy, near Paris, France.

172 Conference Calendar

Volume 26, Number 3, September 2005 Ada User Journal

☺ October 18 2nd International Workshop on Software Engineering Course Projects (SECP'2005), Toronto,
Canada.

October 19-21 17th Nordic Workshop on Programming Theory (NWPT'2005), Copenhagen, Denmark. Topics
include: Program verification, Formal specification of programs, Real-Time and hybrid systems,
Modeling of concurrency, Programming methods, Tools for program construction and verification,
etc.

October 25-26 International Conference on Software Testing (ICSTEST-E'2005), Bilbao, Spain. Topics include:
Transportation and Safety-Critical Systems, Industry real experiences, Verification and Validation,
Techniques for real time systems, Static and Dynamic analysis, Norms and standards, etc.

October 26-28 20th International Symposium on Computer and Information Sciences (ISCIS'2005), Istanbul,
Turkey. Topics include: Parallel and Distributed Computing, Programming Languages and
Algorithms, Software Engineering, etc.

October 27-28 6th International Workshop on Advanced Parallel Processing Technologies (APPT'2005), Hong
Kong, China. Topics include: Middleware, Software Tools and Environments, Parallelizing
Compilers, Software Engineering issues, Task Scheduling and Load Balancing, Fault tolerance and
dependability, etc.

Oct. 30 – Nov. 03 24th Digital Avionics Systems Conference (DASC'2005), Washington D.C., USA. Theme: "Avionics
in a Changing Market Place - Safe and Secure?" Topics include: Software Engineering: Development
of large-scale, flight-critical software systems, including processes and formal methods for design,
testing and certification; Lean Avionics: Application of continuous improvement principles/practices
(lean, six sigma, TQM, CMM, CMMI) to the design, development and sustainment of mission critical
avionics systems; Flight Critical Systems: Methods, techniques, and tools for the design, verification,
integration, validation, and certification of complex and highly integrated flight critical systems; etc.

☺ Oct. 31 – Nov. 04 7th International Symposium on Distributed Objects and Applications (DOA'2005), Agia Napa,
Cyprus. Topics include: Application case studies of distribution technologies; Design patterns for
distributed systems; Distribution technologies for embedded systems; Interoperability between object
systems and complementary technologies; Real-time solutions for distributed objects; Scalability for
distributed objects and object middleware; Security for distributed object systems; Specification and
enforcement of Quality of Service; Technologies for reliability and fault-tolerance; etc.

November 01-04 4th International Symposium on Formal Methods for Components and Objects (FMCO'2005),
Amsterdam, the Netherlands.

November 01-04 7th International Conference on Formal Engineering Methods (ICFEM'2005), Manchester, UK.
Topics include: all aspects of formal engineering methods, from theoretical work that promises
various benefits, to application to real production systems.

October 31 3rd International Workshop on Software Verification and Validation (SVV'2005).
Topics include: Tools, environments and case studies for large scale software
verification; Techniques to validate system software (such as compilers) as well as
assembly code/Java bytecode; Proof techniques for verifying specific classes of
software (such as object-oriented programs); Integration of formal verification into
software development projects; etc.

☺ November 02-05 3rd International Symposium on Parallel and Distributed Processing and Applications
(ISPA'2005), Nanjing, China. Topics include: Parallel/distributed system architectures; Tools and
environments for software development; Parallel/distributed algorithms; Parallel compilers; Parallel
programming languages; Distributed systems; Reliability, fault-tolerance, and security;
Parallel/distributed applications; etc.

November 08-11 16th IEEE International Symposium on Software Reliability Engineering (ISSRE'2005), Chicago,
Illinois, USA. Theme: "Developing High Reliability for Ubiquitous Mobile Applications". Topics
include: Software safety analysis, Formal reliability assurance methods, Software testing and
verification, Empirical reliability studies, Reliability measurement, Tools and automation, Fault-
tolerant and robust software, Security testing, Software certification, End-to-end dependability, etc.

November 08-11 12th Working Conference on Reverse Engineering (WCRE'2005), Pittsburgh, PA, USA. Theme:
"Recovering and Reclaiming Architecture". Topics include: Software architecture recovery; Program

Conference Calendar 173

Ada User Journal Volume 26, Number 3, September 2005

transformation and refactoring; Object and aspect identification; Preprocessing, parsing and fact
extraction; Reverse engineering tool support; Program slicing; Redocumenting legacy systems;
Program analysis; Reengineering patterns; etc.

November 09-11 European Software Process Improvement and Innovation Conference (EuroSPI'2005), Budapest,
Hungary.

♦ Nov. 13-17 2005 ACM SIGAda Annual International Conference (SIGAda'2005), Atlanta,
Georgia, USA. Sponsored by ACM SIGAda; in cooperation with SIGAPP, SIGCAS,
SIGCSE, SIGPLAN, SIGSOFT, and Ada-Europe. Topics include: safety and high
integrity issues, real-time and embedded applications, Ada & software engineering
education, Ada in other environments such as XML and .NET, Ada and other
languages, metrics, standards, analysis, testing, validation, and quality assurance,
etc.

November 17-18 XP Day Benelux 2005, Rotterdam, The Netherlands.

Nov. 28 – Dec. 02 ACM/IFIP/USENIX International Middleware Conference (Middleware'2005), Grenoble, France.

Nov. 29 – Dec. 01 18th International Conference on Software & Systems Engineering and their Applications
(ICSSEA'2005), Paris, France.

Nov. 29 – Dec. 02 5th International Conference on Integrated Formal Methods (IFM'2005), Eindhoven, The
Netherlands. Deadline for submissions: October 17 (doctoral symposium).

☺ Dec. 05-08 6th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2005), Dalian, China. Topics include: Formal methods and programming
Languages, Parallelizing compilers, Component-based and OO Technology, Tools and environments
for software development, etc.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 12-14 9th International Conference on Principles of Distributed Systems (OPODIS'2005), Pisa, Italy.
Topics include: communication and synchronization protocols; embedded systems; fault-tolerance,
reliability, availability; real-time systems; security issues in distributed computing and systems; etc.

December 12-14 11th International Symposium Pacific Rim Dependable Computing (PRDC'2005), Changsha,
Hunan, China. Topics include: Software and hardware reliability, testing, verification and validation;
Dependability measurement, modeling and evaluation; Safety-critical systems and software; Tools for
design and evaluation of dependable systems; Dependability issues in distributed and parallel
systems; Dependability issues in real-time systems; etc.

December 15-17 12th Asia-Pacific Software Engineering Conference (APSEC'2005), Taipei, Taiwan. Topics
include: Software Formal Methods, Software Process Improvement, Cost Estimation, Risk
Management, Quality Management, Object-Oriented Technology, etc.

December 18-21 12th IEEE International Conference on High Performance Computing (HiPC'2005), Goa, India.
Topics include: Scientific/Engineering Applications, System Design for High Reliability, Parallel and
Distributed Computing, Heterogeneous Computing, Embedded Applications and Systems, Parallel
Languages and Programming Environments, Load Balancing and Scheduling, etc.

2006

January 04-07 Software Technology Track of the 39th Hawaii International Conference on System Sciences

(HICSS-39), Kauai, Haway, USA. Includes mini-tracks on: Strategic Software Engineering; Adaptive
and Evolvable Software Systems; etc.

January 09-10 ACM SIGPLAN 2006 Symposium on Partial Evaluation and Program Manipulation
(PEPM'2006), Charleston, South Carolina, USA. Deadline for submissions: October 7, 2005.

January 11-13 33rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL'2006), Charleston, South Carolina, USA. Topics include: fundamental principles and

174 Conference Calendar

Volume 26, Number 3, September 2005 Ada User Journal

important innovations in the design, definition, analysis, transformation, implementation and
verification of programming languages, programming systems, and programming abstractions.

January 14 2006 International Workshop on Foundations and Developments of Object-Oriented Languages
(FOOL/WOOD'2006), Charleston, South Carolina, USA. Following POPL'2006. Topics include:
language semantics, type systems, program analysis and verification, concurrent and distributed
languages, language-based security, etc.

February 13-17 5th International Conference on COTS-Based Software Systems (ICCBSS'2006), Orlando, Florida,
USA. Theme: "Pushing the COTS Envelope".

March 06-10 3rd International Conference on High Performance Scientific Computing (HPSC'2006), Hanoi,
Vietnam. Topics include: parallel computing (architectures, tools, environments, ...), software
development, etc.

☺ March 13-15 International Symposium on Secure Software Engineering (ISSSE'2006), McLean, VA, USA
(near Washington, DC). Topics include: Formal specification, designs, policies, and proofs; Coding
practices; Static analysis and other automated support; Processes for producing secure software;
Certification and accreditation; Relationships among software correctness, reliability, safety, and
security; Lessons learned; Technology transfer; etc.

March 20-24 5th International Conference on Aspect-Oriented Software Development (AOSD'2006), Bonn,
Germany. Deadline for submissions: October 14, 2005 (workshops, tutorials, demos, exhibits,
panels), January 23, 2006 (student extravaganza).

March 25-26 ETAPS2006 - 5th Workshop on Software Composition (SC'2006), Vienna, Austria. Deadline for
submissions: December 2, 2005.

March 27-29 ETAPS2006 - 9th International Conference on Fundamental Approaches to Software
Engineering (FASE'2006), Vienna, Austria. Topics include: Implementation concepts and
technologies (distributed and embedded applications), Software evolution (refactoring, reverse and re-
engineering, etc.), Software quality (validation and verification of software using theorem proving,
testing, analysis, metrics, etc.), Application of formal methods to software development, etc. Deadline
for submissions: October 7, 2005 (abstracts), October 14, 2005 (full papers).

☺ April 04-07 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'2006),
San Jose, CA. Topics include: programming languages and software engineering for real-time or
embedded systems; middleware for real-time or embedded systems; assessments of real-time and
embedded technologies for particular application domains; technology transition lessons learned; etc.
Deadline for submissions: October 7, 2005 (full papers), January 16, 2006 (work in progress papers).

☺ April 10-11 10th International Conference on Empirical Assessment in Software Engineering (EASE'2006),
Keele University, Staffordshire, UK. Topics include: any aspect of product and process evaluation
and assessment, both qualitative and quantitative. Deadline for submissions: January 9, 2006.

☺ April 18-21 1st EuroSys Conference (EuroSys'2006), Leuven, Belgium. Topics include: Systems aspects of
Programming language support, Distributed algorithms, Middleware, Parallel and concurrent
computing, Embedded computers, Real-time computing, Dependable computing, etc. This should be
of interest to the European languages community. Deadline for submissions: October 8, 2005
(abstracts), October 15, (papers).

April 19 19th Conference on Software Engineering Education and Training (CSEET'2006) Oahu, Hawaii,
USA. Deadline for submissions: October 15, 2005 (research and experience papers, tutorials, panels,
and educational materials).

☺ April 18 Workshop on Secure Software Engineering Education & Training
(WSSEET'2006). Topics include: experience, current situation, and future of
education and training in software engineering of (more) secure software. Deadline
for submissions: October 13, 2005 (position papers, papers, panels).

April 23-27 21st ACM Symposium on Applied Computing (SAC'2006), Dijon, France. Includes tracks on:
Software Engineering, etc.

Conference Calendar 175

Ada User Journal Volume 26, Number 3, September 2005

☺ April 23-27 Track on Programming Languages (PL'2005). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Language Design and Implementation,
New Programming Language Ideas and Concepts, Practical Experiences with
Programming Languages, Program Analysis and Verification, Program Generation
and Transformation, Programming Languages from All Paradigms, etc.

☺ April 23-27 Track on Object-Oriented Programming Languages and Systems (OOPS'2006).
Topics include: Programming abstractions; Advanced type mechanisms and type
safety; Multi-paradigm features; Language features in support of open systems;
Program structuring, modularity, generative programming; Distributed Objects and
Concurrency; Applications of Distributed Object Computing; etc.

☺ April 25-29 20th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2005), Rhodes
Island, Greece. Topics include: all areas of parallel and distributed processing; including the
development of experimental or commercial systems; applications of parallel and distributed
computing; parallel and distributed software, including parallel programming languages and
compilers, runtime systems, middleware, libraries, programming environments and tools, etc.
Deadline for submissions: October 7, 2005.

☺ April 25-26 14th International Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS'2006). Topics include: Applications, benchmark, and tools; Distributed
real-time and embedded middleware; Fault-tolerance and security in real-time
systems; Resource management and real-time scheduling; Programming languages
and environments; Specification, modeling, and analysis of real-time systems; etc.
Deadline for submissions: November 8, 2005.

May 01-04 Systems and Software Technology Conference (SSTC'2006), Salt Lake City, Utah, USA.

☺ May 20-28 28th International Conference on Software Engineering (ICSE'2006), Shanghai, China. Deadline
for submissions: October 6, 2005 (workshops, tutorials), October 30, 2005 (experience, Far East
experience, SE: achievements/challenges, demonstrations, emerging results), December 5, 2005
(doctoral symposium).

May 25-27 International Conference on Dependability of Computer Systems (DepCos'2006), Szklarska
Poreba, Poland. Topics include: General aspects of dependability; Survivable systems; Coding and
dependability; Fault tolerant computing; Software dependability; Software testing, validation and
verification; etc. Deadline for submissions: October 10, 2005 (abstracts), December 1, 2005 (full
papers).

May 28-31 6th International Conference on Computational Science (ICCS'2006), Reading, UK. Deadline for
submissions: November 1, 2005 (workshops), December 2, 2005 (full papers).

♦ June 05-09 11th International Conference on Reliable Software Technologies - Ada-
Europe'2006, Porto, Portugal. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda (approval pending). Deadline for submissions: October 30, 2005 (papers,
tutorials, workshops).

June 26-28 11th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2006), Bologna, Italy.

☺ July 03-07 20th European Conference on Object-Oriented Programming (ECOOP'2006), Nantes, France.

☺ August 14-18 35th International Conference on Parallel Processing (ICPP'2006), Columbus, Ohio, USA. Topics
include: findings in any aspects of parallel and distributed computing; such as Compilers and
Languages, Systems Support for Parallel and Distributed Applications, etc. Deadline for paper
submissions: February 1, 2006.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

2007

☺ June 09-16 3rd History of Programming Languages Conference (HOPL-III), San Diego, CA, USA. Co-located

with FCRC'2007. Deadline for submissions: August 2006 (reworked full papers).

Conference Calendar 177

Ada User Journal Volume 26, Number 3, September 2005

Call for Papers

11th International Conference on Reliable Software Technologies –
Ada-Europe 2006

5-9 June 2006, Porto, Portugal
http://www.ada-europe.org/conference2006.html

Conference Chair

Luís Miguel Pinho
Polytechnic Institute of Porto, Portugal
lpinho@dei.isep.ipp.pt

Program Co-Chairs

Luís Miguel Pinho
Polytechnic Institute of Porto, Portugal
lpinho@dei.isep.ipp.pt

Michael González Harbour
Universidad de Cantabria, Spain
mgh@unican.es

Tutorial Chair

Jorge Real
U. P. Valencia, Spain
jorge@disca.upv.es

Exhibition Chair

José Ruiz
AdaCore, France
ruiz@adacore.com

Publicity Chair

Dirk Craeynest
Aubay Belgium & K.U.Leuven, Belgium
Dirk.Craeynest@cs.kuleuven.be

Local Chair

Sandra Almeida
Polytechnic Institute of Porto, Portugal
salmeida@dei.isep.ipp.pt

Ada-Europe Conference Liaison

Laurent Pautet
Telecom Paris, France
pautet@enst.fr

In cooperation with

SIGAda
(approval pending)

General Information

The 11th International Conference on Reliable Software Technologies (Ada-Europe 2006)
will take place in Porto, Portugal. Following the usual style, the conference will span a full
week, including a three-day technical program and vendor exhibitions from Tuesday to
Thursday, along with parallel workshops and tutorials on Monday and Friday.

Schedule
30 October 2005 Submission of papers, workshop/tutorial proposals
20 January 2006 Notification to authors

20 February 2006 Camera-ready papers required
5-9 June 2006 Conference

Topics
In the last decade the conference has established itself as an international forum for providers
and practitioners of, and researchers into, reliable software technologies. The conference
presentations will illustrate current work in the theory and practice of the design, development
and maintenance of long-lived, high-quality software systems for a variety of application
domains. The program will allow ample time for keynotes, Q&A sessions, panel discussions
and social events. Participants will include practitioners and researchers from industry,
academia and government organizations interested in furthering the development of reliable
software technologies. To mark the completion of the technical work for the Ada language
standard revision process, contributions that present and discuss the potential of the revised
language are particularly sought after.

For papers, tutorials, and workshop proposals, the topics of interest include, but are not
limited to:

• Methods and Techniques for Software Development and Maintenance: Requirements
Engineering, Object-Oriented Technologies, Formal Methods, Re-engineering and
Reverse Engineering, Reuse, Software Management Issues

• Software Architectures: Patterns for Software Design and Composition, Frameworks,
Architecture-Centered Development, Component and Class Libraries, Component-
Based Design

• Enabling Technology: CASE Tools, Software Development Environments and Project
Browsers, Compilers, Debuggers, Run-time Systems

• Software Quality: Quality Management and Assurance, Risk Analysis, Program
Analysis, Verification, Validation, Testing of Software Systems

• Critical Systems: Real-Time, Distribution, Fault Tolerance, Information Technology,
Safety, Security

• Mainstream and Emerging Applications: Multimedia and Communications,
Manufacturing, Robotics, Avionics, Space, Health Care, Transportation

• Ada Language and Technology: Programming Techniques, Object-Oriented
Programming, Concurrent Programming, Distributed Programming, Bindings and
Libraries, Evaluation & Comparative Assessments, Critical Review of Language
Enhancements, Novel Support Technology, HW/SW platforms

• Experience Reports: Experience Reports, Case Studies and Comparative Assessments,
Management Approaches, Qualitative and Quantitative Metrics, Experience Reports
on Education and Training Activities with bearing on any of the conference topics

178 Forthcoming Events

Volume 26, Number 3, September 2005 Ada User Journal

Program Committee
(preliminary)

Alonso Alejandro, Universidad Politécnica de
Madrid, Spain

Asplund Lars, Mälardalens Högskola, Sweden
Barnes Janet, Praxis Critical Systems, UK
Bernat Guillem, University of York, UK
Blieberger Johann, Technische Universität Wien,

Austria
Brosgol Ben, AdaCore, USA
Burgstaller Bernd, University of Sidney, Australia
Burns Alan, University of York, UK
Cederling Ulf, Vaxjo University, Sweden
Craeynest Dirk, Aubay Belgium & K.U.Leuven,

Belgium
Crespo Alfons, Universidad Politécnica de

Valencia, Spain
Devillers Raymond, Université Libre de

Bruxelles, Belgium
González Harbour Michael, Universidad de

Cantabria, Spain
Gutiérrez José Javier, Universidad de Cantabria,

Spain
Hately Andrew, Eurocontrol, Hungary
Hommel Günter, Technischen Univesität Berlin,

Germany
Kauer Stefan, EADS Dornier, Germany
Keller Hubert, Institut für Angewandte

Informatik, Germany
Kermarrec Yvon, ENST Bretagne, France
Kienzle Jörg, McGill University, Canada
Kordon Fabrice, Université Pierre & Marie Curie,

France
LLamosi Albert, Universitat de les Illes Balears,

Spain
Mazzanti Franco, Istituto di Scienza e Tecnologie

dell'Informazione, Italy
McCormick John, University of Northern Iowa,

USA
Michell Stephen, Maurya Software, Canada
Miranda Javier, Universidad Las Palmas de Gran

Canaria, Spain
Pautet Laurent, Telecom Paris, France
Pinho Luís Miguel, Polytechnic Institute of Porto,

Portugal
Plödereder Erhard, Universität Stuttgart,

Germany
de la Puente Juan A., Universidad Politécnica de

Madrid, Spain
Real Jorge, Universidad Politécnica de Valencia,

Spain
Romanovsky Alexander, University of Newcastle

upon Tyne, UK
Rosen Jean-Pierre, Adalog, France
Ruiz José, AdaCore, France
Schonberg Edmond, New York University &

AdaCore, USA
Tokar Joyce, Pyrrhus Software, USA
Vardanega Tullio, Università di Padova, Italy
Wellings Andy, University of York, UK
Winkler Jürgen, Friedrich-Schiller-Universität,

Germany

Submissions

Authors are invited to submit original contributions. Paper submissions shall be in
English, should be complete and should not exceed 20 double-spaced pages in length.
Authors should submit their work via the Web submission system accessible from the
conference Home page. The preferred format for submission is PDF. Postscript can also be
accepted, as long as it was generated selecting the “optimize for portability” option in the
used printer driver. Submissions by other means and formats will not be accepted. If you
do not have easy access to the Internet, or you do not have an appropriate Web browser,
please contact the Program Co-Chair Luís Miguel Pinho, whose address details are on the
flip side of this call as well as on the conference Home page.

Proceedings

The authors of accepted papers shall prepare their camera-ready submissions in full
conformance with the LNCS style, not exceeding 12 pages and strictly by February 20,
2006. For format and style guidelines authors should refer to:
http://www.springer.de/comp/lncs/authors.html. Failure to comply will prevent the paper
from appearing in the conference proceedings. The conference proceedings including all
accepted papers will be published in the Lecture Notes in Computer Science (LNCS) series
by Springer Verlag, which will be available at the start of the conference.

Awards

Ada-Europe will offer honorary awards for the best paper and the best presentation, which
will be presented during the banquet and at the close of the conference respectively.

