

ADA
USER
JOURNAL

Volume 28
Number 3

September 2007

Contents
Page

Editorial Policy for Ada User Journal 130

Editorial 131

News 133

Conference Calendar 166

Forthcoming Events 173

Articles

 J. Miranda
“Towards Certification of Object-Oriented Code with the GNAT Compiler” 178

 P. E. Black
“SAMATE and Evaluating Static Analysis Tools” 184

 G. Bernat, R. Davis, N. Merriam, J. Tuffen, A. Gardner, M. Bennett, D. Armstrong
“Identifying Opportunities for Worst-Case Execution Time Reduction in an Avionics System” 189

Ada-Europe Associate Members (National Ada Organizations) 196

Ada-Europe 2007 Sponsors Inside Back Cover

Ada User Journal Volume 28, Number 3, September 2007

130

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

Volume 28, Number 3, September 2007 Ada User Journal

 131

Editorial
As the new editor-in-chief of the Ada User Journal, I am pleased to start by thanking Tullio Vardanega for his effort and
accomplishments in his five years of service. During this period, Tullio was able to uncover diverse sources of interesting
content, providing regular and worthwhile material for us. Well done, Tullio! I am also pleased to salute all the Journal
authors and readers. I have now the (difficult) task of taking over, and I am confident that you will help me in making the
Journal continue in the right path.

If you do not mind, I would like to talk about another, more important, change that took place in Ada-Europe. During our
flagship conference, last June in Geneva, the General Assembly witnessed the end of the six years of service of Erhard
Plödereder as the President of Ada-Europe. At the same Assembly, Tullio was unanimously voted for the position. I would
like to wish Tullio a great success in his new role, and congratulate Erhard for the Ada-Europe accomplishments during his
tenure. I am glad that Erhard will continue in the Ada-Europe board, as a member at-large, providing us with his vast
experience and knowledge.

Coming back to the Journal, I have to apologise for the delay in the production of the issue you have in your hands. I have
just started to understand the effort that it is necessary to build each individual issue. It would be an impossible job, if not for
the commitment of the editorial team. My deepest and sincere thanks to Santiago Urueña, Dirk Craeynest and Jorge Real for
their support. As for its contents, the news and calendar section form an important part of the issue. In these days of vast,
overwhelming, information, the job of data mining is a deeply important, but difficult one. Therefore I strongly recommend
you to read the sections that Santiago and Dirk have prepared. Also please note the forthcoming events section, where you
will encounter the call for participation for SIGAda 2007 and the call for papers for Ada Europe 2008. The technical part of
the issue provides three papers from the Industrial Track of the Ada Europe 2007 conference. In the first paper, Javier
Miranda of the University of Las Palmas de Gran Canaria, Spain, describes some of the enhancements currently being
applied to the GNAT technology to support certification of object-oriented Ada code for high-integrity systems. The second
paper, by Paul Black of the National Institute of Standards and Technology, USA, presents the SAMATE project, which
addresses evaluation measures and methods and tools for software assurance. The last paper of this issue is by a group of
authors from Rapita Systems and Hawk Mission Systems, both in UK, reporting the results of a study for the reduction of
worst-case execution time in the operational flight program of the Hawk mission computer. I am sure you will enjoy reading
them as much as I did.

To close this editorial, let me shed some light into the near future. As mentioned in the previous issue, an effort was being
made to obtain permission to publish the proceedings of the 13th International Real-Time Ada Workshop. I am very pleased
to inform you that this has been granted and we will publish the staggered proceedings of this important workshop in the next
issues of the Journal. I am also happy to inform that we are taking similar steps to obtain permission to publish selected
contributions from the AdaCore Gem of the Week series. Therefore, the future looks promising; and I challenge all of you to
play a part building it.

Luís Miguel Pinho
Porto

September 2007
Email: lmp@isep.ipp.pt

Ada User Journal Volume 28, Number 3, September 2007

mailto:lmp@isep.ipp.pt

 133

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Organizations 133
Ada-related Events 133
Ada and Education 134
Ada-related Resources 136
Ada-related Tools 136
Ada-related Products 138
Ada and CORBA 142
Ada and GNU/Linux 143
Ada and Macintosh 143
References to Publications 143
Ada Inside 145
Ada in Context 148

Ada-related
Organizations
Availability of Ravenscar
Guide
From: Jim Moore <moorej@mitre.org>
Date: 9 July 2007 16:33:50 GMT+02:00
To: WG9 Participants
Subject: Availability of Ravenscar Guide
ISO Central Secretariat has finally
implemented the long-requested free
availability of the Ravenscar Guide,
ISO/IEC TR 24718:2005. It, and other
freely available standards, can be found
at:
http://isotc.iso.org/livelink/livelink/fetch/
2000/2489/Ittf_Home/
PubliclyAvailableStandards.htm
James W. Moore, CSDP, F-IEEE
The MITRE Corporation

AIs entering Editorial
Review
From: Pascal Leroy

<pascal.leroy@fr.ibm.com>
Date: 28 August 2007 09:18:22

GMT+02:00
To: tullio.vardanega@math.unipd.it
Subject: AIs entering Editorial Review
To WG9 HODs and Officers
In compliance with resolution 44-4 of
WG9, this message is to inform you that
the AIs listed below have entered
Editorial Review, and are intended to be
submitted to WG9 for approval at the next
meeting (meeting #53 in Washington,
DC, USA). It is expected that HODs and
liaison representatives would take this
opportunity to circulate these AIs for
comments within their respective

organizations, and return comments to the
ARG as soon as feasible.
The editorial review period ends on
September 21, 2007. Note that
substantive comments received after this
date would probably cause the
corresponding AIs to be removed from
the list submitted to WG9, as there would
not be enough time left to properly
answer the comments.
The AIs can be found on-line at
http://www.ada-auth.org/
AI05-SUMMARY.HTML.
AI05-0002-1/03 2007-06-11 —
Unconstrained arrays and C interfacing
AI05-0008-1/04 2006-12-13 — General
access values that might designate
constrained objects
AI05-0017-1/03 2007-06-17 —
Freezing and incomplete types
AI05-0019-1/03 2007-06-15 —
Primitive subprograms are frozen with a
tagged type
AI05-0024-1/04 2007-06-18 — Run-
time accessibility checks
AI05-0028-1/05 2007-06-18 —
Problems with preelaboration
AI05-0035-1/03 2007-06-18 —
Inconsistences with pure units
AI05-0037-1/01 2007-01-22 — Out of
range <> associations in array aggregates
AI05-0040-1/02 2007-06-18 — Limited
with clauses on descendants
AI05-0043-1/01 2007-06-15 — The
Exception_Message for failed language-
defined checks.
AI05-0046-1/02 2007-06-18 — Null
exclusions must match for profiles to be
fully conformant
AI05-0055-1/02 2007-06-12 — Glitch
in EDF protocol
AI05-0056-1/02 2007-06-17 — Wrong
result for Index functions

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal. —
su]

Jun 12 — Ada-Belgium
Technical Presentation
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Subject: “Ada at Barco Avionics”

presentation now on Ada-Belgium site

Date: Sat, 16 Jun 2007 07:16:12 +0000
UTC

Organization: Ada-Belgium, c/o Dept. of
Computer Science, K.U.Leuven

Newsgroups:
comp.lang.ada,fr.comp.lang.ada,be.com
p.programming,nl.comp.programmeren

Post-event announcements
Ada-Belgium recently organized

a technical presentation by
Ludovic Brenta of Barco Avionics,

Belgium
Ada at Barco Avionics:

history, coding standards, and products
Tuesday, June 12, 2007

Mini-report by a participant
On the 12th of June, Ludovic Brenta gave
a very interesting talk to Ada-Belgium on
the use of Ada at Barco. Barco is a
leading European supplier of displays and
related technologies. Ada is used in
Barco’s avionics products, predominantly
cockpit display and control-display units.
As in all computing the processing power
of these devices has risen and is now
enough to support reasonable amount of
software. Typically these devices contain
some sort of display software,
communications, exception logging and
self test, though the latest devices have
enough processing power to allow other
applications to run in a time sharing
configuration.
All of this must be certifiable to the
prevailing standard — DO 178B — and
almost all is written in Ada — a few lines
of machine code and some C is used in
some cases. The requirements of
certification were outlined and the
resulting constraints on the development
team were described. Barco has
developed a coding standard to enable
certifiable software to be written and the
rationale of the standard was explained.
Presentation available online
The slides of this technical presentation
are available on-line here:
<http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/07/070612-abga-event-
aba.pdf> “Ada at Barco Avionics: history,
coding standards, and products”, June
2007 (Adobe Portable Document Format,
PDF, 2296 KB).
[See also “Jun 12 — Ada-Belgium” in
AUJ 28-2 (Jun 2007), pp.70–71. —su]

Jun 25–29 — Ada-Europe
2007
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.ac.be>

Ada User Journal Volume 28, Number 3, September 2007

134 Ada and Educat ion

To: Ada-Europe-
attendees@cs.kuleuven.be

Date: Sun, June 17, 2007 4:19 pm
Subject: Press Release — Reliable Software

Technologies, Ada-Europe 2007
FINAL Call for Participation

12th International Conference on
Reliable Software Technologies —

Ada-Europe 2007
25 – 29 June 2007, Geneva, Switzerland

http://www.ada-europe.org/
conference2007.html

Press release:
Ada-Europe Conference on Reliable
Software Technologies
International experts meet in Geneva
Geneva (17 June 2007 16:00) — Ecole
d’Ingénieurs de Genève together with and
sponsored by Ada-Europe, and in
cooperation with ACM’s Special Interest
Group in Ada, organize this year the
“12th International Conference on
Reliable Software Technologies — Ada-
Europe 2007” from 25 to 29 June in
Geneva, Switzerland.
The conference offers 8 tutorials, a full
technical program of refereed papers, a
collection of industrial presentations
reflecting current practice and challenges,
four invited speakers, an industrial
exhibition, and a social program.
The 8 excellent tutorials on Monday and
Friday cover a broad range of topics: An
Overview of Model Driven Engineering,
Correctness by Construction — a UML2
Profile Enforcing the Ravenscar
Computational Model, Verification and
Validation for Reliable Software Systems,
Object-Oriented Programming in Ada
2005, Security by Construction,
Synchronous Design of Embedded
Systems — the Esterel/Scade approach,
Building Interoperable Distributed
Applications with PolyORB, and
Situational Method Engineering —
Towards a Specific Method for each
System Development Project.
The technical program presents 18 fully
refereed and carefully selected papers on
the latest research, including new tools,
applications and industrial practice and
experience, and a collection of 7
industrial presentations reflecting current
practice and challenges. Springer Verlag
publishes the proceedings of the
conference, as LNCS Vol. 4498.
Four international experts present invited
lectures on the topics: Challenges for
Reliable Software Design in Automotive
Electronic Control Units, Synchronous
Techniques for Embedded Systems,
Perspectives on Next Generation Software
Engineering, and Observation Rooms for
Program Execution Monitoring.
The exhibition opens in the mid-morning
break on Tuesday and runs continuously
until the end of the afternoon break on
Thursday. The exhibitors include the