Call for Tutorials

Tutorials should address subjects that fall within the thrust of the conference and may be
proposed as either half- or a full-day events. Proposals should include a title, an abstract, a
description of the topic, a detailed outline of the presentation, a description of the
presenter's lecturing expertise in general and with the proposed topic in particular, the
proposed duration (half day or full day), the intended level of the tutorial (introductory,
intermediate, or advanced), the recommended audience experience and background, and a
statement of the reasons for attending. Proposals should be submitted by e-mail to the
Tutorial Chair Jorge Real. The providers of full-day tutorials will receive a complimentary
conference registration as well as a fee for every paying participant in excess of 5; for half-
day tutorials, these benefits will accordingly be halved. The Ada User Journal will offer
space for the publication of summaries of the accepted tutorial in issues preceding and/or
following the conference.

Call for Workshops

Workshops on themes within the conference scope may be arranged to discuss matters of
immediate technical interest as well as to foster action on longer-term technical objectives.
Proposals may be submitted for half- or full-day workshops, to be scheduled on either ends
of the main conference. Workshop proposals should be submitted by e-mail to the
Conference Chair Luís Miguel Pinho The workshop organiser shall also commit to
preparing proceedings for timely publication in the Ada User Journal.

Exhibition

Commercial exhibitions will span the three days of the main conference. Vendors and
providers of software products and services should contact the Exhibition Chair José Ruiz
as soon as possible for further information and for allowing suitable planning of the
exhibition space and time.

Reduced Fees for Students

A small number of grants are available for students who will (co-)author and present
papers at the conference. A reduction of 25% will be made to the conference fee. Contact
the Conference Chair Luís Miguel Pinho for details.

180

Volume 26, Number 3, September 2005 Ada User Journal

Rationale for Ada 2005: 4 Tasking and Real-Time
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements in the
tasking and real-time areas for Ada 2005.
There are only a few changes to the core tasking
model itself. One major extension, however, is the
ability to combine the interface feature described in
an earlier paper with the tasking model; this draws
together the object-oriented and tasking models of
Ada which previously were disjoint aspects of the
language.
There are also many additional predefined packages
in the Real-Time Systems annex concerning matters
such as scheduling and timing; these form the major
topic of this paper.
Keywords: rationale, Ada 2005.

1 Overview of Changes
The WG9 guidance document [1] identifies real-time
systems as an important area. It says

"The main purpose of the Amendment is to address
identified problems in Ada that are interfering with Ada's
usage or adoption, especially in its major application areas
(such as high-reliability, long-lived real-time and/or
embedded applications and very large complex systems).
The resulting changes may range from relatively minor, to
more substantial."

It then identifies the inclusion of the Ravenscar profile [2]
(for predictable real-time) as a worthwhile addition and
then asks the ARG to pay particular attention to

 Improvements that will maintain or improve Ada's
advantages, especially in those user domains where
safety and criticality are prime concerns. Within this
area it cites as high priority, improvements in the real-
time features and improvements in the high integrity
features.

Ada 2005 does indeed make many improvements in the
real-time area and includes the Ravenscar profile as
specifically mentioned. The following Ada issues cover the
relevant changes and are described in detail in this paper:

249 Ravenscar profile for high-integrity systems

265 Partition elaboration policy for high-integrity systems

266 Task termination procedure

297 Timing events

298 Non-preemptive dispatching

305 New pragma and restrictions for real-time systems

307 Execution-time clocks

321 Definition of dispatching policies

327 Dynamic ceiling priorities

345 Protected and task interfaces

347 Title of Annex H

354 Group execution-time budgets

355 Priority dispatching including Round Robin

357 Earliest Deadline First scheduling

386 Further functions returning time-span values

394 Redundant Restrictions identifiers and Ravenscar

397 Conformance and overriding for procedures and entries

399 Single tasks and protected objects with interfaces

421 Sequential activation and attachment

These changes can be grouped as follows.

First there is the introduction of a mechanism for
monitoring task termination (266).

A major innovation in the core language is the introduction
of synchronized interfaces which provide a high degree of
unification between the object-oriented and real-time
aspects of Ada (345, 397, 399).

There is of course the introduction of the Ravenscar profile
(249) plus associated restrictions (305, 394) in the Real-
Time Systems annex (D).

There are major improvement to the scheduling and task
dispatching mechanisms with the addition of further
standard policies (298, 321, 327, 355, 357). These are also
in Annex D.

A number of timing mechanisms are now provided. These
concern stand-alone timers, timers for monitoring the CPU
time of a single task, and timers for controlling the
budgeting of time for groups of tasks (297, 307, 354, 386).
Again these are in Annex D.

Finally, more control is provided over partition elaboration
which is very relevant to real-time high-integrity systems
(265, 421). This is in Annex H which is now entitled High-
Integrity Systems (347).

John Barnes 181

Ada User Journal Volume 26, Number 3, September 2005

Note that further operations for the manipulation of time in
child packages of Calendar (351) will be discussed with the
predefined library in a later paper.

2 Task termination
In the Introduction we mentioned the problem of how tasks
can have a silent death in Ada 95. This happens if a task
raises an exception which is not handled by the task itself.
Tasks may also terminate because of going abnormal as
well as terminating normally. The detection of task
termination and its causes can be monitored in Ada 2005 by
the package Ada.Task_Termination whose specification is
essentially

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Exceptions; use Ada.Exceptions;
package Ada.Task_Termination is
 pragma Preelaborable(Task_Termination);

 type Cause_Of_Termination is
 (Normal, Abnormal, Unhandled_Exception);

 type Termination_Handler is access protected
 procedure(Cause: in Cause_Of_Termination;
 T: in Task_Id; X: in Exception_Occurrence);

 procedure Set_Dependents_Fallback_Handler
 (Handler: in Termination_Handler);
 function Current_Task_Fallback_Handler
 return Termination_Handler;

 procedure Set_Specific_Handler(T: in Task_Id;
 Handler: in Termination_Handler);
 function Specific_Handler(T: in Task_Id)
 return Termination_Handler;

end Ada.Task_Termination;

 (Note that the above includes use clauses in order to
simplify the presentation; the actual package does not have
use clauses. We will use a similar approach for the other
predefined packages described in this paper.)

The general idea is that we can associate a protected
procedure with a task. The protected procedure is then
invoked when the task terminates with an indication of the
reason passed via its parameters. The protected procedure
is identified by using the type Termination_Handler which
is an access type referring to a protected procedure.

The association can be done in two ways. Thus (as in the
Introduction) we might declare a protected object
Grim_Reaper

protected Grim_Reaper is
 procedure Last_Gasp(C: Cause_Of_Termination;
 T: Task_Id; X: Exception_Occurrence);
end Grim_Reaper;

which contains the protected procedure Last_Gasp. Note
that the parameters of Last_Gasp match those of the access
type Termination_Handler.

We can then nominate Last_Gasp as the protected
procedure to be called when the specific task T dies by

Set_Specific_Handler(T'Identity,
 Grim_Reaper.Last_Gasp'Access);

Alternatively we can nominate Last_Gasp as the protected
procedure to be called when any of the tasks dependent on
the current task becomes terminated by writing

Set_Dependents_Fallback_Handler
 (Grim_Reaper.Last_Gasp'Access);

Note that a task is not dependent upon itself and so this
does not set a handler for the current task.

Thus a task can have two handlers. A fallback handler and
a specific handler and either or both of these can be null.
When a task terminates (that is after any finalization but
just before it vanishes), the specific handler is invoked if it
is not null. If the specific handler is null, then the fallback
handler is invoked unless it too is null. If both are null then
no handler is invoked.

The body of protected procedure Last_Gasp might then
output various diagnostic messages

procedure Last_Gasp(C: Cause_Of_Termination;
 T: Task_Id; X: Exception_Occurrence) is
begin
 case C is
 when Normal => null;
 when Abnormal =>
 Put("Something nasty happened to task ");
 Put_Line(Image(T));
 when Unhandled_Exception =>
 Put("Unhandled exception occurred in task ");
 Put_Line(Image(T));
 Put(Exception_Information(X));
 end case;
end Last_Gasp;

There are three possible reasons for termination, it could be
normal, abnormal (caused by abort), or because of
propagation of an unhandled exception. In the last case the
parameter X gives details of the exception occurrence
whereas in the other cases X has the value Null_Occurrence.

Initially both specific and fallback handlers are null for all
tasks. However, note that if a fallback handler has been set
for all dependent tasks of T then the handler will also apply
to any task subsequently created by T or one of its
descendants. Thus a task can be born with a fallback
handler already in place.

If a new handler is set then it replaces any existing handler
of the appropriate kind. Calling either setting procedure
with null for the handler naturally sets the appropriate
handler to null.

The current handlers can be found by calling the functions
Current_Task_Fallback_Handler or Specific_Handler; they
return null if the handler is null.

It is important to realise that the fallback handlers for the
tasks dependent on T need not all be the same since one of
the dependent tasks of T might set a different handler for its
own dependent tasks. Thus the fallback handlers for a tree

182 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

of tasks can be different in various subtrees. This structure
is reflected by the fact that the determination of the current
fallback handler of a task is in fact done by searching
recursively the tasks on which it depends.

Note that we cannot directly interrogate the fallback
handler of a specific task but only that of the current task.
Moreover, if a task sets a fallback handler for its
dependents and then enquires of its own fallback handler it
will not in general get the same answer because it is not one
of its own dependents.

It is important to understand the situation regarding the
environment task. This unnamed task is the task that
elaborates the library units and then calls the main
subprogram. Remember that library tasks (that is tasks
declared at library level) are activated by the environment
task before it calls the main subprogram.

Suppose the main subprogram calls the setting procedures
as follows

procedure Main is

 protected RIP is
 protected procedure One(...);
 protected procedure Two(...);
 end;
 ...
begin
 Set_Dependents_Fallback_Handler(RIP.One'Access);
 Set_Specific_Handler(Current_Task, RIP.Two'Access);
 ...
end Main;

The specific handler for the environment task is then set to
Two (because Current_Task is the environment task at this
point) but the fallback handler for the environment task is
null. On the other hand the fallback handler for all other
tasks in the program including any library tasks is set to
One. Note that it is not possible to set the fallback handler
for the environment task.

The astute reader will note that there is actually a race
condition here since a library task might have terminated
before the handler gets set. We could overcome this by
setting the handler as part of the elaboration code thus

package Start_Up is
 pragma Elaborate_Body;
end;

with Ada.Task_Termination; use Ada.Task_Termination;
package body Start_Up is
begin
 Set_Dependents_Fallback_Handler(RIP.One'Access);
end Start_Up;

with Start_Up;
pragma Elaborate(Start_Up);
package Library_Tasks is
 ... -- declare library tasks here
end;

Note how the use of pragmas Elaborate_Body and
Elaborate ensures that things get done in the correct order.

Some minor points are that if we try to set the specific
handler for a task that has already terminated then
Tasking_Error is raised. And if we try to set the specific
handler for the null task, that is call Set_Specific_Handler
with parameter T equal to Null_Task_Id, then
Program_Error is raised. These exceptions are also raised
by calls of the function Specific_Handler in similar
circumstances.

3 Synchronized interfaces
We now turn to the most important improvement to the
core tasking features introduced by Ada 2005. This
concerns the coupling of object oriented and real-time
features through inheritance.

Recall from the paper on the object oriented model that we
can declare an interface thus

type Int is interface;

An interface is essentially an abstract tagged type that
cannot have any components but can have abstract
operations and null procedures. We can then derive other
interfaces and tagged types by inheritance such as

type Another_Int is interface and Int1 and Int2;

type T is new Int1 and Int2;

type TT is new T and Int3 and Int4;

Remember that a tagged type can be derived from at most
one other normal tagged type but can also be derived from
several interfaces. In the list, the first is called the parent (it
can be a normal tagged type or an interface) and any others
(which can only be interfaces) are called progenitors.

Ada 2005 also introduces further categories of interfaces,
namely synchronized, protected, and task interfaces. A
synchronized interface can be implemented by either a task
or protected type; a protected interface can only be
implemented by a protected type and a task interface can
only be implemented by a task type.

A nonlimited interface can only be implemented by a
nonlimited type. However, an explicitly marked limited
interface can be implemented by any tagged type (limited
or not) or by a protected or task type. Remember that task
and protected types are inherently limited. Note that we use
the term limited interface to refer collectively to interfaces
marked limited, synchronized, task or protected and we use
explicitly limited to refer to those actually marked as
limited.

So we can write

type LI is limited interface; -- similarly type LI2

type SI is synchronized interface;

type TI is task interface;

type PI is protected interface;

John Barnes 183

Ada User Journal Volume 26, Number 3, September 2005

and we can of course provide operations which must be
abstract or null. (Remember that synchronized is a new
reserved word.)

We can compose these interfaces provided that no conflict
arises. The following are all permitted:

type TI2 is task interface and LI and TI;

type LI3 is limited interface and LI and LI2;

type TI3 is task interface and LI and LI2;

type SI2 is synchronized interface and LI and SI;

The rule is simply that we can compose two or more
interfaces provided that we do not mix task and protected
interfaces and the resulting interface must be not earlier in
the hierarchy: limited, synchronized, task/protected than
any of the ancestor interfaces.

We can derive a real task type or protected type from one
or more of the appropriate interfaces

task type TT is new TI with
 ... -- and here we give entries as usual
end TT;

or

protected type PT is new LI and SI with
 ...
end PT;

Unlike tagged record types we cannot derive a task or
protected type from another task or protected type as well.
So the derivation hierarchy can only be one level deep once
we declare an actual task or protected type.

The operations of these various interfaces are declared in
the usual way and an interface composed of several
interfaces has the operations of all of them with the same
rules regarding duplication and overriding of an abstract
operation by a null one and so on as for normal tagged
types.

When we declare an actual task or protected type then we
must implement all of the operations of the interfaces
concerned. This can be done in two ways, either by
declaring an entry or protected operation in the
specification of the task or protected object or by declaring
a distinct subprogram in the same list of declarations (but
not both). Of course, if an operation is null then it can be
inherited or overridden as usual.

Thus the interface

package Pkg is
 type TI is task interface;
 procedure P(X: in TI) is abstract;
 procedure Q(X: in TI; I: in Integer) is null;
end Pkg;

could be implemented by

package PT1 is
 task type TT1 is new TI with
 entry P; -- P and Q implemented by entries

 entry Q(I: in Integer);
 end TT1;
end PT1;

or by

package PT2 is
 task type TT2 is new TI with
 entry P; -- P implemented by an entry
 end TT2;
 -- Q implemented by a procedure
 procedure Q(X: in TT2; I: in Integer);
end PT2;

or even by

package PT3 is
 task type TT3 is new TI with end;
 -- P implemented by a procedure
 -- Q inherited as a null procedure
 procedure P(X: in TT3);
end PT3;

In this last case there are no entries and so we have the
juxtaposition with end which is somewhat similar to the
juxtaposition is end that occurs with generic packages used
as signatures.

Observe how the first parameter which denotes the task is
omitted if it is implemented by an entry. This echoes the
new prefixed notation for calling operations of tagged types
in general. Remember that rather than writing

Op(X, Y, Z, ...);

we can write

X.Op(Y, Z, ...);

provided certain conditions hold such as that X is of a
tagged type and that Op is a primitive operation of that
type.

In order for the implementation of an interface operation by
an entry of a task type or a protected operation of a
protected type to be possible some fairly obvious
conditions must be satisfied.

In all cases the first parameter of the interface operation
must be of the task type or protected type (it may be an
access parameter).

In addition, in the case of a protected type, the first
parameter of an operation implemented by a protected
procedure or entry must have mode out or in out (and in
the case of an access parameter it must be an access to
variable parameter).

If the operation does not fit these rules then it has to be
implemented as a subprogram. An important example is
that a function has to be implemented as a function in the
case of a task type because there is no such thing as a
function entry. However, a function can often be directly
implemented as a protected function in the case of a
protected type.

184 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

Entries and protected operations which implement inherited
operations may be in the visible part or private part of the
task or protected type in the same way as for tagged record
types.

It may seem rather odd that an operation can be
implemented by a subprogram that is not part of the task or
protected type itself – it seems as if it might not be task safe
in some way. But a common paradigm is where an
operation as an abstraction has to be implemented by two
or more entry calls. An example occurs in some
implementations of the classic readers and writers problem
as we shall see later.

Of course a task or protected type which implements an
interface can have additional entries and operations as well
just as a derived tagged type can have more operations than
its parent.

The overriding indicators overriding and not overriding
can be applied to entries as well as to procedures. Thus the
package PT2 above could be written as

package PT2 is
 task type TT2 is new TI with
 overriding -- P implemented by an entry
 entry P;
 end TT2;

 overriding -- Q implemented by procedure
 procedure Q(X: in TT2; I: in Integer);
end PT2;

We will now explore a simple readers and writers example
in order to illustrate various points. We start with the
following interface

package RWP is
 type RW is limited interface;
 procedure Write(Obj: out RW; X: in Item) is abstract;
 procedure Read(Obj: in RW; X: out Item) is abstract;
end RWP;

The intention here is that the interface describes the
abstraction of providing an encapsulation of a hidden
location and a means of writing a value (of some type Item)
to it and reading a value from it – very trivial.

We could implement this in a nonsynchronized manner
thus

type Simple_RW is new RW with
 record
 V: Item;
 end record;

overriding
procedure Write(Obj: out Simple_RW; X: in Item);

overriding
procedure Read(Obj: in Simple_RW; X: out Item);

...

procedure Write(Obj: out Simple_RW; X: in Item) is
begin

 Obj.V := X;
end Write;

procedure Read(Obj: in Simple_RW; X: out Item) is
begin
 X := Obj.V;
end Read;

This implementation is of course not task safe (task safe is
sometimes referred to as thread-safe). If a task calls Write
and the type Item is a composite type and the writing task is
interrupted part of the way through writing, then a task
which calls Read might get a curious result consisting of
part of the new value and part of the old value.

For illustration we could derive a synchronized interface

type Sync_RW is synchronized interface and RW;

This interface can only be implemented by a task or
protected type. For a protected type we might have

protected type Prot_RW is new Sync_RW with
 overriding
 procedure Write(X: in Item);
 overriding
 procedure Read(X: out Item);
private
 V: Item;
end;

protected body Prot_RW is
 procedure Write(X: in Item) is
 begin
 V := X;
 end Write;

 procedure Read(X: out Item) is
 begin
 X := V;
 end Read;
end Prot_RW;

Again observe how the first parameter of the interface
operations is omitted when they are implemented by
protected operations.

This implementation is perfectly task safe. However, one of
the characteristics of the readers and writers example is that
it is quite safe to allow multiple readers since they cannot
interfere with each other. But the type Prot_RW does not
allow multiple readers because protected procedures can
only be executed by one task at a time.

Now consider

protected type Multi_Prot_RW is new Sync_RW with
 overriding
 procedure Write(X: in Item);
 not overriding
 function Read return Item;
private
 V: Item;
end;

John Barnes 185

Ada User Journal Volume 26, Number 3, September 2005

overriding
procedure Read(Obj: in Multi_Prot_RW; X: out Item);

...

protected body Multi_Prot_RW is
 procedure Write(X: in Item) is
 begin
 V := X;
 end Write;

 function Read return Item is
 begin
 return V;
 end Read;
end Multi_Prot_RW;

procedure Read(Obj: in Multi_Prot_RW; X: out Item) is
begin
 X := Obj.Read;
end Read;

In this implementation the procedure Read is implemented
by a procedure outside the protected type and this
procedure then calls the function Read within the protected
type. This allows multiple readers because one of the
characteristics of protected functions is that multiple
execution is permitted (but of course calls of the protected
procedure Write are locked out while any calls of the
protected function are in progress). The structure is
emphasized by the use of overriding indicators.

A simple tasking implementation might be as follows

task type Task_RW is new Sync_RW with
 overriding
 entry Write(X: in Item);
 overriding
 entry Read(X: out Item);
end;

task body Task_RW is
 V: Item;
begin
 loop
 select
 accept Write(X: in Item) do
 V := X;
 end Write;
 or
 accept Read(X: out Item) do
 X := V;
 end Read;
 or
 terminate;
 end select;
 end loop;
end Task_RW;

Finally, here is a tasking implementation which allows
multiple readers and ensures that an initial value is set by
only allowing a call of Write first. It is based on an example
in that textbook [3].

task type Multi_Task_RW(V: access Item) is
 new Sync_RW with
 overriding
 entry Write(X: in Item);
 not overriding
 entry Start;
 not overriding
 entry Stop;
end;

overriding
procedure Read(Obj: in Multi_Task_RW; X: out Item);

...

task body Multi_Task_RW is
 Readers: Integer := 0;
begin
 accept Write(X: in Item) do
 V.all := X;
 end Write;
 loop
 select
 when Write'Count = 0 =>
 accept Start;
 Readers := Readers + 1;
 or
 accept Stop;
 Readers := Readers – 1;

 or
 when Readers = 0 =>
 accept Write(X: in Item) do
 V.all := X;
 end Write;
 or
 terminate;
 end select;
 end loop;
end Multi_Task_RW;

overriding
procedure Read(Obj: in Multi_Task_RW; X: out Item) is
begin
 Obj.Start;
 X := Obj.V.all;
 Obj.Stop;
end Read;

In this case the data being protected is accessed via the
access discriminant of the task. It is structured this way so
that the procedure Read can read the data directly. Note
also that the procedure Read (which is the implementation
of the procedure Read of the interface) calls two entries of
the task.

It should be observed that this last example is by way of
illustration only. As is well known, the Count attribute used
in tasks (as opposed to protected objects) can be misleading
if tasks are aborted or if entry calls are timed out.
Moreover, it would be gruesomely slow.

So we have seen that a limited interface such as RW might
be implemented by a normal tagged type (plus its various

186 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

operations) and by a protected type and also by a task type.
We could then dispatch to the operations of any of these
according to the tag of the type concerned. Observe that
task and protected types are now other forms of tagged
types and so we have to be careful to say tagged record
type (or informally, normal tagged type) where appropriate.

In the above example, the types Simple_RW, Prot_RW,
Multi_Prot_RW, Task_RW and Multi_Task_RW all
implement the interface RW.

So we might have

RW_Ptr: access RW'Class := ...

...
RW_Ptr.Write(An_Item); -- dispatches

and according to the value in RW_Ptr this might call the
appropriate entry or procedure of an object of any of the
types implementing the interface RW.

However if we have

Sync_RW_Ptr: access Sync_RW'Class := ...

then we know that any implementation of the synchronized
interface Sync_RW will be task safe because it can only be
implemented by a task or protected type. So the dispatching
call

Sync_RW_Ptr.Write(An_Item); -- task safe dispatching

will be task safe.

An interesting point is that because a dispatching call might
be to an entry or to a procedure we now permit what appear
to be procedure calls in timed entry calls if they might
dispatch to an entry.

So we could have

select
 RW_Ptr.Read(An_Item); -- dispatches
or
 delay Seconds(10);
end select;

Of course it might dispatch to the procedure Read if the
type concerned turns out to be Simple_RW in which case a
time out could not occur. But if it dispatched to the entry
Read of the type Task_RW then it could time out.

On the other hand we are not allowed to use a timed call if
it is statically known to be a procedure. So

A_Simple_Object: Simple_RW;
...
select
 A_Simple_Object.Read(An_Item); -- illegal
or
 delay Seconds(10);
end select;

is not permitted.

A note of caution is in order. Remember that the time out is
to when the call gets accepted. If it dispatches to
Multi_Task_RW.Read then time out never happens because

the Read itself is a procedure and gets called at once.
However, behind the scenes it calls two entries and so
could take a long time. But if we called the two entries
directly with timed calls then we would get a time out if
there were a lethargic writer in progress. So the wrapper
distorts the abstraction. In a sense this is not much worse
than the problem we have anyway that a time out is to
when a call is accepted and not to when it returns – it could
hardly be otherwise.

The same rules apply to conditional entry calls and also to
asynchronous select statements where the triggering
statement can be a dispatching call.

In a similar way we also permit timed calls on entries
renamed as procedures. But note that we do not allow
timed calls on generic formal subprograms even though
they might be implemented as entries.

Another important point to note is that we can as usual
assume the common properties of the class concerned.
Thus in the case of a task interface we know that it must be
implemented by a task and so the operations such as abort
and the attributes Identity, Callable and so on can be
applied. If we know that an interface is synchronized then
we do know that it has to be implemented by a task or a
protected type and so is task safe.

Typically an interface is implemented by a task or
protected type but it can also be implemented by a
singleton task or protected object despite the fact that
singletons have no type name. Thus we might have

protected An_RW is new Sync_RW with
 procedure Write(X: in Item);
 procedure Read(X: out Item);
end;

with the obvious body. However we could not declare a
single protected object similar to the type Multi_Prot_RW
above. This is because we need a type name in order to
declare the overriding procedure Read outside the protected
object. So singleton implementations are possible provided
that the interface can be implemented directly by the task or
protected object without external subprograms.

Here is another example

type Map is protected interface;
procedure Put(M: Map; K: Key; V: Value) is abstract;

can be implemented by

protected A_Map is new Map with
 procedure Put(K: Key; V: Value);
 ...
end A_Map;

There is a fairly obvious rule about private types and
synchronized interfaces. Both partial and full view must be
synchronized or not. Thus if we wrote

type SI is synchronized interface;
type T is new SI with private;

John Barnes 187

Ada User Journal Volume 26, Number 3, September 2005

then the full type T has to be a task type or protected type
or possibly a synchronized, protected or task interface.

We conclude this discussion on interfaces by saying a few
words about the use of the word limited. (Much of this has
already been explained in the paper on the object oriented
model but it is worth repeating in the context of concurrent
types.) We always explicitly insert limited, synchronized,
task, or protected in the case of a limited interface in order
to avoid confusion. So to derive a new explicitly limited
interface from an existing limited interface LI we write

type LI2 is limited interface and LI;

whereas in the case of normal types we can write

type LT is limited ...

type LT2 is new LT and LI with ... -- LT2 is limited

then LT2 is limited by the normal derivation rules. Types
take their limitedness from their parent (the first one in the
list) and it does not have to be given explicitly on type
derivation – although it can be in Ada 2005 thus

type LT2 is limited new LT and LI with ...

Remember the important rule that all descendants of a
nonlimited interface have to be nonlimited because
otherwise limited types could end up with an assignment
operation.

This means that we cannot write

type NLI is interface; -- nonlimited

type LI is limited interface; -- limited

task type TT is new NLI and LI with ... -- illegal

This is illegal because the interface NLI in the declaration of
the task type TT is not limited.

4 The Ravenscar profile
The purpose of the Ravenscar profile is to restrict the use of
many tasking facilities so that the effect of the program is
predictable. The profile was defined by the International
Real-Time Ada Workshops which met twice at the remote
village of Ravenscar on the coast of Yorkshire in North-
East England. A general description of the principles and
use of the profile in high integrity systems will be found in
an ISO/IEC Technical Report [2] and so we shall not cover
that material here.

Here is a historical interlude. It is reputed that the hotel in
which the workshops were held was originally built as a
retreat for King George III to keep a mistress. Another odd
rumour is that he ordered all the natural trees to be removed
and replaced by metallic ones whose metal leaves clattered
in the wind. It also seems that Henry Bolingbroke landed at
Ravenscar in July 1399 on his way to take the throne as
Henry IV. Ravenscar is mentioned several times by
Shakespeare in Act II of King Richard II; it is spelt
Ravenspurg which is slightly confusing – maybe we need
the ability to rename profile identifiers.

A profile is a mode of operation and is specified by the
pragma Profile which defines the particular profile to be
used. The syntax is

pragma Profile(profile_identifier
 [, profile_argument_associations]);

where profile_argument_associations is simply a list of
pragma argument associations separated by commas.

Thus to ensure that a program conforms to the Ravenscar
profile we write

pragma Profile(Ravenscar);

The general idea is that a profile is equivalent to a set of
configuration pragmas.

In the case of Ravenscar the pragma is equivalent to the
joint effect of the following pragmas

pragma Task_Dispatching_Policy(FIFO_Within_Priorities);
pragma Locking_Policy(Ceiling_Locking);
pragma Detect_Blocking;

pragma Restrictions(
 No_Abort_Statements,
 No_Dynamic_Attachment,
 No_Dynamic_Priorities,
 No_Implicit_Heap_Allocations,
 No_Local_Protected_Objects,
 No_Local_Timing_Events,
 No_Protected_Type_Allocators,
 No_Relative_Delay,
 No_Requeue_Statements,
 No_Select_Statements,
 No_Specific_Termination_Handlers,
 No_Task_Allocators,
 No_Task_Hierarchy,
 No_Task_Termination,
 Simple_Barriers,
 Max_Entry_Queue_Length => 1,
 Max_Protected_Entries => 1,
 Max_Task_Entries => 0,
 No_Dependence =>
 Ada.Asynchronous_Task_Control,
 No_Dependence => Ada.Calendar,
 No_Dependence =>
 Ada.Execution_Time.Group_Budget,
 No_Dependence => Ada.Execution_Time.Timers,
 No_Dependence => Ada.Task_Attributes);

The pragma Detect_Blocking plus many of the Restrictions
identifiers are new to Ada 2005. These will now be
described.

The pragma Detect_Blocking, as its name implies, ensures
that the implementation will detect a potentially blocking
operation in a protected operation and raise Program_Error.
Without this pragma the implementation is not required to
detect blocking and so tasks might be locked out for an
unbounded time and the program might even deadlock.

The identifier No_Dynamic_Attachment means that there
are no calls of the operations in the package Ada.Interrupts.

188 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

The identifier No_Dynamic_Priorities means that there is no
dependence on the package Ada.Priorities as well as no uses
of the attribute Priority (this is a new attribute for protected
objects as explained at the end of this section).

Note that the rules are that you cannot read as well as not
write the priorities – this applies to both the procedure for
reading task priorities and reading the attribute for
protected objects.

The identifier No_Local_Protected_Objects means that
protected objects can only be declared at library level and
the identifier No_Protected_Type_Allocators means that
there are no allocators for protected objects or objects
containing components of protected types.

The identifier No_Local_Timing_Events means that objects
of the type Timing_Event in the package Ada.Real_Time.
Timing_Events can only be declared at library level. This
package is described in Section 6 below.

The identifiers No_Relative_Delay, No_Requeue_
Statements, and No_Select_Statements mean that there are
no relative delay, requeue or select statements respectively.

The identifier No_Specific_Termination_Handlers means
that there are no calls of the procedure Set_Specific_
Handler or the function Specific_Handler in the package
Task_Termination and the identifier No_Task_Termination
means that all tasks should run for ever. Note that we are
permitted to set a fallback handler so that if any task does
attempt to terminate then it will be detected.

The identifier Simple_Barriers means that the Boolean
expression in a barrier of an entry of a protected object
shall be either a static expression (such as True) or a
Boolean component of the protected object itself.

The Restrictions identifier Max_Entry_Queue_Length sets a
limit on the number of calls permitted on an entry queue. It
is an important property of the Ravenscar profile that only
one call is permitted at a time on an entry queue of a
protected object.

The identifier No_Dependence is not specific to the Real-
Time Systems annex and is properly described in the next
paper. In essence it indicates that the program does not
depend upon the given language defined package. In this
case it means that a program conforming to the Ravenscar
profile cannot use any of the packages Asynchronous_
Task_Control, Calendar, Execution_Time.Group_Budget,
Execution_Time.Timers and Task_Attributes. Some of these
packages are new and are described later in this paper.

Note that No_Dependence cannot be used for
No_Dynamic_Attachment because that would prevent use
of the child package Ada.Interrupts.Names.

All the other restrictions identifiers used by the Ravenscar
profile were already defined in Ada 95. Note also that the
identifier No_Asynchronous_Control has been moved to
Annex J because it can now be replaced by the use of
No_Dependence.

5 Scheduling and dispatching
Another area of increased flexibility in Ada 2005 is that of
task dispatching policies. In Ada 95, the only predefined
policy is FIFO_Within_Priorities although other policies are
permitted. Ada 2005 provides further pragmas, policies and
packages which facilitate many different mechanisms such
as non-preemption within priorities, the familiar Round
Robin using timeslicing, and the more recently acclaimed
Earliest Deadline First (EDF) policy. Moreover it is
possible to mix different policies according to priority level
within a partition.

In order to accommodate these many changes, Section D.2
(Priority Scheduling) of the Reference Manual has been
reorganized as follows

D.2.1 The Task Dispatching Model
D.2.2 Task Dispatching Pragmas
D.2.3 Preemptive Dispatching
D.2.4 Non-Preemptive Dispatching
D.2.5 Round Robin Dispatching
D.2.6 Earliest Deadline First Dispatching

Overall control is provided by two pragmas. They are

pragma Task_Dispatching_Policy(policy_identifier);

pragma Priority_Specific_Dispatching(policy_identifer,
 first_priority_expression, last_priority_expression);

The pragma Task_Dispatching_Policy, which already exists
in Ada 95, applies the same policy throughout a whole
partition. The pragma Priority_Specific_Dispatching, which
is new in Ada 2005, can be used to set different policies for
different ranges of priority levels.

The full set of predefined policies in Ada 2005 is

FIFO_Within_Priorities – This already exists in Ada 95.
Within each priority level to which it applies tasks are
dealt with on a first-in-first-out basis. Moreover, a task
may preempt a task of a lower priority.

Non_Preemptive_FIFO_Within_Priorities – This is new in
Ada 2005. Within each priority level to which it applies
tasks run to completion or until they are blocked or
execute a delay statement. A task cannot be preempted
by one of higher priority. This sort of policy is widely
used in high integrity applications.

Round_Robin_Within_Priorities – This is new in Ada
2005. Within each priority level to which it applies tasks
are timesliced with an interval that can be specified.
This is a very traditional policy widely used since the
earliest days of concurrent programming.

EDF_Across_Priorities – This is new in Ada 2005. This
provides Earliest Deadline First dispatching. The general
idea is that within a range of priority levels, each task
has a deadline and that with the earliest deadline is
processed. This is a fashionable new policy and has
mathematically provable advantages with respect to
efficiency.

John Barnes 189

Ada User Journal Volume 26, Number 3, September 2005

For further details of these policies consult the forthcoming
book by Alan Burns and Andy Wellings [4].

These various policies are controlled by the package
Ada.Dispatching plus two child packages. The root package
has specification

package Ada.Dispatching is
 pragma Pure(Dispatching);
 Dispatching_Policy_Error: exception;
end Ada.Dispatching;

As can be seen this root package simply declares the
exception Dispatching_Policy_Error which is used by the
child packages.

The child package Round_Robin_Dispatching enables the
setting of the time quanta for time slicing within one or
more priority levels. Its specification is

with System; use System;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Dispatching.Round_Robin is
 Default_Quantum: constant Time_Span :=
 implementation-defined;
 procedure Set_Quantum(Pri: in Priority,
 Quantum: in Time_Span);
 procedure Set_Quantum(Low, High: in Priority;
 Quantum: in Time_Span);
 function Actual_Quantum(Pri: Priority)
 return Time_Span;
 function Is_Round_Robin(Pri: Priority)
 return Boolean;
end Ada.Dispatching.Round_Robin;

The procedures Set_Quantum enable the time quantum to
be used for time slicing to be set for one or a range of
priority levels. The default value is of course the constant
Default_Quantum. The function Actual_Quantum enables
us to find out the current value of the quantum being used
for a particular priority level. Its identifier reflects the fact
that the implementation may not be able to apply the exact
actual value given in a call of Set_Quantum. The function
Is_Round_Robin enables us to check whether the round
robin policy has been applied to the given priority level. If
we attempt to do something stupid such as set the quantum
for a priority level to which the round robin policy does not
apply then the exception Dispatching_Policy_Error is raised.

The other new policy concerns deadlines and is controlled
by a new pragma Relative_Deadline and the child package
Dispatching.EDF. The syntax of the pragma is

pragma Relative_Deadline(relative_deadline_expression);

The deadline of a task is a property similar to priority and
both are used for scheduling. Every task has a priority of
type Integer and every task has a deadline of type
Ada.Real_Time.Time. Priorities can be set when a task is
created by pragma Priority

task T is
 pragma Priority(P);

and deadlines can similarly be set by the pragma
Relative_Deadline thus

task T is
 pragma Relative_Deadline(RD);

The expression RD has type Ada.Real_Time.Time_Span.
Note carefully that the pragma sets the relative and not the
absolute deadline. The initial absolute deadline of the task
is

Ada.Real_Time.Clock + RD

where the call of Clock is made between task creation and
the start of its activation.

Both pragmas Priority and Relative_Deadline can appear in
the main subprogram and they then apply to the
environment task. If they appear in any other subprogram
then they are ignored. Both properties can also be set via a
discriminant. In the case of priorities we can write

task type TT(P: Priority) is
 pragma Priority(P);
 ...
end;

High_Task: TT(13);
Low_Task: TT(7);

We cannot do the direct equivalent for deadlines because
Time_Span is private and so not discrete. We have to use
an access discriminant thus

task type TT(RD: access Timespan) is
 pragma Relative_Deadline(RD);
 ...
end;

One_Sec: aliased constant Time_Span := Seconds(1);
Ten_Mins: aliased constant Time_Span := Minutes(10);

Hot_Task: TT(One_Sec'Access);
Cool_Task: TT(Ten_Mins'Access);

Note incidentally that functions Seconds and Minutes have
been added to the package Ada.Real_Time. Existing
functions Nanoseconds, Microseconds and Milliseconds in
Ada 95 enable the convenient specification of short real
time intervals (values of type Time_Span). However, the
specification of longer intervals such as four minutes meant
writing something like Milliseconds(240_000) or perhaps
4*60*Milliseconds(1000). In view of the fact that EDF
scheduling and timers (see Section 6) would be likely to
require longer times the functions Seconds and Minutes are
added in Ada 2005. There is no function Hours because the
range of time spans is only guaranteed to be 3600 seconds
anyway.

If a task is created and it does not have a pragma Priority
then its initial priority is that of the task that created it. If a
task does not have a pragma Relative_Deadline then its
initial absolute deadline is the constant Default_Deadline in
the package Ada.Dispatching.EDF; this constant has the
value Ada.Real_Time.Time_Last (effectively the end of the
universe).

190 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

Priorities can be dynamically manipulated by the
subprograms in the package Ada.Dynamic_Priorities and
deadlines can similarly be manipulated by the subprograms
in the package Ada.Dispatching.EDF whose specification is

with Ada.Real_Time; use Ada.Real_Time;
with Ada.Task_Identification; use Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline: constant Deadline := Time_Last;
 procedure Set_Deadline(D: in Deadline;
 T: in Task_Id := Current_Task);
 procedure Delay_Until_And_Set_Deadline
 (Delay_Until_Time: in Time;
 Deadline_Offset: in Time_Span);
 function Get_Deadline(T: Task_Id := Current_Task)
 return Deadline;
end Ada.Dispatching.EDF;

The subtype Deadline is just declared as a handy
abbreviation. The constant Default_Deadline is set to the
end of the universe as already mentioned. The procedure
Set_Deadline sets the deadline of the task concerned to the
value of the parameter D. The long-winded Delay_Until_
And_Set_Deadline delays the task concerned until the value
of Delay_Until_Time and sets its deadline to be the interval
Deadline_Offset from that time – this is useful for periodic
tasks. The function Get_Deadline enables us to find the
current deadline of a task.

It is important to note that this package can be used to set
and retrieve deadlines for tasks whether or not they are
subject to EDF dispatching. We could for example use an
ATC on a deadline overrun (ACT = Asynchronous Transfer
of Control using a select statement). Hence there is no
function Is_EDF corresponding to Is_Round_Robin and
calls of the subprograms in this package can never raise the
exception Dispatching_Policy_Error.

If we attempt to apply one of the subprograms in this
package to a task that has already terminated then
Tasking_Error is raised. If the task parameter is
Null_Task_Id then Program_Error is raised.

As mentioned earlier, a policy can be selected for a whole
partition by for example

pragma Task_Dispatching_Policy
 (Round_Robin_Within_Priorities);

whereas in order to mix different policies across different
priority levels we can write

pragma Priority_Specific_Dispatching
 (Round_Robin_Within_Priority, 1, 1);
pragma Priority_Specific_Dispatching
 (EDF_Across_Priorities, 2, 10);
pragma Priority_Specific_Dispatching
 (FIFO_Within_Priority, 11, 24);

This sets Round Robin at priority level 1, EDF at levels 2
to 10, and FIFO at levels 11 to 24.

Note that if we write

pragma Priority_Specific_Dispatching
 (EDF_Across_Priorities, 2, 5);
pragma Priority_Specific_Dispatching
 (EDF_Across_Priorities, 6, 10);

then this is not the same us

pragma Priority_Specific_Dispatching
 (EDF_Across_Priorities, 2, 10);

despite the fact that the two ranges in the first case are
contiguous. This is because in the first case any task in the
6 to 10 range will take precedence over any task in the 2 to
5 range whatever the deadlines. If there is just one range
then only the deadlines count in deciding which tasks are
scheduled.

This is emphasized by the fact that the policy name uses
Across rather than Within. For other policies such as
Round_Robin_Within_Priority two contiguous ranges would
be the same as a single range.

We conclude this section with a few words about ceiling
priorities.

In Ada 95, the priority of a task can be changed but the
ceiling priority of a protected object cannot be changed. It
is permanently set when the object is created using the
pragma Priority. This is often done using a discriminant so
that at least different objects of a given protected type can
have different priorities. Thus we might have

protected type PT(P: Priority) is
 pragma Priority(P);
 ...
end PT;

PO: PT(7); -- ceiling priority is 7

The fact that the ceiling priority of a protected object is
static can be a nuisance in many applications especially
when the priority of tasks can be dynamic. A common
workaround is to give a protected object a higher ceiling
than needed in all circumstances (often called "the ceiling
of ceilings"). This results in tasks having a higher active
priority than necessary when accessing the protected object
and this can interfere with the processing of other tasks in
the system and thus upset overall schedulability. Moreover,
it means that a task of high priority can access an object
when it should not (if a task with a priority higher than the
ceiling priority of a protected object attempts to access the
object then Program_Error is raised – if the object has an
inflated priority then this check will pass when it should
not).

This difficulty is overcome in Ada 2005 by allowing
protected objects to change their priority. This is done
through the introduction of an attribute Priority which
applies just to protected objects. It can only be accessed
within the body of the protected object concerned.

As an example a protected object might have a procedure to
change its ceiling priority by a given amount. This could be
written as follows

John Barnes 191

Ada User Journal Volume 26, Number 3, September 2005

protected type PT is
 procedure Change_Priority(Change: in Integer);
 ...
end;

protected body PT is
 procedure Change_Priority(Change: in Integer) is
 begin
 ... -- PT'Priority has old value here
 PT'Priority := PT'Priority + Change;
 ... -- PT'Priority has new value here
 ...
 end Change_Priority;
 ...
end PT;

Changing the ceiling priority is thus done while mutual
exclusion is in force. Although the value of the attribute
itself is changed immediately the assignment is made, the
actual ceiling priority of the protected object is only
changed when the protected operation (in this case the call
of Change_Priority) is finished.