following vendors: AdaCore, Aonix,
Ellidiss Software (TNI-Europe), Green
Hills Software, the Hibachi project,
Praxis, Programming Research BV,
Rapita Systems Ltd, and Telelogic.
The social program includes on Tuesday
evening a visit of, and reception at, the
building of the World Meteorological
Organization (WMO, agency of the
United Nations), and on Wednesday
evening an aperitif in the History of
Sciences Museum followed by the
conference banquet at the restaurant La
Perle du Lac, close to the Leman Lake.
The conference takes place at the
Engineering School of Geneva (Ecole
d’Ingénieurs de Genève-EIG), 4 Rue
Prairie, in the center of Geneva. The full
“Advance Program” is available on the
conference web site and directly at
<http://adae2007.eig.ch/docs/avp.pdf>.
Registration is still open.
Latest updates:
⁃ The “Final Program” is available on the
conference web site <http://www.ada-
europe.org/conference2007.html> and
directly at
<http://adae2007.eig.ch/docs/finalp.pdf>.
⁃ Check out the 8 tutorials in the advance
program and at
<http://adae2007.eig.ch/tutorial.html>.
⁃ The proceedings, published by Springer
Verlag as Lecture Notes in Computer
Science Vol. 4498, are ready and will be
distributed at the conference. More info
is available at
<http://www.springer.com/978-3-540-
73229-7>.
⁃ Registration fees are very reasonable
and the registration process is easy: fill
out the 1-page form at
<http://adae2007.eig.ch/docs/register.pdf>
and fax it to the conference secretariat.
Don’t delay!
⁃ For the latest information consult the
conference web site.

SPARK-related events
September 2007
LASER Summer School on Software
Engineering
September 9th-15th 2007, Elba, Italy
Rod Chapman will be presenting a talk
about SPARK and its verification tools.
AdaUK Conference, September 25th,
Manchester, UK
SPARK team will be exhibiting, and
presenting both a technical paper and a
vendor track presentation at this event.
October 2007
Embedded Systems Show, October 18th,
Birmingham NEC, UK
Rod Chapman will be presenting a 1-hour
tutorial on programming language design

issues and static verification for
dependable systems, as part of the IET
Technical Conference “Design of
Dependable Systems” Track.
IET Conference on System Safety, 22nd-
24th October, London, UK
SPARK Team are presenting a tutorial on
Correctness by Construction on Monday
22nd October.
November 2007
ACM SIGAda 2007, 4th-9th November,
Washington DC, USA
Rod Chapman will be presenting both a
tutorial on “Security by Construction” and
one of the key-note speeches at SIGAda
this year.
IMechE Software Reliability Seminar,
20th November, London, UK

Hibachi Events
From: Tom Grosman <grosman@aonix.fr>
Newsgroups: eclipse.tools.adt
Subject: Hibachi Presentation at AdaEurope

2007
Date: Tue, 19 Jun 2007 18:18:26 +0200
There will be a presentation of Hibachi at
the Ada-Europe conference in Geneva
next week (June 26) during the vendor
sessions. In addition, I will be manning a
Hibachi booth in the Exposition hall.
The purpose is to introduce the Ada
community to the Hibachi project and
more generally Eclipse and the Eclipse
community, to spread awareness of the
project in order to build up the
community (especially amongst
institutions), and to answer questions and
receive feedback
For information on the conference, see
http://adae2007.eig.ch/.
From: Tom Grosman <grosman@aonix.fr>
Subject: Hibachi Workshop at SigAda in

November
Date: Tue, 19 Jun 2007 19:06:27 +0200
Newsgroups: eclipse.tools.adt
The SigAda program committee has
accepted a proposal for a workshop on
Hibachi at SigAda in Washington DC this
year. The workshop is scheduled for the
evening of November 8. See
http://www.acm.org/sigada/conf/
sigada2007/workshops.html
for workshop details and
http://www.acm.org/sigada/conf/
sigada2007/ for conference details.
Tom Grosman
Hibachi Project Lead

Ada and Education
Ada 2005 & Java Syntax
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada

Volume 28, Number 3, September 2007 Ada User Journal

Ada and Educat ion 135

Subject: Re: Java-Ada 2005 Syntax /
Language Features Comparisons

Date: Wed, 08 Aug 2007 23:44:11 −0700
> Is anyone aware of a reference card or

short document that shows equivalent
Ada syntax and language features with
those of Java.