Note the unusual syntax. Here we permit an attribute as the
destination of an assignment statement. This happens
nowhere else in the language. Other forms of syntax were
considered but this seemed the most expressive.

6 CPU clocks and timers
Ada 2005 introduces three different kinds of timers. Two
are concerned with monitoring the CPU time of tasks – one
applies to a single task and the other to groups of tasks. The
third timer measures real time rather than execution time
and can be used to trigger events at specific real times. We
will look first at the CPU timers because that introduces
more new concepts.

The execution time of one or more tasks can be monitored
and controlled by the new package Ada.Execution_Time
plus two child packages.

Ada.Execution_Time – this is the root package and enables
the monitoring of execution time of individual tasks.

Ada.Execution_Time.Timers – this provides facilities for
defining and enabling timers and for establishing a
handler which is called by the run time system when the
execution time of the task reaches a given value.

Ada.Execution_Time.Group_Budgets – this enables several
tasks to share a budget and provides means whereby
action can be taken when the budget expires.

The execution time of a task, or CPU time as it is
commonly called, is the time spent by the system executing
the task and services on its behalf. CPU times are
represented by the private type CPU_Time. This type and
various subprograms are declared in the root package
Ada.Execution_Time whose specification is as follows (as
before we have added some use clauses in order to ease the
presentation)

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;
 CPU_Time_First: constant CPU_Time;
 CPU_Time_Last: constant CPU_Time;
 CPU_Time_Unit: constant :=
 implementation-defined-real-number;
 CPU_Tick: constant Time_Span;

 function Clock(T: Task_Id := Current_Task)
 return CPU_Time;
 function "+" (Left: CPU_Time; Right: Time_Span)
 return CPU_Time;
 function "+" (Left: Time_Span; Right: CPU_Time)
 return CPU_Time;
 function "–" (Left: CPU_Time; Right: Time_Span)
 return CPU_Time;

 function "–" (Left: CPU_Time; Right: CPU_Time)
 return Time_Span;

 function "<" (Left, Right: CPU_Time) return Boolean;
 function "<=" (Left, Right: CPU_Time) return Boolean;
 function ">" (Left, Right: CPU_Time) return Boolean;
 function ">=" (Left, Right: CPU_Time) return Boolean;

 procedure Split(T: in CPU_Time;
 SC: out Seconds_Count; TS: out Time_Span);
 function Time_Of(SC: Seconds_Count;
 TS: Time_Span := Time_Span_Zero)
 return CPU_Time;

private
 ... -- not specified by the language
end Ada.Execution_Time;

The CPU time of a particular task is obtained by calling the
function Clock with the task as parameter. It is set to zero at
task creation.

The constants CPU_Time_First and CPU_Time_Last give
the range of values of CPU_Time. CPU_Tick gives the
average interval during which successive calls of Clock
give the same value and thus is a measure of the accuracy
whereas CPU_Time_Unit gives the unit of time measured in
seconds. We are assured that CPU_Tick is no greater than
one millisecond and that the range of values of CPU_Time
is at least 50 years (provided always of course that the
implementation can cope).

The various subprograms perform obvious operations on
the type CPU_Time and the type Time_Span of the package
Ada.Real_Time.

A value of type CPU_Time can be converted to a
Seconds_Count plus residual Time_Span by the function
Split which is similar to that in the package Ada.Real_Time.
The function Time_Of similarly works in the opposite
direction. Note the default value of Time_Span_Zero for
the second parameter – this enables times of exact numbers
of seconds to be given more conveniently thus

Four_Secs: CPU_Time := Time_Of(4);

192 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

In order to find out when a task reaches a particular CPU
time we can use the facilities of the child package
Ada.Execution_Time.Timers whose specification is

with System; use System;
package Ada.Execution_Time.Timers is

 type Timer(T: not null access constant Task_Id) is
 tagged limited private;
 type Timer_Handler is access
 protected procedure (TM: in out Timer);

 Min_Handler_Ceiling: constant Any_Priority :=
 implementation-defined;

 procedure Set_Handler(TM: in out Timer;
 In_Time: Time_Span; Handler: Timer_Handler);
 procedure Set_Handler(TM: in out Timer;
 At_Time: CPU_Time; Handler: Timer_Handler);
 function Current_Handler(TM: Timer)
 return Timer_Handler;
 procedure Cancel_Handler(TM: in out Timer;
 Cancelled: out Boolean);

 function Time_Remaining(TM: Timer)
 return Time_Span;

 Timer_Resource_Error: exception;

private
 ... -- not specified by the language
end Ada.Execution_Time.Timers;

The general idea is that we declare an object of type Timer
whose discriminant identifies the task to be monitored –
note the use of not null and constant in the discriminant.
We also declare a protected procedure which takes the
timer as its parameter and which performs the actions
required when the CPU_Time of the task reaches some
value. Thus to take some action (perhaps abort for example
although that would be ruthless) when the CPU_Time of the
task My_Task reaches 2.5 seconds we might first declare

My_Timer: Timer(My_Task'Identity'Access);
Time_Max: CPU_Time := Time_Of(2, Milliseconds(500));

and then

protected Control is
 procedure Alarm(TM: in out Timer);
end;
...
protected body Control is
 procedure Alarm(TM: in out Timer) is
 begin
 -- abort the task
 Abort_Task(TM.T.all);
 end Alarm;
end Control;

Finally we set the timer in motion by calling the procedure
Set_Handler which takes the timer, the time value and (an
access to) the protected procedure thus

Set_Handler(My_Timer, Time_Max, Control.Alarm'Access);

and then when the CPU time of the task reaches Time_Max,
the protected procedure Control.Alarm is executed. Note
how the timer object incorporates the information regarding
the task concerned using an access discriminant T and that
this is passed to the handler via its parameter TM.

Aborting the task is perhaps a little violent. Another
possibility is simply to reduce its priority so that it is no
longer troublesome, thus

 -- cool that task
 Set_Priority(Priority'First, TM.T.all);

Another version of Set_Handler enables the timer to be set
for a given interval (of type Time_Span).

The handler associated with a timer can be found by calling
the function Current_Handler. This returns null if the timer
is not set in which case we say that the timer is clear.

When the timer expires, and just before calling the
protected procedure, the timer is set to the clear state. One
possible action of the handler, having perhaps made a note
of the expiration of the timer, it to set the handler again or
perhaps another handler. So we might have

protected body Control is
 procedure Alarm(TM: in out Timer) is
 begin
 Log_Overflow(TM); -- note that timer had expired
 -- and then reset it for another 500 milliseconds
 Set_Handler(TM, Milliseconds(500), Kill'Access);
 end Alarm;

 procedure Kill(TM: in out Timer) is
 begin
 -- expired again so kill it
 Abort_Task(TM.T.all);
 end Kill;
end Control;

In this scenario we make a note of the fact that the task has
overrun and then give it another 500 milliseconds but with
the handler Control.Kill so that the second time is the last
chance.

Setting the value of 500 milliseconds directly in the call is a
bit crude. It might be better to parameterize the protected
type thus

protected type Control(MS: Integer) is ...
...
My_Control: Control(500);

and then the call of Set_Handler in the protected procedure
Alarm would be

Set_Handler(TM, Milliseconds(MS), Kill'Access);

Observe that overload resolution neatly distinguishes
whether we are calling Set_Handler with an absolute time
or a relative time.

The procedure Cancel_Handler can be used to clear a timer.
The out parameter Cancelled is set to True if the timer was
in fact set and False if it was clear. The function

John Barnes 193

Ada User Journal Volume 26, Number 3, September 2005

Time_Remaining returns Time_Span_Zero if the timer is
not set and otherwise the time remaining.

Note also the constant Min_Handler_Ceiling. This is the
minimum ceiling priority that the protected procedure
should have to ensure that ceiling violation cannot occur.

This timer facility might be implemented on top of a
POSIX system. There might be a limit on the number of
timers that can be supported and an attempt to exceed this
limit will raise Timer_Resource_Error.

We conclude by summarizing the general principles. A
timer can be set or clear. If it is set then it has an associated
(non-null) handler which will be called after the appropriate
time. The key subprograms are Set_Handler,
Cancel_Handler and Current_Handler. The protected
procedure has a parameter which identifies the event for
which it has been called. The same protected procedure can
be the handler for many events. The same general structure
applies to other kinds of timers which will now be
described.

In order to program various so-called aperiodic servers it is
necessary for tasks to share a CPU budget.

This can be done using the child package
Ada.Execution_Time.Group_Budgets whose specification is

with System; use System;
package Ada.Execution_Time.Group_Budgets is

 type Group_Budget is tagged limited private;
 type Group_Budget_Handler is access
 protected procedure (GB: in out Group_Budget);

 type Task_Array is array (Positive range <>) of
 Task_Id;

 Min_Handler_Ceiling: constant Any_Priority :=
 implementation-defined;

 procedure Add_Task(GB: in out Group_Budget;
 T: in Task_Id);
 procedure Remove_Task(GB: in out Group_Budget;
 T: in Task_Id);
 function Is_Member(GB: Group_Budget; T: Task_Id)
 return Boolean;
 function Is_A_Group_Member(T: Task_Id)
 return Boolean;
 function Members(GB: Group_Budget)
 return Task_Array;

 procedure Replenish(GB: in out Group_Budget;
 To: in Time_Span);
 procedure Add(GB: in out Group_Budget;
 Interval: in Time_Span);

 function Budget_Has_Expired(GB: Group_Budget)
 return Boolean;
 function Budget_Remaining(GB: Group_Budget)
 return Time_Span;

 procedure Set_Handler(GB: in out Group_Budget;
 Handler: in Group_Budget_Handler);
 function Current_Handler(GB: Group_Budget)

 return Group_Budget_Handler;
 procedure Cancel_Handler(GB: in out Group_Budget;
 Cancelled: out Boolean);

 Group_Budget_Error: exception;

private
 ... -- not specified by the language
end Ada.Execution_Time.Group_Budgets;

This has much in common with its sibling package Timers
but there are a number of important differences.

The first difference is that we are here considering a CPU
budget shared among several tasks. The type
Group_Budget both identifies the group of tasks it covers
and the size of the budget.

Various subprograms enable tasks in a group to be
manipulated. The procedures Add_Task and Remove_Task
add or remove a task. The function Is_Member identifies
whether a task belongs to a specific group whereas
Is_A_Group_Member identifies whether a task belongs to
any group. A task cannot be a member of more than one
group. An attempt to add a task to more than one group or
remove it from the wrong group and so on raises
Group_Budget_Error. Finally the function Members returns
all the members of a group as an array.

The value of the budget (initially Time_Span_Zero) can be
loaded by the procedure Replenish and increased by the
procedure Add. Whenever a budget is non-zero it is counted
down as the tasks in the group execute and so consume
CPU time. Whenever a budget goes to Time_Span_Zero it
is said to have become exhausted and is not reduced
further. Note that Add with a negative argument can reduce
a budget – it can even cause it to become exhausted but not
make it negative.

The function Budget_Remaining simply returns the amount
left and Budget_Has_Expired returns True if the budget is
exhausted and so has value Time_Span_Zero.

Whenever a budget becomes exhausted (that is when the
value transitions to zero) a hander is called if one has been
set. A handler is a protected procedure as before and
procedures Set_Handler, Cancel_Handler, and function
Current_Handler are much as expected. But a major
difference is that Set_Handler does not set the time value of
the budget since that is done by Replenish and Add. The
setting of the budget and the setting of the handler are
decoupled in this package. Indeed a handler can be set even
though the budget is exhausted and the budget can be
counting down even though no handler is set. The reason
for the different approach simply reflects the usage
paradigm for the feature.

So we could set up a mechanism to monitor the CPU time
usage of a group of three tasks TA, TB, and TC by first
declaring an object of type Group_Budget, adding the three
tasks to the group and then setting an appropriate handler.
Finally we call Replenish which sets the counting
mechanism going. So we might write

194 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

ABC: Group_Budget;
...
Add_Task(ABC, TA'Identity);
Add_Task(ABC, TB'Identity);
Add_Task(ABC, TC'Identity);

Set_Handler(ABC, Control.Monitor'Access);
Replenish(ABC, Seconds(10));

Remember that functions Seconds and Minutes have been
added to the package Ada.Real_Time.

The protected procedure might be

protected body Control is
 procedure Monitor(GB: in out Group_Budget) is
 begin
 Log_Budget;
 Add(GB, Seconds(10)); -- add more time
 end Monitor;
end Control;

The procedure Monitor logs the fact that the budget was
exhausted and then adds a further 10 seconds to it.
Remember that the handler remains set all the time in the
case of group budgets whereas in the case of the single task
timers it automatically becomes cleared and has to be set
again if required.

If a task terminates then it is removed from the group as
part of the finalization process.

Note that again there is the constant Min_Handler_Ceiling.

The final kind of timer concerns real time rather than CPU
time and so is provided by a child package of
Ada.Real_Time whereas the timers we have seen so far
were provided by child packages of Ada.Execution_Time.
The specification of the package Ada.Real_Time.Timing_
Events is

package Ada.Real_Time.Timing_Events is

 type Timing_Event is tagged limited private;
 type Timing_Event_Handler is access
 protected procedure (Event: in out Timing_Event);

 procedure Set_Handler(Event: in out Timing_Event;
 At_Time: Time; Handler: Timing_Event_Handler);

 procedure Set_Handler(Event: in out Timing_Event;
 In_Time: Time_Span; Handler: Timing_Event_Handler);

 function Is_Handler_Set(Event: Timing_Event)
 return Boolean;

 function Current_Handler(Event: Timing_Event)
 return Timing_Event_Handler;

 procedure Cancel_Handler(Event: in out Timing_Event;
 Cancelled: out Boolean);

 function Time_Of_Event(Event: Timing_Event)
 return Time;

private
 ... -- not specified by the language
end Ada.Real_Time.Timing_Events;

This package provides a very low level facility and does
not involve Ada tasks at all. It has a very similar pattern to
the package Execution_Time.Timers. A handler can be set
by Set_Handler and again there are two versions one for a
relative time and one for absolute time. There are also
subprograms Current_Handler and Cancel_Handler. If no
handler is set then Current_Handler returns null.

Set_Handler also specifies the protected procedure to be
called when the time is reached. Times are of course
specified using the type Real_Time rather than CPU_Time.

A minor difference is that this package has a function
Time_Of_Event rather than Time_Remaining.

A simple example was given in the introductory paper. We
repeat it here for convenience. The idea is that we wish to
ring a pinger when our egg is boiled after four minutes. The
protected procedure might be

protected body Egg is
 procedure Is_Done(Event: in out Timing_Event) is
 begin
 Ring_The_Pinger;
 end Is_Done;
end Egg;

and then

Egg_Done: Timing_Event;
Four_Min: Time_Span := Minutes(4);
...
Put_Egg_In_Water;
Set_Handler(Event => Egg_Done, In_Time => Four_Min,
 Handler => Egg.Is_Done'Access);
-- now read newspaper whilst waiting for egg

This is unreliable because if we are interrupted between the
calls of Put_Egg_In_Water and Set_Handler then the egg
will be boiled for too long. We can overcome this by
adding a further procedure to the protected object so that it
becomes

protected Egg is
 procedure Boil(For_Time: in Time_Span);
 procedure Is_Done(Event: in out Timing_Event);
end Egg;

protected body Egg is

 Egg_Done: Timing_Event;

 procedure Boil (For_Time: in Time_Span) is
 begin
 Put_Egg_In_Water;
 Set_Handler(Egg_Done, For_Time, Is_Done'Access);
 end Boil;

 procedure Is_Done (Event: in out Timing_Event) is
 begin
 Ring_The_Pinger;
 end Is_Done;
end Egg;

This is much better. The timing mechanism is now
completely encapsulated in the protected object and the

John Barnes 195

Ada User Journal Volume 26, Number 3, September 2005

procedure Is_Done is no longer visible outside. So all we
have to do is

Egg.Boil(Minutes(4));
-- now read newspaper whilst waiting for egg

Of course if the telephone rings as the pinger goes off and
before we have a chance to eat the egg then it still gets
overdone. One solution is to eat the egg within the
protected procedure Is_Done as well. A gentleman would
never let a telephone call disturb his breakfast.

One protected procedure could be used to respond to
several events. In the case of the CPU timer the
discriminant of the parameter identifies the task; in the case
of the group and real-time timers, the parameter identifies
the event.

If we want to use the same timer for several events then
various techniques are possible. Note that the timers are
limited so we cannot test for them directly. However, they
are tagged and so can be extended. Moreover, we know that
they are passed by reference and that the parameters are
considered aliased.

Suppose we are boiling six eggs in one of those French
breakfast things with a different coloured holder for each
egg. We can write

type Colour is (Black, Blue, Red, Green, Yellow, Purple);

Eggs_Done: array (Colour) of aliased Timing_Event;

We can then set the handler for the egg in the red holder by
something like

Set_Handler(Eggs_Done(Red), For_Time, Is_Done'Access);

and then the protected procedure might be

procedure Is_Done(E: in out Timing_Event) is
begin
 for C in Colour loop
 if E'Access = Eggs_Done(C)'Access then
 -- egg in holder colour C is ready
 ...
 return;
 end if;
 end loop;
 -- falls out of loop – unknown event!
 raise Not_An_Egg ;
end Is_Done;

Although this does work it is more than a little distasteful
to compare access values in this way and moreover requires
a loop to see which event occurred.

A much better approach is to use type extension and view
conversions. First we extend the type Timing_Event to
include additional information about the event (in this case
the colour) so that we can identify the particular event from
within the handler

type Egg_Event is new Timing_Event with
 record
 Event_Colour: Colour;
 end record;

We then declare an array of these extended events (they
need not be aliased)

Eggs_Done: array (Colour) of Egg_Event;

We can now call Set_Handler for the egg in the red holder

Set_Handler(Eggs_Done(Red), For_Time, Is_Done'Access);

This is actually a call on the Set_Handler for the type
Egg_Event inherited from Timing_Event. But it is the same
code anyway.

Remember that values of tagged types are always passed by
reference. This means that from within the procedure
Is_Done we can recover the underlying type and so
discover the information in the extension. This is done by
using view conversions.

In fact we have to use two view conversions, first we
convert to the class wide type Timing_Event'Class and then
to the specific type Egg_Event. And then we can select the
component Event_Colour. In fact we can do these
operations in one statement thus

procedure Is_Done(E: in out Timing_Event) is
 C: constant Colour :=
 Egg_Event(Timing_Event'Class(E)).Event_Colour;
begin
 -- egg in holder colour C is ready
 ...
end Is_Done;

Note that there is a check on the conversion from the class
wide type Timing_Event'Class to the specific type
Egg_Event to ensure that the object passed as parameter is
indeed of the type Egg_Event (or a further extension of it).
If this fails then Tag_Error is raised. In order to avoid this
possibility we can use a membership test. For example

procedure Is_Done(E: in out Timing_Event) is
 C: Colour;
begin
 if Timing_Event'Class(E) in Egg_Event then
 C :=
 Egg_Event(Timing_Event'Class(E)).Event_Colour;
 -- egg in holder colour C is ready
 ...
 else
 -- unknown event – not an egg event!
 raise Not_An_Egg;
 end if;
end Is_Done;

The membership test ensures that the event is of the
specific type Egg_Event. We could avoid the double
conversion to the class wide type by introducing an
intermediate variable.

It is important to appreciate that no dispatching is involved
in these operations at all – everything is static apart from
the membership test.

Of course, it would have been a little more flexible if the
various subprograms took a parameter of type
Timing_Event'Class but this would have conflicted with the

196 Rat ionale for Ada 2005: 4 Tasking and Real-Time

Volume 26, Number 3, September 2005 Ada User Journal

Restrictions identifier No_Dispatch. Note that Ravenscar
itself does not impose No_Dispatch but the restriction is in
the High-Integrity annex and thus might be imposed on
some high-integrity applications which might nevertheless
wish to use timers in a simple manner.

A few minor points of difference between the timers are
worth summarizing.

The two CPU timers have a constant Min_Handler_Ceiling.
This prevents ceiling violation. It is not necessary for the
real-time timer because the call of the protected procedure
is treated like an interrupt and thus is at interrupt ceiling
level.

The group budget timer and the real-time timer do not have
an exception corresponding to Timer_Resource_Error for
the single task CPU timer. As mentioned above, it is
anticipated that the single timer might be implemented on
top of a POSIX system in which case there might be a limit
to the number of timers especially since each task could be
using several timers. In the group case, a task can only be
in one group so the number of group timers is necessarily
less than the number of tasks and no limit is likely to be
exceeded. In the real-time case the events are simply placed
on the delay queue and no other resources are required
anyway.

It should also be noted that the group timer could be used to
monitor the execution time of a single task. However, a
task can only be in one group and so only one timer could
be applied to a task that way whereas, as just mentioned,
the single CPU timer is quite different since a given task
could have several timers set for it to expire at different
times. Thus both kinds of timers have their own distinct
usage patterns.

7 High-Integrity Systems Annex
There are a few changes to this annex. The most noticeable
is that its title has been changed from Safety and Security
to High-Integrity Systems. This reflects common practice
in that high-integrity is now the accepted general term for
systems such as safety-critical systems and security-critical
systems.