> Students could use this to understand
data structure concepts written in a
book using Java, and then implement
these concepts in code using Ada 2005.
These students are CS majors and will
have already taken a course in Ada.

If they are CS majors, then they should be
able to think in terms of abstracts and
should not need such primitive cheat-
sheets for 1:1 translations between
languages.
I would even go further and say that the
whole idea is broken at the start. Java is
reference-oriented whereas Ada is value-
oriented, which has significant
consequences in how high-level concepts
like composition and aggregation are
expressed in code — this goes much
further than syntax differences. Teaching
people to recode some stuff using “syntax
equivalents” is a Bad Idea.
From: Anilkumar.T

<Anilkumar.Thimmaiah@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Java-Ada 2005 Syntax /

Language Features Comparisons
Date: Thu, 09 Aug 2007 09:46:51 −0000
You can read this [comparison with]
The Steelman
http://www.adahome.com/History/
Steelman/steeltab.htm
Date: Thu, 09 Aug 2007 13:15:49 +0200
From: Georg Bauhaus

<bauhaus@futureapps.de>
Newsgroups: comp.lang.ada
Subject: Re: Java-Ada 2005 Syntax /

Language Features Comparisons
What kind of book is this? Would it be
impractical to just use an Ada book?
Key notions will include, with their
syntax,
Java class <-> Ada package + tagged
type (side note: JVM classes use tag
fields, too!)
Java packages <-> Ada package
hierarchies
Java subtypes <-> Ada packages and
derived types
Java public/protected/private <-> Ada
public/private + visibility rules + nesting
Java low level concurrency building
blocks <-> Ada built in concurrency
features
We have tried to collect a few hints in
http://en.wikibooks.org/wiki/
Ada_Programming/Object_Orientation
Approaching the subjects from a
conceptual point of view seems like a

good opportunity to me. You can then
demonstrate, for example, where and
when values are better than references,
see the benefits of a well defined base
type system, etc. In particular when the
students have already taken a course in
Ada.
Syntax only transformations are indeed
prone to financial and technical disaster.
They can be dangerous. There is enough
anecdotal evidence already. But I’m not
sure this fits the OP’s motivation?
One more anecdote: A programmer used
Java for programming but wrote
identifiers such as
performThisActionOnThingWithThatCon
straint(equallyLengthyArgumentValue,
…);
It looked like the programmer had done
some vanilla Scheme programming before
and was mathematically skilled. Would
syntax charts for plain Scheme <-> Java
have helped at all? I doubt it. However,
studying the first chapters of any O-O
methods book such as the ones by Booch
would have helped as these will inevitably
make you notice the method of finding
objects by looking at function names…
From: Mike McNett

<michael.mcnett@usma.edu>
Newsgroups: comp.lang.ada
Subject: Re: Java-Ada 2005 Syntax /

Language Features Comparisons
Date: Thu, 09 Aug 2007 05:33:52 −0700
⁃ I already have the Steelman reference
and will use a couple snippets from it.
⁃ While I’ve considered using a Data
Structures book that uses Ada 2005, I’ve
decided against it for several reasons.
⁃ I agree that having “primitive cheat-
sheets” is not best for all NEW CS
majors, there are a handful of students
whose learning styles call for something
like this. If a student doesn’t want (or
need) to refer to it, they certainly don’t
have to.
⁃ The next course they take uses Java,
although we don’t teach them Java — it is
expected that they do some self-study to
learn the language. This means the
following: CS1 teaches problem solving
using Ada; CS2 teaches data structures
using Ada (but using a Java data
structures book); CS3 is Advanced
Programming Concepts (using Java) that
focuses quite a bit on Design Patterns.
⁃ The book that I’m using in CS2 also
introduces students to UML, sequence
diagrams, and several other important
concepts that we use in the CS3 course.
Therefore, this CS2 course is the “hook”
I’m using to link their CS1 course to their
CS3 course without directly “teaching” a
new programming language. The book
used in the CS2 course helps me teach the
concepts, with the extra benefit of their
gaining some basic familiarity with

language they will use in their CS3
course.
⁃ I agree with having recode some stuff
using “syntax equivalents” is a bad idea.
That’s why I stated that they understand
the concepts from the book and
implement them in Ada. I certainly am
not advocating that they understand the
SYNTAX from the book and code that in
“equivalent” Ada SYNTAX.
⁃ The wiki reference will be helpful.
From: John McCormick

<mccormick@cs.uni.edu>
Newsgroups: comp.lang.ada
Subject: Re: Java-Ada 2005 Syntax /

Language Features Comparisons
Date: Fri, 10 Aug 2007 15:46:04 −0700
Switching languages in the second course
is a sure way to create frustrated students.
They are barely able to program in any
language after only 15 weeks. They still
think concretely in that first programming
language. Very few students see the
abstractions necessary necessary to
springboard to a new language — it is
almost like they are starting from scratch.
I can’t imagine that keeping the same
language for the second course but
teaching it with a book that uses a
different language is much better.
We teach Ada in both CS1 and CS2. We
teach algorithmic problem solving in CS1
and move to an OO approach in CS2. We
switch to Java in CS3 where patterns are
the goal. We don’t need any “hooks” in
CS2 to motivate a link between CS1 and
CS3. And we don’t just dump Java on
them in CS3 - we provide guidance on
how “experienced” programmers learn a
new language. I think that this guidance
provides our students with an important
skill for learning in the future. Our
students did not fare nearly as well when
we just dumped a new language on them
in the third course.
From: Mike McNett