There are some small changes to reflect the introduction of
the Ravenscar profile. It is clarified that tasking is
permitted in a high-integrity system provided that it is well
controlled through, for example, the use of the Ravenscar
profile.

A new pragma Partition_Elaboration_Policy is introduced.
Its syntax is

pragma Partition_Elaboration_Policy(policy_identifier);

Two policy identifiers are predefined, namely, Concurrent
and Sequential. The pragma is a configuration pragma and
so applies throughout a partition. The default policy is
Concurrent.

The normal behaviour in Ada when a program starts is that
a task declared at library level is activated by the
environment task and can begin to execute before all
library level elaboration is completed and before the main
subprogram is called by the environment task. Race
conditions can arise especially when several library tasks
are involved. Problems also arise with the attachment of
interrupt handlers.

If the policy Sequential is specified then the rules are
changed. The following things happen in sequence

▪ The elaboration of all library units takes place (this is
done by the environment task) but library tasks are not
activated (we say their activation is deferred). Similarly
the attachment of interrupt handlers is deferred.

▪ The environment task then attaches the interrupts.

▪ The library tasks are then activated. While this is
happening the environment task is suspended.

▪ Finally, the environment task then executes the main
subprogram in parallel with the executing tasks.

Note that from the library tasks' point of view they go
seamlessly from activation to execution. Moreover, they
are assured that all library units will have been elaborated
and all handlers attached before they execute.

If Sequential is specified then

pragma Restrictions(No_Task_Hierarchy);

must also be specified. This ensures that all tasks are at
library level.

A final small point is that the Restrictions identifiers
No_Unchecked_Conversion and No_Unchecked_Deallocation
are now banished to Annex J because No_Dependence can
be used instead.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] ISO/IEC TR 24718:2004 (2004) Guide for the use of
the Ada Ravenscar Profile in high integrity systems.
This is based on University of York Technical Report
YCS-2003-348 (2003).

[3] J. G. P. Barnes (1998) Programming in Ada 95, 2nd
ed., Addison-Wesley.

[4] A. Burns and A. Wellings (2006) Concurrent and
Real-Time Programming In Ada 2005, Cambridge
University Press.

© 2005 John Barnes Informatics.

198

Volume 26, Number 3, September 2005 Ada User Journal

Rationale for Ada 2005: 5 Exceptions, generics etc
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes various improvements in a
number of general areas in Ada 2005.
There are some minor almost cosmetic improvements
in the exceptions area which add to convenience
rather than functionality. There are some important
changes in the numerics area: one concerns mixing
signed and unsigned integers and another concerns
fixed point multiplication and division.
There are also a number of additional pragmas and
Restrictions identifiers mostly of a safety-related
nature.
Finally there are a number of improvements in the
generics area such as better control of partial
parameters of formal packages.
Keywords: rationale, Ada 2005.

1 Overview of changes
The areas mentioned in this paper are not specifically
mentioned in the WG9 guidance document [1] other than
under the request to remedy shortcomings and improve
interfacing.

The following Ada Issues cover the relevant changes and
are described in detail in this paper.

161 Preelaborable initialization

216 Unchecked unions – variants without discriminant

224 pragma Unsuppress

241 Testing for null occurrence

251 Abstract interfaces to provide multiple inheritance

257 Restrictions for implementation defined entities

260 Abstract formal subprograms & dispatching constructors

267 Fast float to integer conversion

286 Assert pragma

317 Partial parameter lists for formal packages

329 pragma No_Return – procedures that never return

340 Mod attribute

361 Raise with message

364 Fixed point multiply and divide

368 Restrictions for obsolescent features

381 New Restrictions identifier – No_Dependence

394 Redundant Restrictions identifiers and Ravenscar

398 Parameters of formal packages given at most once

400 Wide and wide-wide images

414 pragma No_Return for overriding procedures

417 Lower bound of functions in Ada.Exceptions etc

419 Limitedness of derived types

420 Resolution of universal operations in Standard

423 Renaming, null exclusion and formal objects

These changes can be grouped as follows.

First there are some minor changes to exception handling.
There are neater means for testing for null occurrence and
raising an exception with a message (241, 361) and also
wide and wide-wide versions of some procedures (400,
417).

The numerics area has a number of small but important
changes. They are the introduction of an attribute Mod to
aid conversion between signed and unsigned integers (340);
changes to the rules for fixed point multiplication and
division which permit user-defined operations (364, 420);
and an attribute Machine_Rounding which can be used to
aid fast conversions from floating to integer types (267).

A number of new pragmas and Restrictions identifiers have
been added. These generally make for more reliable
programming. The pragmas are: Assert, No_Return,
Preelaborable_Initialization, Unchecked_Union, and
Unsuppress (161, 216, 224, 286, 329, 414). The restrictions
identifiers are No_Dependence, No_Implementation_
Pragmas, No_Implementation_Restrictions, and No_
Obsolescent_Features (257, 368, 381). Note that there are
also other new pragmas and new restrictions identifiers
concerned with tasking as described in the previous paper.
However, the introduction of No_Dependence means that
the identifiers No_Asynchronous_Control, No_Unchecked_
Conversion and No_Unchecked_Deallocation are now
obsolescent (394).

Finally there are changes in generic units. There are
changes in generic parameters which are consequences of
changes in other areas such as the introduction of interfaces
and dispatching constructors as described in the paper on
the object oriented model (parts of 251 and 260); there are
also changes to formal access and derived types (419, 423).
Also, it is now possible to give just some parameters of a
formal package in the generic formal part (317, 398).

John Barnes 199

Ada User Journal Volume 26, Number 3, September 2005

2 Exceptions
There are two minor improvements in this area.

One concerns the detection of a null exception occurrence
which might be useful in a routine for analysing a log of
exceptions. This is tricky because although a constant
Null_Occurrence is declared in the package Ada.Exceptions,
the type Exception_Occurrence is limited and no equality is
provided. So the obvious test cannot be performed.

We can however apply the function Exception_Identity to a
value of the type Exception_Occurrence and this returns the
corresponding Exception_Id. Thus we could check to see
whether a particular occurrence X was caused by
Program_Error by writing

if Exception_Identity(X) = Program_Error'Identity then

However, in Ada 95, applying Exception_Identity to the
value Null_Occurrence raises Constraint_Error so we have
to resort to a revolting trick such as declaring a function as
follows

function Is_Null_Occurrence(X: Exception_Occurrence)
 return Boolean is
 Id: Exception_Id;
begin
 Id := Exception_Identity(X);
 return False;
exception
 when Constraint_Error => return True;
end Is_Null_Occurrence;

We can now write some general analysis routine as

procedure Process_Ex(X: in Exception_Occurrence) is
begin
 if Is_Null_Occurrence(X) then -- OK in Ada 95
 -- process the case of a null occurrence
 else
 -- process proper occurrences
 end if;
end Process_Ex;

But the detection of Constraint_Error in Is_Null_Occurrence
is clearly bad practice since it would be all too easy to mask
some other error by mistake. Accordingly, in Ada 2005, the
behaviour of Exception_Identity is changed to return Null_Id
when applied to Null_Occurrence. So we can now dispense
with the dodgy function Is_Null_Occurrence and just write

procedure Process_Ex(X: in Exception_Occurrence) is
begin
 if Exception_Identity(X) = Null_Id then -- OK in 2005
 -- process the case of a null occurrence
 else
 -- process proper occurrences
 end if;
end Process_Ex;

Beware that, technically, we now have an incompatibility
between Ada 95 and Ada 2005 since the nasty function
Is_Null_Occurrence will always return False in Ada 2005.

Observe that Constraint_Error is also raised if any of the
three functions Exception_Name, Exception_Message, or
Exception_Information are applied to the value
Null_Occurrence so the similar behaviour with
Exception_Identity in Ada 95 is perhaps understandable at
first sight. However, it is believed that it was not the
intention of the language designers but got in by mistake.
Actually the change described here was originally classified
as a correction to Ada 95 but later reclassified as an
amendment in order to draw more attention to it because of
the potential incompatibility.

The other change in the exception area concerns the raise
statement. It is now possible (optionally of course) to
supply a message thus

raise An_Error with "A message";

This is purely for convenience and is identical to writing

Raise_Exception(An_Error'Identity, "A message");

There is no change to the form of raise statement without
an exception which simply reraises an existing occurrence.

Note the difference between

raise An_Error; -- message is implementation defined

and

raise An_Error with ""; -- message is null

In the first case a subsequent call of Exception_Message
returns implementation defined information about the error
whereas in the second case it simply returns the given
message which in this example is a null string.

Some minor changes to the procedure Raise_Exception are
mentioned in Section 4 below.

There are also additional functions in the package
Ada.Exceptions to return the name of an exception as a
Wide_String or Wide_Wide_String. They have identifiers
Wide_Exception_Name and Wide_Wide_Exception_Name
and are overloaded to take a parameter of type Exception_Id
or Exception_Occurrence. The lower bound of the strings
returned by these functions and by the existing functions
Exception_Name, Exception_Message and Exception_
Information is 1 (Ada 95 forgot to state this for the existing
functions). The reader will recall that similar additional
functions (and forgetfulness) in the package Ada.Tags were
mentioned in the paper on the object oriented model.

3 Numerics
Although Ada 95 introduced unsigned integer types in the
form of modular types, nevertheless, the strong typing rules
of Ada have not made it easy to get unsigned and signed
integers to work together. The following discussion using
Ada 95 is based on that in AI-340.

Suppose we wish to implement a simulation of a typical
machine which has addresses and offsets. We make it a
generic

200 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

generic
 type Address_Type is mod <>;
 type Offset_Type is range <>;
 ...
package Simulator is
 function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type;
 ...
end Simulator;

Addresses are represented as unsigned integers (a modular
type), whereas offsets are signed integers. The function
Calc_Address aims to add an offset to a base address and
return an address. The offset could be negative.

Naïvely we might hope to write

function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type is
begin
 return Base_Add + Offset; -- illegal
end Calc_Address;

but this is plainly illegal because Base_Add and Offset are
of different types.

We can try a type conversion thus

return Base_Add + Address_Type(Offset);

or perhaps, since Address_Type might have a constraint,

return Base_Add + Address_Type'Base(Offset);

but in any case the conversion is doomed to raise
Constraint_Error if Offset is negative.

We then try to be clever and write

return Base_Add + Address_Type'Base(Offset mod
 Offset_Type'Base(Address_Type'Modulus));

but this raises Constraint_Error if Address_Type'Modulus >
Offset_Type'Base'Last which it often will be. To see this
consider for example a 32-bit machine with

type Offset_Type is range –(2**31) .. 2**31–1;
type Address_Type is mod 2**32;

in which case Address_Type'Modulus is 2**32 which is
greater than Offset_Type'Base'Last which is 2**31–1.

So we try an explicit test for a negative offset

if Offset >= 0 then
 return Base_Add + Address_Type'Base(Offset);
else
 return Base_Add - Address_Type'Base(–Offset);
end if;

But if Address_Type'Base'Last < Offset_Type'Last then this
will raise Constraint_Error for some values of Offset.
Unlikely perhaps but this is a generic and so ought to work
for all possible pairs of types.

If we attempt to overcome this then we run into problems in
trying to compare these two values since they are of
different types and converting one to the other can raise the
Constraint_Error problem once more. One solution is to use

a bigger type to do the test but this may not exist in some
implementations. We could of course handle the
Constraint_Error and then patch up the answer. The ruthless
programmer might even think of Unchecked_Conversion
but this has its own problems. And so on – 'tis a wearisome
tale.

The problem is neatly overcome in Ada 2005 by the
introduction of a new functional attribute

function S'Mod(Arg: universal_integer) return S'Base;

S'Mod applies to any modular subtype S and returns

Arg mod S'Modulus

In other words it converts a universal_integer value to the
modular type using the corresponding mathematical mod
operation. We can then happily write

function Calc_Address(Base_Add: Address_Type;
 Offset: Offset_Type) return Address_Type is
begin
 return Base_Add + Address_Type'Mod(Offset);
end Calc_Address;

and this always works.

The next topic in the numerics area concerns rounding. One
of the problems in the design of any programming language
is getting the correct balance between performance and
portability. This is particularly evident with numeric types
where the computer has to implement only a crude
approximation to the mathematician's integers and reals.
The best performance is achieved by using types and
operations that correspond exactly to the hardware. On the
other hand, perfect portability requires using types with
precisely identical characteristics on all implementations.

An interesting example of this problem arises with
conversions from a floating point type to an integer type
when the floating type value is midway between two
integer values.

In Ada 83 the rounding in the midway case was not
specified. This upset some people and so Ada 95 went the
other way and decreed that such rounding was always away
from zero. As well as this rule for conversion to integer
types, Ada 95 also introduced a functional attribute to
round a floating value. Thus for a subtype S of a floating
point type T we have

function S'Rounding(X: T) return T;

This returns the nearest integral value and for midway
values rounds away from zero.

Ada 95 also gives a bit more control for the benefit of the
statistically minded by introducing

function S'Unbiased_Rounding(X: T) return T;

This returns the nearest integral value and for midway
values rounds to the even value.

However, there are many applications where we don't care
which value we get but would prefer the code to be fast.
Implementers have reported problems with the elementary

John Barnes 201

Ada User Journal Volume 26, Number 3, September 2005

functions where table look-up is used to select a particular
polynomial expansion. Either polynomial will do just as
well when at the midpoint of some range. However on
some popular hardware such as the Pentium, doing the
exact rounding required by Ada 95 just wastes time and the
resulting function is perhaps 20% slower. This is serious in
any comparison with C.

This problem is overcome in Ada 2005 by the introduction
of a further attribute

function S'Machine_Rounding(X: T) return T;

This does not specify which of the adjacent integral values
is returned if X lies midway. Note that it is not
implementation defined but deliberately unspecified. This
should discourage users from depending upon the
behaviour on a particular implementation and thus writing
non-portable code.

Zerophiles will be pleased to note that if S'Signed_Zeros is
true and the answer is zero then it has the same sign as X.

It should be noted that Machine_Rounding, like the other
rounding functions, returns a value of the floating point
type and not perhaps universal integer as might be
expected. So it will typically be used in a context such as

X: Some_Float;
Index: Integer;
...
Index := Integer(Some_Float'Machine_Rounding(X));
... -- now use Index for table look-up

Implementations are urged to detect this case in order to
generate fast code.

The third improvement to the core language in the numerics
area concerns fixed point arithmetic. This is a topic that
concerns few people but those who do use it probably feel
passionately about it.

The trouble with floating point is that it is rather machine
dependent and of course integers are just integers. Many
application areas have used some form of scaled integers
for many decades and the Ada fixed point facility is
important in certain applications where rigorous error
analysis is desirable.

The model of fixed point was changed somewhat from Ada
83 to Ada 95. One change was that the concepts of model
and safe numbers were replaced by a much simpler model
just based on the multiples of the number small. Thus
consider the type

Del: constant := 2.0**(–15);
type Frac is delta Del range –1.0 .. 1.0;

In Ada 83 small was defined to be the largest power of 2
not greater than Del, and in this case is indeed 2.0**(–15).
But in Ada 95, small can be chosen by the implementation
to be any power of 2 not greater than Del provided of
course that the full range of values is covered. In both
languages a representation clause can be used to specify
small and it need not be a power of 2.

A more far reaching change introduced in Ada 95 concerns
the introduction of operations on the type universal_fixed
and type conversion.

A minor problem in Ada 83 was that explicit type
conversion was required in places where it might have been
considered quite unnecessary. Thus supposing we have
variables F, G, H of the above type Frac, then in Ada 83 we
could not write

H := F * G; -- illegal in Ada 83

but had to use an explicit conversion

H := Frac(F * G); -- legal in Ada 83

In Ada 83, multiplication was defined between any two
fixed point types and produced a result of the type
universal_fixed and an explicit conversion was then
required to convert this to the type Frac.

This explicit conversion was considered to be a nuisance so
the rule was changed in Ada 95 to say that multiplication
was only defined between universal_fixed operands and
delivered a universal_fixed result. Implicit conversions were
then allowed for both operands and result provided the type
resolution rules identified no ambiguity. So since the
expected type was Frac and no other interpretation was
possible, the implicit conversion was allowed and so in Ada
95 we can simply write

H := F * G; -- legal in Ada 95

Similar rules apply to division in both Ada 83 and Ada 95.

Note however that

F := F * G * H; -- illegal

is illegal in Ada 95 because of the existence of the
pervasive type Duration defined in Standard. The
intermediate result could be either Frac or Duration. So we
have to add an explicit conversion somewhere.

One of the great things about Ada is the ability to define
your own operations. And in Ada 83 many programmers
wrote their own arithmetic operations for fixed point. These
might be saturation operations in which the result is not
allowed to overflow but just takes the extreme implemented
value. Such operations often match the behaviour of some
external device. So we might declare

function "*"(Left, Right: Frac) return Frac is
begin
 return Standard."*"(Left, Right);
exception
 when Constraint_Error =>
 if (Left>0.0 and Right>0.0) or
 (Left<0.0 and Right<0.0) then
 return Frac'Last;
 else
 return Frac'First;
 end if;
end "*";

and similar functions for addition, subtraction, and division
(taking due care over division by zero and so on). This

202 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

works fine in Ada 83 and all calculations can now use the
new operations rather than the predefined ones in a natural
manner.

Note however that

H := Frac(F * G);

is now ambiguous in Ada 83 since both our own new "*"
and the predefined "*" are possible interpretations.
However, if we simply write the more natural

H := F * G;

then there is no ambiguity. So we can program in Ada 83
without the explicit conversion.

However, in Ada 95 we run into a problem when we
introduce our own operations since

H := F * G;

is ambiguous because both the predefined operation and
our own operation are possible interpretations of "*" in this
context. There is no cure for this in Ada 95 except for
changing our own multiplying operations to be procedures
with identifiers such as mul and div. This is a very tedious
chore and prone to errors.

It has been reported that because of this difficulty many
projects using fixed point have not moved from Ada 83 to
Ada 95.

This problem is solved in Ada 2005 by changing the name
resolution rules to forbid the use of the predefined
multiplication (division) operation if there is a user-defined
primitive multiplication (division) operation for either
operand type unless there is an explicit conversion on the
result or we write Standard."*" (or Standard."/").

This means that when there is no conversion as in

H := F * G;

then the predefined operation cannot apply if there is a
primitive user-defined "*" for one of the operand types. So
the ambiguity is resolved. Note that if there is a conversion
then it is still ambiguous as in Ada 83.

If we absolutely need to have a conversion then we can
always use a qualification as well or just instead. Thus we
can write

F := Frac'(F * G) * H;

and this will unambiguously use our own operation.

On the other hand if we truly want to use the predefined
operation then we can always write

H := Standard."*"(F, G);

Another example might be instructive. Suppose we declare
three types TL, TA, TV representing lengths, areas, and
volumes. We use centimetres as the basic unit with an
accuracy of 0.1 cm together with corresponding consistent
units and accuracies for areas and volumes. We might
declare

type TL is delta 0.1 range –100.0 .. 100.0;
type TA is delta 0.01 range –10_000.0 .. 10_000.0;
type TV is delta 0.001 range –1000_000.0 .. 1000_000.0;
for TL'Small use TL'Delta;
for TA'Small use TA'Delta;
for TV'Small use TV'Delta;

function "*"(Left: TL; Right: TL) return TA;
function "*"(Left: TL; Right: TA) return TV;
function "*"(Left: TA Right: TL) return TV;
function "/"(Left: TV; Right: TL) return TA;
function "/"(Left: TV; Right: TA) return TL;
function "/"(Left: TA; Right: TL) return TL;

XL, YL: TL;
XA, YA: TA;
XV, YV: TV;

These types have an explicit small equal to their delta and
are such that no scaling is required to implement the
appropriate multiplication and division operations. This
absence of scaling is not really relevant to the discussion
below but simply illustrates why we might have several
fixed point types and operations between them.

Note that all three types have primitive user-defined
multiplication and division operations even though in the
case of multiplication, TV only appears as a result type.
Thus the predefined multiplication or division with any of
these types as operands can only be considered if the result
has a type conversion.

As a consequence the following are legal

XV := XL * XA; -- OK, volume = length × area
XL := XV / XA; -- OK, length = volume ÷ area

but the following are not because they do not match the
user-defined operations

XV := XL * XL; -- no, volume ≠ length × length
XV := XL / XA; -- no, volume ≠ length ÷ area
XL := XL * XL; -- no, length ≠ length × length

But if we insist on multiplying two lengths together then
we can use an explicit conversion thus

XL := TL(XL * XL); -- legal, predefined operation

and this uses the predefined operation.

If we need to multiply three lengths to get a volume without
storing an intermediate area then we can write

XV := XL * XL * XL;

and this is unambiguous since there are no explicit
conversions and so the only relevant operations are those
we have declared.

It is interesting to compare this with the corresponding
solution using floating point where we would need to make
the unwanted predefined operations abstract as discussed in
an earlier paper.

It is hoped that the reader has not found this discussion to
be too protracted. Although fixed point is a somewhat
specialized area, it is important to those who find it useful

John Barnes 203

Ada User Journal Volume 26, Number 3, September 2005

and it is good to know that the problems with Ada 95 have
been resolved.

There are a number of other improvements in the numerics
area but these concern the Numerics annex and so will be
discussed in a later paper.

4 Pragmas and Restrictions
Ada 2005 introduces a number of new pragmas and
Restrictions identifiers. Many of these were described in the
previous paper when discussing tasking and the Real-Time
and High Integrity annexes. For convenience here is a
complete list giving the annex if appropriate.