<michael.mcnett@usma.edu>
Newsgroups: comp.lang.ada
Subject: Re: Java-Ada 2005 Syntax /

Language Features Comparisons
Date: Fri, 10 Aug 2007 19:08:00 −0700
During the previous several semesters this
CS2 course did the same thing that I am
doing now, except the book used in those
semesters used C++. From personal
experience, it actually worked quite well
for both CS and non-CS students. Yes, it
is challenging to them when they first
start reading the book and try to
implement its concepts in a different
language. By the middle of the semester,
however, they realize that the
fundamentals of the languages are quite
similar.
The Spring semester will be a good
indicator to see if moving to the Java-
based book for CS2 helps them in their
CS3 course. I should clarify what I meant
by us not teaching them Java. We don’t

Ada User Journal Volume 28, Number 3, September 2007

136 Ada-related Tools

just “dump a new language on them”
without any assistance (although that’s
what my earlier post made it sound).
There is plenty of in-class work between
the instructor and the students that helps
them understand the fundamentals of
Java. I’d be very interested in hearing
more about the guidance you provide on
“… how «experienced» programmers
learn a new language.”
Our approach described in the earlier post
is meant to give them the opportunity to
explore Ada more fully in this CS2 course
while simultaneously giving them
familiarity with a language they will be
using in CS3. There is no expectation
that they would actually be able to design
and implement an application in Java after
this CS2 course.
> We teach Ada in both CS1 and CS2.

We teach algorithmic problem solving
in CS1 and move to an OO approach in
CS2. We switch to Java in CS3 where
patterns are the goal.

It certainly sounds like our CS1, 2, and 3
courses are quite similar based on this.

Public Ada Courses
From: Ed Colbert <colbert@abssw.com>
Newsgroups: comp.lang.ada
Subject: [Announcing] Public Ada Courses

27–31 Aug in Carlsbad CA
Date: Mon, 23 Jul 2007 20:02:40 −0700
Absolute Software will be holding a
public Ada course during the week of 27
August 2007 in Carlsbad, CA. You can
find a full description and registration
form on our web-site, www.abssw.com.
Click the Public Courses button in the left
margin. (We also offer courses on
software architecture-based development,
safety-critical development, object-
oriented methods, and other object-
oriented languages.)
Edward Colbert
President
Absolute Software Co., Inc.
Phone: (760) 929-0612
E-Mail: colbert@abssw.com
Website: www.abssw.com
[See also "Public Ada 95 Courses" in AUJ
27-3 (Sep 2006), p.134. —su]

SPARK Training
Public Course Dates for 2007 — UK
Course 1 — “Software Engineering with
SPARK”
10th – 13th September 2007 at the Praxis
Offices in Bath. Download the booking
form.
3rd – 6th March 2008 at the Praxis
Offices in Bath.
Course 2 — “Black-Belt SPARK”
18th – 20th September 2007 at the Praxis
Offices in Bath. Download the booking
form.

11th – 13th March 2008 at the Praxis
Offices in Bath.

ARTiSAN Webinar —
Developing and Maintaining
Ada with UML
From: ARTiSAN Software Tools

<info@artisansw.com>
To: Santiago Urueña

<santiago.uruena@upm.es>
Subject: Still time to register — Live

Webinar —-- Developing and
Maintaining Ada with UML

Date: Sat, 08 Sep 2007 19:49:08 +0200
Developing and Maintaining Ada with
UML
Presented by ARTiSAN this Webinar will
introduce the concept of the UML Ada
Profile before looking into the topics of
Reverse Engineering Ada code and
Forward Generating Ada code from an
UML model.
Areas of demonstration will include:
⁃ Reverse Engineering and navigating
through the resulting model.
⁃ Forward Generation of Ada code from
the UML model.
Date and Time
The webinar lasts for about an hour and
will run at the following times:
⁃ Thursday 23rd August — 10am EDT /
3pm BST / 4pm CEST
⁃ Thursday 23rd August — 1pm EDT /
6pm BST / 7pm CEST
For further information and to register for
this webinar, visit:
http://www.artisansw.com/news/
webinar_details.aspx?webinarID=23
Joining instructions will be emailed
through to you separately, approx. 24
hours prior to the webinar.
If the subject is of interest to you, but the
times inconvenient, please email
mailto:webinarQA@artisansw.com

Ada-related Resources
Archangel Interactive site
From: Luke A. Guest

<laguest@abyss2.demon.co.uk>
Newsgroups: comp.lang.ada
Subject: Archangel Interactive site
Date: Sun, 05 Aug 2007 08:19:32 −0700
I’ve finally put up my new site. I intend
on including some Ada tutorials, and I
have written the first one (Abstract
Types).
http://www.archangeli.co.uk
From: richtmyer@cox.net
Newsgroups: comp.lang.ada
Subject: Re: Archangel Interactive site
Date: Mon, 13 Aug 2007 06:53:30 −0700