The new pragmas are

Assert
Assertion_Policy
Detect_Blocking High-Integrity
No_Return
Preelaborable_Initialization
Profile Real-Time
Relative_Deadline Real-Time
Unchecked_Union Interface
Unsuppress

The new Restrictions identifiers are

Max_Entry_Queue_Length Real-Time
No_Dependence
No_Dynamic_Attachment Real-Time
No_Implementation_Attributes
No_Implementation_Pragmas
No_Local_Protected_Objects Real-Time
No_Obsolescent_Features
No_Protected_Type_Allocators Real-Time
No_Relative_Delay Real-Time
No_Requeue_Statements Real-Time
No_Select_Statements Real-Time
No_Synchronous_Control Real-Time
No_Task_Termination Real-Time
Simple_Barriers Real-Time

We will now discuss in detail the pragmas and Restrictions
identifiers in the core language and so not discussed in the
previous paper.

First there is the pragma Assert and the associated pragma
Assertion_Policy. Their syntax is as follows

pragma Assert([Check =>] boolean_expression
 [, [Message =>] string_expression]);

pragma Assertion_Policy(policy_identifier);

The first parameter of Assert is thus a boolean expression
and the second (and optional) parameter is a string.
Remember that when we write Boolean we mean of the
predefined type whereas boolean includes any type derived
from Boolean as well.

The parameter of Assertion_Policy is an identifier which
controls the behaviour of the pragma Assert. Two policies
are defined by the language, namely, Check and Ignore.
Further policies may be defined by the implementation.

There is also a package Ada.Assertions thus

package Ada.Assertions is
 pragma Pure(Assertions);

 Assertion_Error: exception;

 procedure Assert(Check: in Boolean);
 procedure Assert(Check: in Boolean;
 Message: in String);
end Ada.Assertions;

The pragma Assert can be used wherever a declaration or
statement is allowed. Thus it might occur in a list of
declarations such as

N: constant Integer := ... ;
pragma Assert(N > 1);
A: Real_Matrix(1 .. N, 1 .. N);
EV: Real_Vector(1 .. N);

and in a sequence of statements such as

pragma Assert(Transpose(A) = A, "A not symmetric");
EV := Eigenvalues(A);

If the policy set by Assertion_Policy is Check then the
above pragmas are equivalent to

if not N > 1 then
 raise Assertion_Error;
end if;

and

if not Transpose(A) = A then
 raise Assertion_Error with "A not symmetric";
end if;

Remember from Section 2 that a raise statement without
any explicit message is not the same as one with an explicit
null message. In the former case a subsequent call of
Exception_Message returns implementation defined
information whereas in the latter case it returns a null
string. This same behaviour thus occurs with the Assert
pragma as well – providing no message is not the same as
providing a null message.

If the policy set by Assertion_Policy is Ignore then the
Assert pragma is ignored at execution time – but of course
the syntax of the parameters is checked during compilation.

The two procedures Assert in the package Ada.Assertions
have an identical effect to the corresponding Assert
pragmas except that their behaviour does not depend upon
the assertion policy. Thus the call

Assert(Some_Test);

is always equivalent to

if not Some_Test then
 raise Assertion_Error;
end if;

In other words we could define the behaviour of

pragma Assert(Some_Test);

as equivalent to

204 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

if policy_identifier = Check then
 Assert(Some_Test); -- call of procedure Assert
end if;

Note again that there are two procedures Assert, one with
and one without the message parameter. These correspond
to raise statements with and without an explicit message.

The pragma Assertion_Policy is a configuration pragma and
controls the behaviour of Assert throughout the units to
which it applies. It is thus possible for different policies to
be in effect in different parts of a partition.

An implementation could define other policies such as
Assume which might mean that the compiler is free to do
optimizations based on the assumption that the boolean
expressions are true although there would be no code to
check that they were true. Careless use of such a policy
could lead to erroneous behaviour.

There was some concern that pragmas such as Assert might
be misunderstood to imply that static analysis was being
carried out. Thus in the SPARK language [2], the annotation

--# assert N /= 0

is indeed a static assertion and the appropriate tools can be
used to verify this.

However, other languages such as Eiffel have used assert
in a dynamic manner as now introduced into Ada 2005 and,
moreover, many implementations of Ada have already
provided a pragma Assert so it is expected that there will be
no confusion with its incorporation into the standard.

Another pragma with a related flavour is No_Return. This
can be applied to a procedure (not to a function) and asserts
that the procedure never returns in the normal sense.
Control can leave the procedure only by the propagation of
an exception or it might loop forever (which is common
among certain real-time programs). The syntax is

pragma No_Return(procedure_local_name
 {, procedure_local_name});

Thus we might have a procedure Fatal_Error which outputs
some message and then propagates an exception which can
be handled in the main subprogram. For example

procedure Fatal_Error(Msg: in String) is
 pragma No_Return(Fatal_Error);
begin
 Put_Line(Msg);
 ... -- other last wishes
 raise Death;
end Fatal_Error;
...

procedure Main is
 ...
 ...
 Put_Line("Program terminated successfully");
exception
 when Death =>
 Put_Line("Program terminated: known error");
 when others =>

 Put_Line("Program terminated: unknown error");
end Main;

There are two consequences of supplying a pragma
No_Return.

▪ The implementation checks at compile time that the
procedure concerned has no explicit return statements.
There is also a check at run time that it does not attempt
to run into the final end – Program_Error is raised if it
does as in the case of running into the end of a function.

▪ The implementation is able to assume that calls of the
procedure do not return and so various optimizations can
be made.

We might then have a call of Fatal_Error as in

function Pop return Symbol is
begin
 if Top = 0 then
 Fatal_Error("Stack empty"); -- never returns
 elsif
 Top := Top – 1;
 return S(Top+1);
 end if;
end Pop;

If No_Return applies to Fatal_Error then the compiler
should not compile a jump after the call of Fatal_Error and
should not produce a warning that control might run into
the final end of Pop.

The pragma No_Return now applies to the predefined
procedure Raise_Exception. To enable this to be possible
its behaviour with Null_Id has had to be changed. In Ada 95
writing

Raise_Exception(Null_Id, "Nothing");

does nothing at all (and so does return in that case) whereas
in Ada 2005 it is defined to raise Constraint_Error and so
now never returns.

We could restructure the procedure Fatal_Error to use
Raise_Exception thus

procedure Fatal_Error(Msg: in String) is
 pragma No_Return(Fatal_Error);
begin
 ... -- other last wishes
 Raise_Exception(Death'Identity, Msg);
end Fatal_Error;

Since pragma No_Return applies to Fatal_Error it is
important that we also know that Raise_Exception cannot
return.

The exception handler for Death in the main subprogram
can now use Exception_Message to print out the message.

Remember also from Section 2 above that we can now also
write

raise Death with Msg;

rather than call Raise_Exception.

John Barnes 205

Ada User Journal Volume 26, Number 3, September 2005

The pragma No_Return is a representation pragma. If a
subprogram has no distinct specification then the pragma
No_Return is placed inside the body (as shown above). If a
subprogram has a distinct specification then the pragma
must follow the specification in the same compilation or
declarative region. Thus one pragma No_Return could
apply to several subprograms declared in the same package
specification.

It is important that dispatching works correctly with
procedures that do not return. A non-returning dispatching
procedure can only be overridden by a non-returning
procedure and so the overriding procedure must also have
pragma No_Return thus

type T is tagged ...
procedure P(X: T; ...);
pragma No_Return(P);
...
type TT is new T with ...
overriding
procedure P(X: TT; ...);
pragma No_Return(P);

The reverse is not true of course. A procedure that does
return can be overridden by one that does not.

It is possible to give a pragma No_Return for an abstract
procedure, but obviously not for a null procedure. A
pragma No_Return can also be given for a generic
procedure. It then applies to all instances.

The next new pragma is Preelaborable_Initialization. The
syntax is

pragma Preelaborable_Initialization(direct_name);

This pragma concerns the categorization of library units
and is related to pragmas such as Pure and Preelaborate. It
is used with a private type and promises that the full type
given by the parameter will indeed have preelaborable
initialization. The details of its use will be explained in the
next paper.

Another new pragma is Unchecked_Union. The syntax is

pragma Unchecked_Union(first_subtype_local_name);

The parameter has to denote an unconstrained
discriminated record subtype with a variant part. The
purpose of the pragma is to permit interfacing to unions in
C. The following example was given in the Introduction

type Number(Kind: Precision) is
 record
 case Kind is
 when Single_Precision =>
 SP_Value: Long_Float;
 when Multiple_Precision =>
 MP_Value_Length: Integer;
 MP_Value_First: access Long_Float;
 end case;
 end record;

pragma Unchecked_Union(Number);

Specifying the pragma Unchecked_Union ensures the
following

▪ The representation of the type does not allow space for
any discriminants.

▪ There is an implicit suppression of Discriminant_Check.

▪ There is an implicit pragma Convention(C).

The above Ada text provides a mapping of the following C
union

union {
 double spvalue;
 struct {
 int length;
 double* first;
 } mpvalue;
} number;

The general idea is that the C programmer has created a
type which can be used to represent a floating point number
in one of two ways according to the precision required. One
way is just as a double length value (a single item) and the
other way is as a number of items considered juxtaposed to
create a multiple precision value. This latter is represented
as a structure consisting of an integer giving the number of
items followed by a pointer to the first of them. These two
different forms are the two alternatives of the union.

In the Ada mapping the choice of precision is governed by
the discriminant Kind which is of an enumeration type as
follows

type Precision is (Single_Precision, Multiple_Precision);

In the single precision case the component SP_Value of
type Long_Float maps onto the C component spvalue of
type double.

The multiple precision case is somewhat troublesome. The
Ada component MP_Value_Length maps onto the C
component length and the Ada component MP_Value_First
of type access Long_Float maps onto the C component first
of type *double.

In our Ada program we can declare a variable thus

X: Number(Multiple_Precision);

and we then obtain a value in X by calling some C
subprogram. We can then declare an array and map it onto
the C sequence of double length values thus

A: array (1 .. X.MP_Value_Length) of Long_Float;
for A'Address use X.MP_Value_First.all'Address;
pragma Import(C, A);

The elements of A are now the required values. Note that
we don't use an Ada array in the declaration of Number
because there might be problems with dope information.

The Ada type can also have a non-variant part preceding
the variant part and variant parts can be nested. It may have
several discriminants.

206 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

When an object of an unchecked union type is created,
values must be supplied for all its discriminants even
though they are not stored. This ensures that appropriate
default values can be supplied and that an aggregate
contains the correct components. However, since the
discriminants are not stored, they cannot be read. So we can
write

X: Number := (Single_Precision, 45.6);
Y: Number(Single_Precision);
...
Y.SP_Value := 55.7;

The variable Y is said to have an inferable discriminant
whereas X does not. Although it is clear that playing with
unchecked unions is potentially dangerous, nevertheless
Ada 2005 imposes certain rules that avoid some dangers.
One rule is that predefined equality can only be used on
operands with inferable discriminants; Program_Error is
raised otherwise. So

if Y = 55.8 then -- OK

if X = 45.5 then -- raises Program_Error

if X = Y then -- raises Program_Error

It is important to be aware that unchecked union types are
introduced in Ada 2005 for the sole purpose of interfacing
to C programs and not for living dangerously. Thus
consider

type T(Flag: Boolean := False) is
 record
 case Flag is
 when False =>
 F1: Float := 0.0;
 when True =>
 F2: Integer := 0;
 end case;
 end record;
pragma Unchecked_Union(T);

The type T can masquerade as either type Integer or Float.
But we should not use unchecked union types as an
alternative to unchecked conversion. Thus consider

X: T; -- Float by default
Y: Integer := X.F2; -- erroneous

The object X has discriminant False by default and thus has
the value zero of type Integer. In the absence of the pragma
Unchecked_Union, the attempt to read X.F2 would raise
Constraint_Error because of the discriminant check. The use
of Unchecked_Union suppresses the discriminant check and
so the assignment will occur. However, the ARM clearly
says (11.5(26)) that if a check is suppressed and the
corresponding error situation arises then the program is
erroneous.

However, assigning a Float value to an Integer object using
Unchecked_Conversion is not erroneous providing certain
conditions hold such as that Float'Size = Integer'Size.

The final pragma to be considered is Unsuppress. Its syntax
is

pragma Unsuppress(identifier);

The identifier is that of a check or perhaps All_Checks. The
pragma Unsuppress is essentially the opposite of the
existing pragma Suppress and can be used in the same
places with similar scoping rules.

Remember that pragma Suppress gives an implementation
the permission to omit the checks but it does not require
that the checks be omitted (they might be done by
hardware). The pragma Unsuppress simply revokes this
permission. One pragma can override the other in a nested
manner. If both are given in the same region then they
apply from the point where they are given and the later one
thus overrides.

A likely scenario would be that Suppress applies to a large
region of the program (perhaps all of it) and Unsuppress
applies to a smaller region within. The reverse would also
be possible but perhaps less likely.

Note that Unsuppress does not override the implicit
Suppress of Discriminant_Check provided by the pragma
Unchecked_Union just discussed.

A sensible application of Unsuppress would be in the fixed
point operations mentioned in Section 3 thus

function "*"(Left, Right: Frac) return Frac is
 pragma Unsuppress(Overflow_Check);
begin
 return Standard."*"(Left, Right);
exception
 when Constraint_Error =>
 if (Left>0.0 and Right>0.0) or
 (Left<0.0 and Right<0.0) then
 return Frac'Last;
 else
 return Frac'First;
 end if;
end "*";

The use of Unsuppress ensures that the overflow check is
not suppressed even if there is a global Suppress for the
whole program (or the user has switched checks off through
the compiler command line). So Constraint_Error will be
raised as necessary and the code will work correctly.

In Ada 95 the pragma Suppress has the syntax

pragma Suppress(identifier [, [On =>] name]); -- Ada 95

The second and optional parameter gives the name of the
entity to which the permission applies. There was never any
clear agreement on what this meant and implementations
varied. Accordingly, in Ada 2005 the second parameter is
banished to Annex J so that the syntax in the core language
is similar to Unsuppress thus

pragma Suppress(identifier); -- Ada 2005

For symmetry, Annex J actually allows an obsolete On
parameter for Unsuppress. It might seem curious that a
feature should be born obsolescent.

John Barnes 207

Ada User Journal Volume 26, Number 3, September 2005

A number of new Restrictions identifiers are added in Ada
2005. The first is No_Dependence whose syntax is

pragma Restrictions(No_Dependence => name);

This indicates that there is no dependence on a library unit
with the given name.

The name might be that of a predefined unit but it could in
fact be any unit. For example, it might be helpful to know
that there is no dependence on a particular implementation-
defined unit such as a package Superstring thus

pragma Restrictions(No_Dependence => Superstring);

Care needs to be taken to spell the name correctly; if we
write Supperstring by mistake then the compiler will not be
able to help us.

The introduction of No_Dependence means that the
existing Restrictions identifier No_Asynchronous_Control is
moved to Annex J since we can now write

pragma Restrictions(
 No_Dependence => Ada.Asynchronous_Task_Control);

Similarly, the identifiers No_Unchecked_Conversion and
No_Unchecked_Deallocation are also moved to Annex J.

Note that the identifier No_Dynamic_Attachment which
refers to the use of the subprograms in the package
Ada.Interrupts cannot be treated in this way because of the
child package Ada.Interrupts.Names. No dependence on
Ada.Interrupts would exclude the use of the child package
Names as well.

The restrictions identifier No_Dynamic_Priorities cannot be
treated this way either for a rather different reason. In Ada
2005 this identifier is extended so that it also excludes the
use of the attribute Priority and this would not be excluded
by just saying no dependence on Ada.Dynamic_Priorities.

Two further Restrictions identifiers are introduced to
encourage portability. We can write

pragma Restrictions(No_Implementation_Pragmas,
 No_Implementation_Attributes);

These do not apply to the whole partition but only to the
compilation or environment concerned. This helps us to
ensure that implementation dependent areas of a program
are identified.

The final new restrictions identifier similarly prevents us
from inadvertently using features in Annex J thus

pragma Restrictions(No_Obsolescent_Features);

Again this does not apply to the whole partition but only to
the compilation or environment concerned. (It is of course
not itself defined in Annex J.)

The reader will recall that in Ada 83 the predefined
packages had names such as Text_IO whereas in Ada 95
they are Ada.Text_IO and so on. In order to ease transition
from Ada 83, a number of renamings were declared in
Annex J such as

with Ada.Text_IO;
package Text_IO renames Ada.Text_IO;

A mild problem is that the user could write these renamings
anyway and we do not want the No_Obsolescent_Features
restriction to prevent this. Moreover, implementations
might actually implement the renamings in Annex J by just
compiling them and we don't want to force
implementations to use some trickery to permit the user to
do it but not the implementation. Accordingly, whether the
No_Obsolescent_Features restriction applies to these
renamings or not is implementation defined.

5 Generic units
There are a number of improvements in the area of generics
many of which have already been outlined in earlier papers.

A first point concerns access types. The introduction of
types that exclude null means that a formal access type
parameter can take the form

generic
 ...
 type A is not null access T;
 ...

The actual type corresponding to A must then itself be an
access type that excludes null. A similar rule applies in
reverse – if the formal parameter excludes null then the
actual parameter must also exclude null. If the two did not
match in this respect then all sorts of difficulties could
arise.

Similarly if the formal parameter is derived from an access
type

generic
 ...
 type FA is new A; -- A is an access type
 ...

then the actual type corresponding to FA must exclude null
if A excludes null and vice versa. Half of this rule is
automatically enforced since a type derived from a type that
excludes null will automatically exclude null. But the
reverse is not true as mentioned in an earlier paper when
discussing access types. If A has the declaration

type A is access all Integer; -- does not exclude null

then we can declare

type NA is new A; -- does not exclude null
type NNA is new not null A; -- does exclude null

and then NA matches the formal parameter FA in the above
generic but NNA does not.

There is also a change to formal derived types concerning
limitedness. In line with the changes described in the paper
on the object oriented model, the syntax now permits
limited to be stated explicitly thus

generic
 type T is limited new LT; -- untagged
 type TT is limited new TLT with private; -- tagged

208 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

However, this can be seen simply as a documentation aid
since the actual types corresponding to T and TT must be
derived from LT and TLT and so will be limited if LT and
TLT are limited anyway.

Objects of anonymous access types are now also allowed as
generic formal parameters so we can have

generic
 A: access T := null;
 AN: in out not null access T;
 F: access function (X: Float) return Float;
 FN: not null access function (X: Float) return Float;

If the subtype of the formal object excludes null (as in AN
and FN) then the actual must also exclude null but not vice
versa. This contrasts with the rule for formal access types
discussed above in which case both the formal type and
actual type have to exclude null or not. Note moreover that
object parameters of anonymous access types can have
mode in out.

If the subprogram profile itself has access parameters that
exclude null as in

generic
 PN: access procedure (AN: not null access T);

then the actual subprogram must also have access
parameters that exclude null and so on. The same rule
applies to named formal subprogram parameters. If we
have

generic
 with procedure P(AN: not null access T);
 with procedure Q(AN: access T);

then the actual corresponding to P must have a parameter
that excludes null but the actual corresponding to Q might
or might not. The rule is similar to renaming – "not null
must never lie". Remember that the matching of object and
subprogram generic parameters is defined in terms of
renaming. Here is an example to illustrate why the
asymmetry is important. Suppose we have

generic
 type T is private;
 with procedure P(Z: in T);
package G is

This can be matched by

type A is access ...;
procedure Q(Y: in not null A);
...
package NG is new G(T => A; P => Q);

Note that since the formal type T is not known to be an
access type in the generic declaration, there is no
mechanism for applying a null exclusion to it. Nevertheless
there is no reason why the instantiation should not be
permitted.

There are some other changes to existing named formal
subprogram parameters. The reader will recall from the
discussion on interfaces in an earlier paper that the concept

of null procedures has been added in Ada 2005. A null
procedure has no body but behaves as if it has a body
comprising a null statement. It is now possible to use a null
procedure as a possible form of default for a subprogram
parameter. Thus there are now three possible forms of
default as follows

with procedure P(...) is <>; -- OK in 95
with procedure Q(...) is Some_Proc; -- OK in 95
with procedure R(...) is null; -- only in 2005

So if we have

generic
 type T is (<>);
 with procedure R(X: in Integer; Y: in out T) is null;
package PP ...

then an instantiation omitting the parameter for R such as

package NPP is new PP(T => Colour);

is equivalent to providing an actual procedure AR thus

procedure AR(X: in Integer; Y: in out Colour) is
begin
 null;
end AR;

Note that the profile of the actual procedure is conjured up
to match the formal procedure.

Of course, there is no such thing as a null function and so
null is not permitted as the default for a formal function.

A new kind of subprogram parameter was introduced in
some detail when discussing object factory functions in the
paper on the object oriented model. This is the abstract
formal subprogram. The example given was the predefined
generic function Generic_Dispatching_Constructor thus

generic
 type T (<>) is abstract tagged limited private;
 type Parameters (<>) is limited private;
 with function Constructor(Params: access Parameters)
 return T is abstract;
function Ada.Tags.Generic_Dispatching_Constructor
 (The_Tag: Tag; Params: access Parameters)
 return T'Class;

The formal function Constructor is an example of an
abstract formal subprogram. Remember that the
interpretation is that the actual function must be a
dispatching operation of a tagged type uniquely identified
by the profile of the formal function. The actual operation
can be concrete or abstract. Formal abstract subprograms
can of course be procedures as well as functions. It is
important that there is exactly one controlling type in the
profile.