I looked at a couple and found them easy
to follow and informative.
Hope you keep it going. […]

AdaCore Live Docs
From: AdaCore Live Docs
Date: Friday February 3, 2006
Subject: Live Docs
RSS: www.adacore.com/category/

developers-center/reference-
library/documentation/feed/

Live Docs provides an up to the minute
snapshot of GNAT Pro technology. As
new features and improvements are made
to GNAT Pro these changes are
immediately added to our product
documentation and presented here in Live
Docs.
GNAT Compilation System:
⁃ GNAT User’s Guide for native
platforms
⁃ GNAT Reference Manual
GPS:
⁃ Using the GNAT Programming Studio
GtkAda
⁃ GtkAda Reference Manual
⁃ GtkAda User’s Guide
PolyORB
⁃ PolyORB User’s Guide

Ada-related Tools
Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple components for Ada

v2.6
Newsgroups: comp.lang.ada
Date: Sat, 18 Aug 2007 19:31:03 +0200
The library provides implementation of:
 Doubly-linked webs and lists
 Reference-counted objects and
 handles to
 Parsers
 Persistent objects and handles to
 Persistent storage and handles to
 Storage pools
 Sets and maps
 Stacks
 Strings editing
 Tables (containers of strings)
 Unbounded arrays
http://www.dmitry-kazakov.de/
ada/components.htm
Changes to the version 2.5
⁃ Function Is_Empty for doubly-linked
lists,
⁃ Functions Erase and Take for both
doubly-linked webs and lists
⁃ An example of doubly-linked list use
[See also same topic in AUJ 28-2 (Jun
2007), p.73. —su]

Volume 28, Number 3, September 2007 Ada User Journal

mailto:colbert@abssw.com
http://www.abssw.com/

Ada-related Tools 137

GNU Ada Compiler
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: ANN:[gnuada] New Solaris 10

release.
Newsgroups: comp.lang.ada
Date: Fri, 24 Aug 2007 21:53:09 +0200
We got a new Solaris 10 release. It’s
based on gcc-4.2.1. Tools and Compiler
have been separated:
[http://gnuada.sourceforge.net/ —su]
Since I don’t have root access it’s just
tar’s.
[See also same topic in AUJ 28-2 (Jun
2007), pp.74–75. —su]

Interval arithmetic
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: Interval arithmetic for Ada

v1.5
Newsgroups: comp.lang.ada
Date: Thu, 16 Aug 2007 22:31:20 +0200
Packages for handling intervals in Ada.
Interval arithmetical and relational
operations are provided for dimensionless
and dimensioned intervals:
http://www.dmitry-kazakov.de/
ada/intervals.htm
This version is based on measurement
units for Ada v2.4. For GNAT Ada
compiler users, GPS project files were
included in two variants: with and without
GTK+ support.

QtAda binding
From: Vadim Godunko

<vgodunko@rostel.ru>
Date: Wed, 06 Jun 2007 03:57:04 −0700
Subject: ANN: QtAda 0.1.0
Newsgroups: comp.lang.ada
QtAda is an Ada 2005 language bindings
to Qt 4.2. Its allow easily create powerful
graphical user interface on Ada. QtAda
use native thread-safe signal/slot
mechanism, provide access to more than
120 Qt classes, provide Ada-aware meta
object compiler, support development of
custom widgets and Qt Designer’s custom
widget plug-ins, support loading at run-
time of GUI forms from Qt Designer’s UI
files and so on.
New stable version 0.1.0 available at
http://sourceforge.net/projects/qtada/
Questions, comments and contribution are
welcome! Please send it to QtAda users
mailing list qtada-
users@lists.sourceforge.net.
[See also same topic in AUJ 28-2 (Jun
2007), p.76. —su]
From: Vadim Godunko

<vgodunko@rostel.ru>
Newsgroups: comp.lang.ada

Subject: Annonce: QtAda 0.1.1
Date: Mon, 16 Jul 2007 04:16:32 −0700
We are pleased to announce the new
release of QtAda 0.1.1. This is minor bug
fixes release. It includes:
⁃ support for Qt 4.3.0
⁃ workarounds for bugs in GNAT GPL
2007 compiler
⁃ bug fixed in amoc compiler
[…]

Ada-spread binding
From: Per Sandberg

<per.sandberg@bredband.net>
Newsgroups: comp.lang.ada
Subject: ANN: Ada-spead 1.3
Date: Fri, 24 Aug 2007 06:21:49 +0200
Ada spread 1.3
The third release of Ada-spread, an Ada
2005 binding to the performance
messaging service http://www.spread.org
is available at:
http://sourceforge.net/projects/ada-spread/

C2Ada
From: Nasser Abbasi <nma@12000.org>
Subject: C2Ada port to linux updated.
Date: Mon, 13 Aug 2007 03:14:42 −0700
Newsgroups: comp.lang.ada
I’ve just updated c2ada so that it now
builds now on linux 2.6.20. The updated
source code and instructions how to build
are here
http://12000.org/my_notes/ada/
c2ada_port/index.htm
There is example of how to run it and the
ada files generated.
This tool seems useful in translating C
header files.
From: Jeffrey Creem