Formal abstract subprograms can have defaults in much the
same way that formal concrete subprograms can have
defaults. We write

with procedure P(X: in out T) is abstract <>;
with function F return T is abstract Unit;

John Barnes 209

Ada User Journal Volume 26, Number 3, September 2005

The first means of course that the default has to have
identifier P and the second means that the default is some
function Unit. It is not possible to give null as the default
for an abstract parameter for various reasons. Defaults will
probably be rarely used for abstract parameters.

The introduction of interfaces in Ada 2005 means that a
new class of generic parameters is possible. Thus we might
have

generic
 type F is interface;

The actual type could then be any interface. This is perhaps
unlikely.

If we wanted to ensure that a formal interface had certain
operations then we might first declare an interface A with
the required operations

type A is interface;
procedure Op1(X: A; ...) is abstract;
procedure N1(X: A; ...) is null;

and then

generic
 type F is interface and A;

and then the actual interface must be descended from A and
so have operations which match Op1 and N1.

A formal interface might specify several ancestors

generic
 type FAB is interface and A and B;

where A and B are themselves interfaces. And A and B or
just some of them might themselves be further formal
parameters as in

generic
 type A is interface;
 type FAB is interface and A and B;

These means that FAB must have both A and B as ancestors;
it could of course have other ancestors as well.

The syntax for formal tagged types is also changed to take
into account the possibility of interfaces. Thus we might
have

generic
 type NT is new T and A and B with private;

in which case the actual type must be descended both from
the tagged type T and the interfaces A and B. The parent
type T itself might be an interface or a normal tagged type.
Again some or all of T, A, and B might be earlier formal
parameters. Also we can explicitly state limited in which
case all of the ancestor types must also be limited.

An example of this sort of structure occurred when
discussing printable geometric objects in the paper on the
object oriented model. We had

generic
 type T is abstract tagged private;
package Make_Printable is

 type Printable_T is
 abstract new T and Printable with private;
 ...
end;

It might be that we have various interfaces all derived from
Printable which serve different purposes (perhaps for
different output devices, laser printer, card punch and so
on). We would then want the generic package to take any
of these interfaces thus

generic
 type T is abstract tagged private;
 type Any_Printable is interface and Printable;
package Make_Printable is
 type Printable_T is
 abstract new T and Any_Printable with private;
 ...
end;

A formal interface can also be marked as limited in which
case the actual interface must also be limited and vice
versa.

As discussed in the previous paper, interfaces can also be
synchronized, task, or protected. Thus we might have

generic
 type T is task interface;

and then the actual interface must itself be a task interface.
The correspondence must be exact. A formal synchronized
interface can only be matched by an actual synchronized
interface and so on. Remember from the discussion in the
previous paper that a task interface can be composed from a
synchronized interface. This flexibility does not extend to
matching actual and formal generic parameters.

Another small change concerns object parameters of
limited types. In Ada 95 the following is illegal

type LT is limited
 record
 A: Integer;
 B: Float;
 end record; -- a limited type

generic
 X: in LT; -- illegal in Ada 95
 ...
procedure P ...

It is illegal in Ada 95 because it is not possible to provide
an actual parameter. This is because the parameter
mechanism is one of initialization of the formal object
parameter by the actual and this is treated as assignment
and so is not permitted for limited types.

However, in Ada 2005, initialization of a limited object by
an aggregate is allowed since the value is created in situ as
discussed in an earlier paper. So an instantiation is possible
thus

procedure Q is new P(X => (A => 1, B => 2.0), ...);

210 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

Remember that an initial value can also be provided by a
function call and so the actual parameter could also be a
function call returning a limited type.

The final improvement to the generic parameter mechanism
concerns package parameters.

In Ada 95 package parameters take two forms. Given a
generic package Q with formal parameters F1, F2, F3, then
we can have

generic
 with package P is new Q(<>);

and then the actual package corresponding to the formal P
can be any instantiation of Q. Alternatively

generic
 with package R is new Q(P1, P2, P3);

and then the actual package corresponding to R must be an
instantiation of Q with the specified actual parameters P1,
P2, P3.

As mentioned in the Introduction, a simple example of the
use of these two forms occurs with the package
Generic_Complex_Arrays which takes instantiations of
Generic_Real_Arrays and Generic_Complex_Types which
in turn both have the underlying floating type as their single
parameter. It is vital that both packages use the same
floating point type and this is assured by writing

generic
 with package Real_Arrays is
 new Generic_Real_Arrays(<>);
 with package Complex_Types is
 new Generic_Complex_Types(Real_Arrays.Real);
package Generic_Complex_Arrays is ...

However, the mechanism does not work very well when
several parameters are involved as will now be illustrated
with some examples.

The first example concerns using the new container library
which will be discussed in some detail in the next paper.
There are generic packages such as

generic
 type Index_Type is range <>;
 type Element_Type is private:
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Vectors is ...

and

generic
 type Key_Type is private;
 type Element_Type is private:
 with function Hash(Key: Key_Type) return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
package Ada.Containers.Hashed_Maps is ...

We might wish to pass instantiations of both of these to
some other package with the proviso that both were
instantiated with the same Element_Type. Otherwise the
parameters can be unrelated.

It would be natural to make the vector package the first
parameter and give it the (<>) form. But we then find that in
Ada 95 we have to repeat all the parameters other than
Element_Type for the maps package. So we have

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 type Key_Type is private;
 with function Hash(Key: Key_Type) return Hash_Type;
 with function Equivalent_Keys(Left, Right: Key_Type)
 return Boolean;
 with function "=" (Left, Right: Element_Type)
 return Boolean is <>;
 with package HM is new Hashed_Maps(
 Key_Type => Key_Type,
 Element_Type => V.Element_Type,
 Hash => Hash,
 Equivalent_Keys => Equivalent_Keys,
 "=" => "=");
package HMV is ...

This is a nuisance since when we instantiate HMV we have
to provide all the parameters required by Hashed_Maps
even though we must already have instantiated it elsewhere
in the program. Suppose that instantiation was

package My_Hashed_Map is new Hashed_Maps
 (My_Key, Integer, Hash_It, Equiv, "=");

and suppose also that we have instantiated Vectors

package My_Vectors is new Vectors(Index, Integer, "=");

Now when we come to instantiate HMV we have to write

package My_HMV is new HMV(My_Vectors,
 My_Key, Hash_It, Equiv, "=", My_Hashed_Maps);

This is very annoying. Not only do we have to repeat all the
auxiliary parameters of Hashed_Maps but the situation
regarding Vectors and Hashed_Maps is artificially made
asymmetric. (Life would have been a bit easier if we had
made Hashed_Maps the first package parameter but that
just illustrates the asymmetry.) Of course we could more or
less overcome the asymmetry by passing all the parameters
of Vectors as well but then HMV would have even more
parameters. This rather defeats the point of package
parameters which were introduced into Ada 95 in order to
avoid the huge parameter lists that had occurred in Ada 83.

Ada 2005 overcomes this problem by permitting just some
of the actual parameters to be specified. Any omitted
parameters are indicated using the <> notation thus

generic
 with package S is new Q(P1, F2 => <>, F3 => <>);

In this case the actual package corresponding to S can be
any package which is an instantiation of Q where the first

John Barnes 211

Ada User Journal Volume 26, Number 3, September 2005

actual parameter is P1 but the other two parameters are left
unspecified. We can also abbreviate this to

generic
 with package S is new Q(P1, others => <>);

Note that the <> notation can only be used with named
parameters and also that (<>) is now considered to be a
shorthand for (others => <>).

As another example

generic
 with package S is
 new Q(F1 => <>, F2 => P2, F3 => <>);

means that the actual package corresponding to S can be
any package which is an instantiation of Q where the
second actual parameter is P2 but the other two parameters
are left unspecified. This can be abbreviated to

generic
 with package S is new Q(F2 => P2, others => <>);

Using this new notation, the package HMV can now simply
be written as

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 with package HM is new Hashed_Maps
 (Element_Type => V.Element_Type, others => <>);
package HMV is ...

and our instantiation of HMV becomes simply

package My_HMV is
 new HMV(My_Vectors, My_Hashed_Maps);

Some variations on this example are obviously possible.
For example it is likely that the instantiation of
Hashed_Maps must use the same definition of equality for
the type Element_Type as Vectors. We can ensure this by
writing

with ... ; use Ada.Containers;
generic
 with package V is new Vectors(<>);
 with package HM is new Hashed_Maps
 (Element_Type => V.Element_Type, "=" => V."=",
 others => <>);
package HMV is ...

Other examples might arise in the numerics area. Suppose
we have two independently written generic packages
Do_This and Do_That which both have a floating point type
parameter and several other parameters as well. For
example

generic
 type Real is digits <>;
 Accuracy: in Real;
 type Index is range <>;
 Max_Trials: in Index;
package Do_This is ...

generic
 type Floating is digits <>;
 Bounds: in Floating;
 Iterations: in Integer;
 Repeat: in Boolean;
package Do_That is ...

(This is typical of much numerical stuff. Authors are
cautious and unable to make firm decisions about many
aspects of their algorithms and therefore pass the buck back
to the user in the form of a turgid list of auxiliary
parameters.)

We now wish to write a package Super_Solver which takes
instantiations of both Do_This and Do_That with the
requirement that the floating type used for the instantiation
is the same in each case but otherwise the parameters are
unrelated. In Ada 95 we are again forced to repeat one set
of parameters thus

generic
 with package This is new Do_This(<>);
 S_Bounds: in This.Real;
 S_Iterations: in Integer;
 S_Repeat: in Boolean;
 with package That is new Do_That(This.Real,
 S_Bounds, S_Iterations, S_Repeat);
package Super_Solver is ...

And when we come to instantiate Super_Solver we have to
provide all the auxiliary parameters required by Do_That
even though we must already have instantiated it elsewhere
in the program. Suppose the instantiation was

package That_One is new Do_That(Float, 0.01, 7, False);

and suppose also that we have instantiated Do_This

package This_One is new Do_This(...);

Now when we instantiate Super_Solver we have to write

package SS is
new Super_Solver(This_One, 0.01, 7, False, That_One);

Just as with HMV we have all these duplicated parameters
and an artificial asymmetry between This and That.

In Ada 2005 the package Super_Solver can be written as

generic
 with package This is new Do_This(<>);
 with package That is new Do_That(This.Real,
 others => <>);
package Super_Solver is ...

and the instantiation of Super_Solver becomes simply

package SS is new Super_Solver(This_One, That_One);

Other examples occur with signature packages. Remember
that a signature package is one without a specification. It
can be used to ensure that a group of entities are related in
the correct way and an instantiation can then be used to
identify the group as a whole. A trivial example might be

generic
 type Index is (<>);

212 Rat ionale for Ada 2005: 5 Exceptions, Gener ics etc

Volume 26, Number 3, September 2005 Ada User Journal

 type item is private;
 type Vec is array (Index range <>) of Item;
package General_Vector is end;

An instantiation of General_Vector just asserts that the
three types concerned have the appropriate relationship.
Thus we might have

type My_Array is array (Integer range <>) of Float;

and then

package Vector is
 new General_Vector(Integer, Float, My_Array);

The package General_Vector could then be used as a
parameter of other packages thereby reducing the number
of parameters.

Another example might be the signature of a package for
manipulating sets. Thus

generic
 type Element is private;
 type Set is private;
 with function Empty return Set;
 with function Unit(E: Element) return Set;
 with function Union(S, T: Set) return Set;
 with function Intersection(S, T: Set) return Set;
 ...
package Set_Signature is end;

We might then have some other generic package which
takes an instantiation of this set signature. However, it is
likely that we would need to specify the type of the
elements but possibly not the set type and certainly not all
the operations. So typically we would have

generic
 type My_Element is private;
 with package Sets is new Set_Signature
 (Element => My_Element, others => <>);

An example of this technique occurred when considering
the possibility of including a system of units facility within
Ada 2005. Although it was considered not appropriate to
include it, the use of signature packages was almost
essential to make the mechanism usable. The interested
reader should consult AI-324.

We conclude by noting a small change to the syntax of a
subprogram instantiation in that an overriding indicator can
be supplied as mentioned in Section 7 of the paper on the
object oriented model. Thus (in appropriate circumstances)
we can write

overriding
procedure This is new That(...);

This means that the instantiation must be an overriding
operation for some type.

References
[5] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of the Amendment.

[2] J. G. P. Barnes (2003) High Integrity Software – The
SPARK Approach to Safety and Security, Addison-
Wesley.

© 2005 John Barnes Informatics.

214

Volume 26, Number 2, June 2005 Ada User Journal

Ada Bug Finder
Alan Marriott and Urs Maurer
White Elephant GmbH, Postfach 327, CH-8450 Andelfingen, Switzerland; email: ada@white-elephant.ch

Abstract
In the context of this paper, we consider bug patterns
to be sections of code that whilst syntactically correct
are unlikely to be what the author intended.
Everyone, even the most erudite programmers, make
dumb mistakes, often as a result of a particularly
inept piece of cut and paste editing or sometimes
simply by typing the exact opposite of what was
meant.
Our experience has shown that even the most
blatantly incorrect code can make its way into
production code!
In many situations compilers could have detected the
bug patterns. However it seems that the current
generation of Ada compilers is content if the
programmer writes legal Ada syntax. Determining
whether this code is meaningful or not seems to
beyond their remit.
As a consequence we have written a bug finder tool
which, using static code analysis, attempts to detect
code that is either obviously incorrect, is in some way
questionable or is so badly written that the tool itself
cannot make sense of it and is therefore worthy of
further analysis.
This paper describes the tool, the bug patterns it
employs and an evaluation of the results of applying
the tool over several large Ada code bases.
Keywords: utility, bug finder, Ada.

1 Introduction
In the autumn of 2004, we were fortunate to attend the
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) 2004 conference in Vancouver,
BC, Canada. As part of the OOPSLA Onward! Track,
David Hovemeyer and William Pugh presented their paper
entitled “Finding Bugs is Easy [1]”

Their paper and the presentation they made at the
conference have been the basis and inspiration for the work
described in this paper. Hovemeyer & Pugh’s work
concentrated exclusively on Java. We merely extended and
adapted the idea for Ada.

Their basic premise is that many simple and obvious bugs
slip through testing and end up in production code and that
with a little bit of effort these bugs can be automatically
found.

It is their belief that bugs in production code are not
normally found because either the user does not notice the

symptom of the bug, has no means to report the bug to the
developers or cannot reproduce the situation that caused the
bug.

Their idea is that if you detected a bug in some code you
are working on, you should examine how one could look
for other occurrences of the same bug and then try to
determine whether this search could be somehow
automated.

If a pattern can be established by which the bug can be
automatically discovered then this mechanism should be
incorporated into some form of tool and the tool used to
search actively for the bug in as much source code as
possible.

This is to say not just in the current module or project, but
also in other projects, libraries and as much open source
that is available.

Because their paper concentrated on Java and Java specific
problems most of the bug patterns described by Hovemeyer
and Pugh were not applicable. Therefore part of our work
has been to develop bug patterns that are specific to Ada.

2 The Ada Bug Finder Utility
Our Ada Bug Finder tool is an interactive Windows® based
program written exclusively in Ada 95.

Although not open source, the executable is available for
download from our web site www.white-elephant.ch. We
would like actively to encourage everyone to try it out on
all available Ada source code and to report back to us with
statistics regarding how many bugs the tool found and how
many of these were serious.

We would also be interested in any feedback concerning
how the utility might be enhanced either by suggesting new
bug patterns or citing occasions where an unnecessarily
large number of false positives were incurred.

2.1 Overview
The Ada Bug Finder utility takes the name of a directory as
its only input. When commanded the utility searches all the
Ada files contained in the specified directory and all its
subdirectories.

Ada package specifications and implementations are
assumed to be in pairs of files, either

• Both files have the same filename but different file
extensions. The package specification having the file
extension ads and the implementation the extension
adb

A Marr iot t and U Maurer 215

Ada User Journal Volume 26, Number 3, September 2005

For example: Test.ads and Test.adb

• Both files have the file extension ada and share the
same filename up until the final character. An
additional underscore signifies that the file contains
the package specification.

For example: Test_.ada and Test.ada

The program supports two options.

• Gnat extensions

If enabled instructs the syntax parser to accept the
Gnat implementation defined attributes.

• Preparation phase.

If enabled causes the utility to process the files twice.
The first pass gathers additional information that can
be used to reduce the number of false positives at the
expense of speed.

Results of the search are displayed in a tree view. These
may be saved as either text or as a comma delimited file
suitable for further processing by utilities such as Microsoft
Excel.

2.2 Bugs vs. Style
Hovemeyer and Pugh consider the primary purpose of style
rules is to make it easier for developers to understand each
other’s code and consequently they should not be included
in a bug-finding tool.

Whilst we agree that this is true with respect to many style
rules, we believe that some style rules have been introduced
with the specific intention of prohibiting language features
that are considered to encourage unsafe programming
practices. Other style rules have been introduced to
facilitate easier debugging.

In both these cases the enforcement of style rules could
directly affect the software reliability. For this reason our
utility also offers the optional detection of various style rule
violations.

2.3 False Positives
Unfortunately, the utility doesn’t always get it right!
Occasionally the utility will highlight a segment of code as
being a bug when, in fact, it is perfectly correct.

A goal of the utility is to reduce the number of these false
positives to a minimum without making the pattern
unnecessarily complex and unduly expensive to implement.
There is a trade off, therefore, between complexity and the
number of false positives the pattern might generate.

Within reason, we would rather have a few false positives
than the utility missing an actual bug or making the pattern
so complex that it becomes no longer reasonable to
implement.

2.4 Code Marking
Given that there will be the occasional false positive, we
decided that there should be a mechanism whereby the
utility could be instructed to ignore a specific pattern on a
particular line.

The mechanism we chose is to place a special comment at
the end of the line on which the utility detects the bug. The
special comment starts with a greater than symbol (>)
followed by a two or three character bug abbreviation code
terminated by a colon.

Example:

C_False : constant Integer := 0; --> UD: Completeness

In the above example the line is flagged against unused
declarations (UD). The Ada Bug Finder utility will not
report any unused declarations declared on this line.

Figure 1 Screenshot of the Ada Bug Finder

216 Ada Bug Finder

Volume 26, Number 3, September 2005 Ada User Journal

3 Ada Bug Patterns
Version 1.3 of the Ada Bug Finder utility recognises eight
Ada bug patterns.

3.1 Illogical Operator Rename (IOR)
In Ada 83, where there is no use type clause, operators are
often renamed to avoid the use of prefixed notation in
environments where the use clause is expressly forbidden.

Clumsy cut and paste editing might result in renaming an
operator to be something totally different. The compiler
allows this, although it is highly unlikely to be what the
author intended.

Example:

function "<"(Left, Right : Xt.Widget)
 return Boolean renames Xt."=";

3.2 Code Not Reachable (CNR)
Statements after an unconditional raise, return or exit will
never be executed.

Note: The Gnat compiler 3.15p checks for this pattern
however both the Aonix and HP compilers do not.

Example:

procedure Cnr is
begin
 loop
 exit;
 Io.Put_Line ("Never written!");
 end loop;
 return;
 Io.Put_Line ("Will never get written!");
end Cnr;

3.3 Null Pointer (NP)
This pattern looks for occasions of a pointer being
dereferenced whilst it is known to be null. Typically, this
occurs in the body of an if statement that has previously
tested the pointer explicitly for null.

Example:

if The_String = null then
 Io.Put_Line (The_String.all);
end if;

3.4 Non Short Circuit (NSC)
Essentially, testing for a condition and then, in the same
expression, using the result of that condition normally
requires that the programmer use the "and then" or the "or
else" construct rather than simply "and" or "or".

Example:

Result := (The_String = null) or
 (The_String.all = "Hello");

Result := (Index <= Numbers’last) and
 (Numbers (Index) = 42);

3.5 Wrong Granularity (WG)
Ada’s 'Size attribute returns the size of the object in bits
whereas storage allocation and most interfaces expect
object sizes to be supplied in bytes.

Consequently it is very unusual for 'Size to be used outside
of an expression. These occurrences are likely to be bugs
and therefore warrant further scrutiny.

Example:

Read (Buffer => Buffer'address
 Max_Size => Buffer'size
 Amount_Read => The_Size);

3.6 Unused Declarations
If something is declared but never used, it might simply be
because it is not required. Its presence might cause the
compiler more work, it might make the program bigger and
it might possibly make the code less understandable.

Whilst all these symptoms are undoubtedly undesirable
they are not actually bugs.

However another reason that a declared object may never
be referenced is because something else is being referenced
in place of it. These occurrences are bugs and it the aim of
the next three patterns is to identify them.

3.6.1 Unused Declaration (UD)
A constant or variable is declared but never used. Note,
however, that this might be deliberate. The initialization of
controlled objects or the default initialization may have an
effect that is actually required.

3.6.2 Exception Not Raised (ENR)
An exception is declared, perhaps even handled, but is
never raised.

3.6.3 Unused Unit (UU)
A package is imported but never used, or a procedure,
function or package is defined but neither exported nor
used locally.

3.7 Syntax Error (SE)
This isn't really a bug pattern per se. Unfortunately, some
of the code placed in open source libraries doesn't actually
compile! Our utility reports syntax error if the code it is
analysing appears to be invalid Ada.

4 Style Rule Checking
Our utility optionally checks six style rules. Each style rule
can be individually enabled or disabled.

The paragraph references within parentheses refer to the
Ada 95 Quality and Style Guide [2].

4.1 HTE - Handle Task Exceptions (6.3.4)
A task will terminate if an exception is raised within it, for
which there is no exception handler. In such cases, the
exception is not propagated outside of the task (unless it
occurs during a rendezvous). The task simply dies with no
notification to other tasks in the program. This makes
debugging these tasks especially difficult and so we have

A Marr iot t and U Maurer 217

Ada User Journal Volume 26, Number 3, September 2005

implemented a style rule that checks that every task has an
exception handler at its outermost level that includes a
when others statement.

4.2 NDO - No Declaration Overloading
Prohibits declarations that have the same name as a
declaration currently in scope. We believe that it is poor
programming style to occlude a declaration deliberately.

4.3 NGS - No Goto Statements (5.6.7)
Prohibits the use of the goto statement as this is considered
an unstructured change in the control flow. In Ada, the
label does not require an indicator of where the
corresponding goto statements are. Many believe that this
renders the code unreadable.

4.4 NPUC - No Package Use Clause (5.7.1)
Prohibits the use of the use clause and thereby forces
external names to be always fully qualified. To provide
visibility to operators use the use type clause.

4.5 NVIS - No Variable in Specification
Prohibits the declaration of variables in package
specifications.

4.6 CNP – Code Not Portable
In Ada 83 identifiers may only contain ASCII
alphanumeric characters. However some compilers fail to
enforce this restriction. Although Ada-95 allows identifiers
to be constructed from any alphanumeric from row 00 of
the ISO 10646 BMP, effectively ISO 8859-1 (Latin-1),
using characters outside of the ASCII character range may
lead to portability problems.

4.7 Superfluous Code Mark
If an Ada Bug Finder code mark (>xx:) is used to suppress
the reporting of a particular bug but the line in question
doesn't actually produce the bug in question then something
is probably wrong. It is bad style to suppress warnings
unnecessarily.

5 Other Patterns (to be implemented)
5.1 Division by Zero
This pattern looks for the situation when an identifier is
explicitly compared with zero and then used as the right

operand of one of the operators /, rem and mod

Example:

if Index = 0 then
 Result := (42 / Index) > 10;
end if;

5.2 Raise after Assignment
Leaving a procedure abnormally nullifies any assignment
to in-out or out parameters.

Example:

procedure Raa (The_Number : in out Natural) is
begin
 The_Number := The_Number + 1;
 raise Failed;
end Raa;

5.3 Redundant Comparison to null
If a null pointer check is made after code has already
dereferenced the pointer, the comparison is redundant.

Either the comparison is made too late or is superfluous
because the condition is known never to arise.

Example:

procedure Rcn is
begin
 Ada.Text_Io.Put_Line (The_String.all);
 if The_String /= null then
 Ada.Text_Io.Put_Line (The_String.all);
 end if;
end Rcn;

5.4 Symmetrical Comparison
If the left and right sides of a comparison are identical then
this is probably a cut and paste error as it obviously makes
no sense!

Example:

if Table (Index) = Table (Index) then

Figure 2 – Bug Warnings

Sources Files CNR ENR IOR NSC NP SE UD UU WG Style
UniControl 1.3 149 15 2 36 35 1 25
ILTIS 3622_12_36 4539 25 267 2 131 11 1672 317 23 2109
Aonix 7.2.2 828 2 18 4 196 23 5 1080
GCC 3.15p, Gps1.4 2976 1 55 4 1 8 255 236 3 14070
AI-302 147 1 1 1 240

218 Ada Bug Finder

Volume 26, Number 3, September 2005 Ada User Journal

6 Evaluation
It was relatively easy to use our utility to search for bugs in
the Ada source code we had available, however, evaluating
the results is a time-consuming and subjective process.

Figures 2 and 3 summarise the results of our using the Ada
Bug Finder version 1.4 on the following applications and
libraries

• Soudronic AG, UniControl release 1.3

• Siemens AG, ILTIS PC release 3622_12_36

• Source code provided with the Aonix compiler
version 7.2.2

• Gnat open source for GCC version 3.15p, Gps 1.4 and
Xml

• Charles library & AI- 302

In Figure 2, the number of files that the utility analysed is
provided in order to give some sort of idea as to the their
relative sizes.

Unfortunately we have had neither the time nor the
resources to make anything other than a cursory evaluation
of the results.

However, we have been able to make the following
observations:

1. The ILTIS application was the only Ada 83 code we
analysed. This explains why it alone contained
illogical operator renaming bugs.

2. We believe that the low number of CNR bugs within
the Gnat code base can be attributed to it normally
being compiled using the Gnat Ada Compiler which
itself issues this type of warning.

3. The vast majority of reported bugs were harmless
unused declarations of some sort. However, we believe
that removing this clutter generally improved the
readability of the code.

7 Conclusions
The utility has been instrumental in discovering several
bugs that had made their way into production code.

Some of these bugs were so obscure that they would
probably be very difficult to discover using traditional
methods.

For example, the UniControl Wrong Granularity (WG) bug
informed an API that a buffer was larger than it really was.

The consequence of this was that occasionally, depending
on what the function wanted to return, code would get
overwritten and the application would crash.

Although written to search for bugs in existing code bases,
we have discovered that the utility is also a useful
development tool. Occasionally running the Bug Finder
over newly developed code before it has been released or
submitted into a library has detected several bugs that
probably would have only been detected during testing.

Sources Total CNP HTE NDO NGS NPUC NVIS SCM
UniControl 1.3 25 9 16
ILTIS 3622_12_36 2109 24 22 1443 169 451
Aonix 7.2.2 1080 16 20 2 475 567
Gnat GCC 3.15p, Gps1.4 14070 17 314 462 11303 1974
AI-302 240 2 3 233 2

Figure 3 - Style Rule Violations

Code Description
CNR Code Not Reachable
ENR Exception Not Raised
IOR Illogical Operator Rename
NSC Non Short Circuit
NP Null Pointer
SE Syntax Error
UD Unused Declaration
UU Unused Unit
WG Wrong Granularity
Style Style Rule Violation

Figure 5 - Style Rule Codes

Code Description
CNP Code Not Portable
HTE Handle Task Exceptions
NDO No Declaration Overloading
NGS No Goto Statements
NPUC No Package Use Clause
NVIS No Variable In Specification
SCM Superfluous Code Mark

Figure 4 - Bug Pattern Codes

A Marr iot t and U Maurer 219

Ada User Journal Volume 26, Number 3, September 2005

8 An alternative method
From start to finish, the Ada Bug Finder project, including
testing and presentation, took 140 Man-hours of effort.

We were able to develop the utility within these constraints
by reusing an Ada text parser that we had developed for a
previous project.

However using static code analysis has severe limitations.
The utility simply does not know enough about the
semantics of the code it is analysing for it to detect some of
the bug patterns we had hoped to implement.

An alternative method could be to use the ASIS compiler
interface [3]. This is an open, published callable interface
that gives access to semantic and syntactic information
from an Ada environment.

Acknowledgments
Siemens Schweiz AG sponsored the development of the
Ada Bug Finder

References
[1] David Hovemeyer and William Pugh, Finding Bugs Is

Easy. Department of Computer Science, University of
Maryland, College Park, Maryland 20742 USA
{daveho, pugh}@cs.umd.edu

[2] Ausnit-Hood, Johnson, Pettit & Opdahl, Ada 95
Quality and Style. LNCS 1344, Springer-Verlag

[3] Ada Semantic Interface Specification (ASIS)
JTC1/SC22 ISO Standard ISO/IEC 15291:1999

220

Volume 26, Number 3, September 2005 Ada User Journal

Ada Development for a Basic Train Control System
for Regional Branch Lines
Burkhard Stadlmann
Upper Austrian University of Applied Sciences, Wels College of Engineering
Stelzhamerstr. 23, 4600 Wels, Austria; Tel: +43 7242 72811 3420; email:b.stadlmann@fh-wels.at
Abstract
This paper presents a basic train control system for
regional branch lines which uses radio based
operational train control. This new system has the
goal of improving the safety of this operational train
control. The system has been developed to be cost
effective using standard hardware a UML-design, and
Ada as the programming language.
Keywords: train control system, operational train
control, UML, Ada.

1 Introduction
A new kind of train control system for branch lines has
been developed at the Upper Austrian University of
Applied Sciences in Wels in cooperation with the railway
operator Stern & Hafferl and financially supported by the
province of Upper Austria. From the start of the design
process attention has been focused on low cost solutions
and user friendly operational sequences. The software
design is based on UML and mainly implemented in Ada.
This paper presents the idea and the functionality of that
system as well as the experiences that have been made with
its implementation. It is a project which is comparably
small and which is explicitly designed as a low cost
solution with regard to hardware and software. In
conjunction with the operational personnel, the system
should improve the overall safety of this operational train
control.

2 The background
There are numerous regional branch lines with very simple
operational conditions with radio-based operational train
control (in German: Zugleitbetrieb mit Sprechfunk). The
single-track line traffic controller gives the movement
authority to the train driver via radio phone. (e.g.: Train x
has movement authority until A-stop where it will cross
paths with train y). The movement authority will be marked
in a graph of train movements

When using this kind of system, the level of safety is poor.
The failure of one single person in the chain could be the
cause of a bad accident. If the single-track line traffic
controller gives two overlapping movement authorities, or
if the train driver does not stop when required the failure
might remain undetected until the trains crashed. With
respect to Austria, there are tragic examples of those kinds

of accidents. In 2002 there were accidents on the Danube
river line between Krems and Grein (a mistake made by the
train controller) as well as on the line in the Mur valley (a
mistake of the train driver). [1]

The goal is to improve this dissatisfying situation. As many
of these regional lines cannot afford to invest in traditional
signalling equipment, a much cheaper solution is required.
This combination of affordable solution and improving
actual safety level is the difference to other systems like the
German “Funkfahrbetrieb” which could not achieve its
goal mainly due to economic reasons. [2]

3 Basic idea of the train control system
The newly developed train control system is based on the
same operational principles by radio phone as before. But
the operation receives computer-aided support with the
addition of a radio data system for the communication
between trains and central train controller. The train
controller performs the same routines as before, but now he
uses screen and mouse instead of paper and pencil. Train
drivers obtain their movement authority from the screen
instead hearing it via radio and writing it on a sheet of
paper. To achieve the goal of a low cost system no
redundant hardware systems are used and the software
development process is not as complicated as for high
safety systems, both of which have an adverse effect on
costs and safety.

4 The components of the system
The basic system concept is presented in Figure 1 and
consists of a central computer and an onboard-computer in
each train. The communication between trains and central
device is performed by a line specific data radio system.

4.1 The central station
The central computer runs under the operating system
Windows 2000 and consists of a core application,
implemented as an Ada-application, and a GUI for
visualisation, which has been implemented as a Java-
application. The communication between these two parts
runs over TCP/IP. The hardware is a standard server with
all necessary peripheral equipment like radio-controlled
clock for precise timing etc. The central station is equipped
with a GPS-Receiver which generates the correction data
for the train location.

Burkhard Stadlmann 221

Ada User Journal Volume 26, Number 3, September 2005

Figure 1 The system concept

The administration of the movement authorities and the
communication between it and the trains is performed
within the core application. The application prohibits the
train controller entering two overlapping movement
authorities. As a background safety measure a special task
has been implemented within the core application which
monitors the distance between trains. If this distance
reaches a lower limit, the task will trigger an alarm in both
trains to execute an emergency stop. The central computer
also performs electronic protocolling of all user inputs and
of all data traffic via radio.

Within the visualisation part (GUI) two different
representations of the line are available. On the one hand
there is a schematic representation of the line and its tracks
(upper part of Figure 2), and on the other hand there is a
scaled electronic train diagram including theoretical as well
as actual train running (lower part of Figure 2). Both
presentations are available simultaneously on screen at the
central computer.

Figure 2 GUI of the central station

The visualisation of the movement authorities and the train
locations are available in both representations, each in a

different manner. Within the schematic line presentation
the line changes from black to red and within the train
diagram a red arrow marks the given movement authority.

4.2 The onboard units
The hardware of the board computer is a standard robust
industrial PC including the appropriate I/O-modules and
interfaces. This is a low cost solution and it makes sure that
similar systems will be available on the market for a long
time.

The software of the board computer is an Ada-
multitasking-application under the operating system ETS
and is responsible for the following actions:

 Train location based on dGPS-data and an incremental
sensor at one axle,

 data communication between it and the central
computer (periodical status messages, handling of all
operational control messages including emergency
brake message),

 visualisation and communication to the train driver
(HMI),

 supervision of the correct execution of all movement
authorities received,

 electronic protocolling of selected driver’s actions,
 dynamic passenger information in the train,
 additional features for support and service.

5 System safety
All safety-relevant actions within the computer-based train
control system require the explicit input of the operator or
the train driver. The supervision of the system by the
personnel is supported by the permanent visualisation of all
relevant system states including an appropriate failure
management system.

Safety of this system is based on numerous redundancies
within the software as well as the already mentioned
controlling inputs of the operating personal.

The software development process has been structured in
analogy to most of the requirements of the EN 50128,
however, in order to limit the software development costs
the implemented software does not meet the requirements
for the software safety level 4 as defined in the EN 50128
[3] (meaning the software is not as safe as is common for
electronic signalling systems).

The design process began with a detailed description of the
system requirements, themselves the result of
collaborations between the railway company and software
developers.

6 The software development process
The software development process is based on the
principles of EN 50128 using the V-model (see Figure 3).
Based on the system requirements a systematic UML-
design was created. [4]

222 Ada Development for a Basic Train Control System

Volume 26, Number 3, September 2005 Ada User Journal

Figure 3 V-model

6.1 UML diagrams
Based on the system requirements there have been
specified Use Cases for all operational input / output
sequences. For each Use Case there have been worked out
two different representations: On the one hand sequence
diagrams in UML and on the other hand a textual
description of what happens in natural language but with a
formalized structure. Figure 4 shows the first part of the
sequence diagram representing the sending of an arrival
message from the train driver to the central computer.

Figure 4 Sequence diagram for arrival message

The level of detail in the sequence diagrams has been
chosen to meet the task structure as well as this rough
object structure. This step of the development process made
it possible to analyse and to improve the tasks of the
software tasks and the kind of communication relations
between the tasks and the rough object structure. The
required messages could be specified and implemented

very quickly using the visualisation of the communication
relations within the sequence diagrams.

The software tasks have a cyclic behaviour. For designing
and verification of these cyclic functions for all tasks
activity diagrams have been designed. The example for this
type of diagrams shows the calculation of the train location.
Figure 5 shows the steps of activity during one calculation
cycle. The train location is calculated using two different
measurements (GPS-data and incremental encoder mounted
at one axle). Combining these two measurement values
during regular service and during error condition is a very
complex calculation. Several calculation steps must be
separated as much as possible. The logical path of data
should be visible. An activity diagram creates the necessary
clearness for the understanding.

Figure 5 Activity diagram

State machines have been used to operate properly for the
different states of each activity. For each state machine a
state diagram has been designed. Figure 6 shows an
example of a state diagram.

Figure 6 State diagram

In those state diagrams all states have been documented.
Events and activities have been partly included. All events

System
requirements

Use Cases

Validation in
real operation

Software implementation

Verification in
the laboratory

Tests done by
the railway
operatorDefinition of

system interfaces

UML-Design

System
requirements

Use Cases

Validation in
real operation

Software implementation

Verification in
the laboratory

Tests done by
the railway
operatorDefinition of

system interfaces

UML-Design

Burkhard Stadlmann 223

Ada User Journal Volume 26, Number 3, September 2005

and all activities have been documented if they belong to
normal operational activities or normal failure states.
Special failure states have not been included for the reason
of better clarity.

The last step of the UML design was the design of the class
diagrams for the whole project. All methods but not all
attributes (due to the lack of clarity) have been documented
within the class diagrams. The messages and their
communication structure are a vital part of this message
based system and they are documented within the class
diagrams as well. Figure 7 shows an example.

Figure 7 Class diagram

6.2 Implementation
As previously mentioned the application was implemented
mainly in Ada and the visualisation using Java. Automatic
code generation was not used. The decision to use Ada was
influenced by the recommendations within the EN 50128
for safety critical software within railway systems. Java has
been used for the visualisation because of the better support
of graphical features. Ada turned out being very useful
within this relatively small project and its small group of
developers.

The state machines have been implemented using generic
Ada-packages. The inter-task communication is
implemented as a message handling system with an
appropriate amount of buffers using generic protected
message buffers.

One task of the board computer supervises the functionality
of all the other tasks and checks all error messages, to
ensure that they are not dangerous. Combined with a
hardware watchdog this supervisory task can perform a
system reset if necessary. This supervisor task is capable of

starting six tasks each of them managing in turn the user
interface, the driving management, the train location, the
radio communication, the process input-output, and the
service interface.

The design of the Ada part of the central computer is very
similar to the design of the board computer. The task for
collision supervision is separated as much as possible. A
supervisory task controls the cyclic life messages of all
other tasks. The Java-part communicates with the Ada part
via TCP/IP.

Special features improving safety have been implemented
to partly compensate for the lack of hardware redundancy.
This includes using a CRC checksum for important state
variables as well as for the memory image of the driver’s
display and cyclic integrity checks of the digital line atlas
which is the data base for train location.

7 Conclusion
This paper presents a basic train control system for regional
branch lines which uses radio based operational train
controls. This new system has the goal of improving the
safety of this operational train control. As regional branch
lines often do not have enough money for traditional
signalling equipment, such a train control system must be a
low cost solution. Thus the presented system does not
require any further lineside installation and it uses standard
hardware for the central station, as well as for the onboard
units. The communication between the trains and the
central station is implemented by a line specific data radio
system. System safety is achieved combining software and
operational control done by the single-track line traffic
controller and the engine driver. The train control system is
an Ada and Java implementation based on a systematic
UML-design.

Practical experience since January 2003 on the line
Gmunden – Vorchdorf has improved the system and
enables the implementation on further lines in Upper
Austria.

References
[4] Eisenbahn Österreich (Jahrgang 2002), Berichte über

die Unfälle auf der Donauuferautobahn und im
Murtal, Minirex Verlag Luzern.

[5] J. Pachl (2005), Entwicklung der Leit- und
Sicherungstechnik für das System Bahn,
Eisenbahntechnische Rundschau, Jg 2005, Heft 3 –
März pp 96, Eurailpress Tetzlaff-Hestra Hamburg.

[6] EN 50128, Bahnanwendungen Telekommunikations-
technik, Signaltechnik und Datenverarbeitungssysteme
– Software für Eisenbahnsteuerungs- und
Überwachungssysteme, Ausgabe 2001-11.

[7] G. Booch,, The Unified Modelling Language User
Guide, Addison Wesley Longman.

224

Volume 26, Number 3, September 2005 Ada User Journal

Ada-Europe 2005 Sponsors

8 Rue de Milan, F-75009 Paris, France AdaCore
Contact: Zépur Blot Tel: +33-1-49-70-67-16

Email: sales@adacore.com
Fax: +33-1-49-70-05-52
URL: www.adacore.com

66/68, Avenue Pierre Brossolette, 92247 Malakoff, France Aonix
Contact: Jacques Brygier Tel: +33-1-41-48-10-10

Email : info@aonix.fr
Fax: +33-1-41-48-10-20
URL : www.aonix.com

Suite 701, Eagle Tower, Montpellier Drive, Cheltenham, GL50 1TA, UK Artisan Software Tools Ltd
Contact: Emma Allen Tel: +44-1242-229300

Email : info.uk@artisansw.com
Fax: +44-1242-229301
URL : www.artisansw.com

PO Box 7995, Crowthorne, RG45 9AA, UK Esterel Technologies
Contact: Ian Hodgson Tel: +44-1344-780898

Email : sales@esterel-technologies.com
Fax: +44 1344 780898
URL : www.esterel-technologies.com

Dolphin House, St Peter Street, Winchester, Hampshire, SO23 8BW, UK Green Hills Software Ltd

Contact: Christopher Smith Tel: +44-1962-829820
Email :

Fax: +44-1962-890300
URL : www.ghs.com

1 Cornbrash Park, Bumpers Way, Chippenham, Wiltshire, SN14 6RA, UK I-Logix
Contact: Martin Stacey Tel: +44-1249-467-600

Email : info_euro@ilogix.com
Fax: +44-1249-467-610
URL : www.ilogix.com

24 Newtown Road, Newbury, Berkshire, RG14 7BN, UK LDRA Ltd
Contact: Brenda Pedryc Tel: +44-1635-528-828

Email: info@ldra.com
Fax: +44-1635-528-657
URL: www.ldra.com

20 Manvers Street, Bath, BA1 1PX, UK Praxis High Integrity
Systems Ltd
Contact: Rod Chapman

Tel: +44-1225-466-991
Email : sparkinfo@praxis-his.com

Fax: +44-1225-469-006
URL : www.sparkada.com

Riverside Buisness Park, Malmsebury, SN16 9RS, UK Silver Software
Contact: Steve Billet Tel: +44-1666-580-000

Email: enquiries@silver-software.com
Fax: +44-1666-580-001
URL: www.silver-software.com

Triad House, Mountbatten Court, Worrall Street, Congleton, CW12 1DT, UK TNI Europe Limited
Contact: Pam Flood Tel: +44-1260-29-14-49

Email: info@tni-europe.com
Fax: +44-1260-29-14-49
URL: www.tni-europe.com

	Contents
	Editorial
	News
	Conference Calendar
	Rationale for Ada 2005: 4 Tasking and Real-Time
	Rationale for Ada 2005: 5 Exceptions, generics etc
	Ada Bug Finder
	Ada Development for a Basic Train Control System for Regional Branch Lines