<jeff@thecreems.com>
Newsgroups: comp.lang.ada
Subject: Re: C2Ada port to linux updated.
Date: Fri, 17 Aug 2007 02:15:00 GMT
I’ve done some of the initial work to setup
the project. I setup a SVN repository.
Imported the older version, attempted to
overlay your updates and setup the initial
webpage for it based largely on the
original html file inside the distribution.
http://c2ada.sf.net
I have not yet uploaded the zip files
themselves.
If you get a SourceForge account (I’d
recommend it), I’ll add you as project
admin to ensure you can continue to make
updates in the SVN repository and/or
other tasks associated with the project.
From: Nasser Abbasi <nma@12000.org>
Newsgroups: comp.lang.ada
Subject: Re: C2Ada port to linux updated.
Date: Mon, 13 Aug 2007 23:36:54 −0700
[…]

I have no idea how good one would
consider the quality of the Ada code this
tool generates, from adahome […] it says:
“This tool, released by Intermetrics, is
based on cbind (Ada-to-C binding
generator), a tool previously made public
by Rational Software Corporation. C2ada
is capable of generating thin Ada
bindings, by translating C header files
into Ada package specifications, and in
addition is capable of translating C
functions and statements into Ada
package bodies. C2ada will do about 80%
to 90% of the work of producing a thin
binding or a translation, but the last 10%
to 20% of the work must still be done
manually. The program is free, includes
source code, has no warranty, and is
released to the Ada community in the
hope that it will be useful. Intermetrics
has used C2ada to produce Microsoft
Windows, X Windows, and GCCS
bindings”
[See also “Cbind” in AUJ 27-4 (Dec
2006), p.202. —su]

Konada.Db — Oracle Access
Library
From: Frank Piron

<frank.piron@gmail.com>
Newsgroups: comp.lang.ada
Subject: Announce: Konada.Db
Date: Mon, 02 Jul 2007 14:07:33 +0200
A new version of our Oracle Access
Library Konada.Db is available at
http://konad.de/download.htm
Some extensions and bugfixes e.g. for
unqualified number columns in Oracle
10g are made.
[See also same topic in AUJ 25-2 (Jun
2004), pp.51–52. —su]

GTKAda contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: GtkAda contributions v1.7
Newsgroups: comp.lang.ada
Organization: cbb software GmbH
Date: Thu, 5 Jul 2007 22:07:54 +0200
The software is proposed as a contribution
to GtkAda, an Ada bindings to GTK+. It
deals mainly with the following issues:
⁃ Tasking support;
⁃ Custom models for tree view widget;
⁃ Custom cell renderers for tree view
widget;
⁃ Resource styles;
⁃ Capturing resources of a widget;
⁃ Embeddable images;
⁃ Some missing subprograms and bug
fixes;
⁃ Improved hue-luminance-saturation
color model;
⁃ Simplified image buttons and buttons
customizable by style properties;
⁃ Controlled Ada types for GTK+ strong
and weak references;

Ada User Journal Volume 28, Number 3, September 2007

138 Ada-related Products

⁃ Simplified means to create lists of
strings.
http://www.dmitry-kazakov.de/
ada/gtkada_contributions.htm
The version 1.7 adds:
1. Trace procedures were added to
Gtk.Main.Router to provide simple means
for tracing. Trace is written in a dialog
box. The dialog box can be switched
between modal and modeless states to
break or only record upon message
written.
2. Erase was added to Gtk.Missed to
remove all items of a container;
3. Get_Visible_Range was added to
Gtk.Missed to determine the range of
visible rows in a tree view;
4. The function Get_Background_Area
was added Gtk.Missed to replace
incorrect implementation of
Gtk.Tree_View.
[See also same topic in AUJ 28-2 (Jun
2007), pp.75–76. —su]

Hibachi status
From: Tom’s Hibachi musings
Date: Wednesday 20 June 2007
Subject: Next phase
RSS: http://hibachitom.blogspot.com/feeds/

posts/default
I think the initial interest is known now.
We’ve got participation from Ada
vendors, the open source Ada community
and Academic institutions. I will be
presenting Hibachi at Ada Europe next
week, and SigAda has agreed to a Hibachi
workshop at the annual meeting in
November in DC this year.
I’ve had some contacts and interest from
industrial partners, but so far more as
users than contributors.
Now we need to define each contributor’s
role and methods of working. Then
verify/revise the project plan based on our
roles and have the project review.
From: Tom Grosman <grosman@aonix.fr>
Date: Fri, 10 Aug 2007 18:53:42 +0200
Subject: Re: Schedule
Newsgroups: eclipse.tools.adt
> The original project announcement

talked about an initial release of source
code this month “ADT 0.5.0 — Initial
release. 8/2007”

> Is that still expected?
We’re not there yet. We will be having
the Project Review in the middle of
September. At that point, the CVS
repository can be provisioned with the
sources.
[See also “Hibachi — Eclipse Ada
Development Tools” in AUJ 28-2 (Jun
2007) pp.81–84 and “Hibachi Events” in
this issue. —su]

Aonix ADT Eclipse Plugin
Installation
From: Pieter Thysebaert
Subject: Debian Etch GCC GNAT 4.1 /

Aonix ADT Eclipse Plugin
Date: Mon, 16 Apr 2007 11:33:37 +0200
Organization: Ghent University
Newsgroups: comp.lang.ada
I’m on Debian GNU/Linux Etch and have
installed GCC 4.1 along with the
corresponding GNAT packages.
I also have Eclipse 3.2 installed and
downloaded (through Eclipse Software
Updates) the Aonix ADT plugin.
My problem is that the ADT does not pick
up Etch’s GCC GNAT 4.1 toolchain
(when selecting GNAT Linux Toolchain),
no matter what directory I feed it (I
naively thought that setting the toolchain
path to /usr/bin would do the trick).
Is there anyone who knows how to make
the Aonix ADT plugin work together with
the GCC 4.1 based GNAT from Debian
Etch?
Or is this a known limitation of the plugin
(i.e. that it only works with AdaCore
GNAT Pro and GNAT GPL) ?
From: Pieter Thysebaert
Subject: SOLVED: Debian Etch GCC

GNAT 4.1 / Aonix ADT Eclipse Plugin
Date: Tue, 17 Apr 2007 09:25:36 +0200
Organization: Ghent University
Newsgroups: comp.lang.ada
[…] It turns out that specifying “/usr” as
the toolchain path (instead of /usr/bin)
does the trick… (i.e. makesd Ao Aonix
ADT pick up and recognize the GNAT
toolchain).
From: Tom Grosman <grosman@aonix.fr>
Newsgroups: comp.lang.ada
Subject: Re: SOLVED: Debian Etch GCC

GNAT 4.1 / Aonix ADT Eclipse Plugin
Date: Tue, 17 Apr 2007 17:09:44 +0200
Organization: Aonix
> Actually that is a good tip and makes

sense. The way the plugin works, it
needs to find more than just the
compiler and tools — it needs libraries,
specs, etc.

[…] In order for AonixADT to recognize
a GNAT toolchain, The “toolchain
directory” that is specified should contain
the GNAT bin subdirectory (GNAT
executables are located here) to which
you should have execution permission.
AonixADT then checks within the GNAT
bin directory for the presence of the
executable file “gnatmake” to determine
if you have specified a valid toolchain
location. So far, this seems to work no
matter the O/S nor compilation
environment (gnuada, GNATPRO).
From: Tom Grosman <grosman@aonix.fr>
Newsgroups: comp.lang.ada
Subject: Re: SOLVED: Debian Etch GCC

GNAT 4.1 / Aonix ADT Eclipse Plugin

Date: Tue, 17 Apr 2007 22:29:14 +0200
Organization: Aonix
> Won’t work for cross-compilers that

have a prefix (eg. powerpc-wrs-
vxworks-gnatmake). So, you might
want to search for filenames containing
the “gnatmake” substring if you don’t
already (though I suspect you may in
order to handle the Windows case).

Thanks for the info, Ed. We (Aonix)
haven’t integrated any of the GNAT cross
compiler toolchains. I reckon that it will
be done in the context of Hibachi, and not
AonixADT. And the underlying techno of
Hibachi is open to change as the project
evolves to be as open and extensible as
possible.

Ada-related Products
AdaCore — GNAT Pro for
DO-178B
From: AdaCore Press Center
Date: Tuesday June 19, 2007
Subject: AdaCore Announces the GNAT Pro

High-Integrity Edition for DO-178B
RSS: www.adacore.com/category/

press-center/feed/
Specialized development environment
and tool set supporting safety-critical
standards
NEW YORK and TAMPA, Fla., June 19,
2007 — Systems & Software Technology
Conference — AdaCore, provider of the
highest-quality Ada tools and support
services, today announced the immediate
availability of the GNAT Pro High-
Integrity Edition for DO-178B. The
product is a specialized version of GNAT
Pro that provides an independently
certified development environment and
tool set specifically targeted towards
developers needing to satisfy this
demanding safety-critical standard. It is
the first in a series of specialized High-
Integrity Edition packages designed to
provide complete support for specific
safety or security industry requirements,
such as RTCA DO-178B / EUROCAE
ED-12B and other high-integrity
standards. Additional High-Integrity
Edition packages will be announced as
they become available.
“AdaCore recognizes that our customers
require off-the-shelf solutions to meet
high-reliability and safety-critical
software development standards,” said
Robert Dewar, President of AdaCore.
“Customers are currently using GNAT
Pro to develop avionics systems that need
to satisfy the DO-178B Level A standard,
and our run-time library has been certified
to meet these requirements. The GNAT
Pro High-Integrity Edition for DO-178B
provides the associated life-cycle artifacts
along with the development tools

Volume 28, Number 3, September 2007 Ada User Journal

Ada-related Products 139

necessary to comply with this and similar
safety-critical standards.”
AdaCore has also taken the additional
step of having an independent
organization perform the full certification
of the Ada run-time library that is
available for GNAT Pro High-Integrity
Edition for DO-178B. Verocel, a
company with recognized expertise in this
domain, has developed the certification
package.
“AdaCore has a consistent policy of using
world-class experts to prepare
certification materials to ensure that
certification is 100% independent and not
influenced by the development team,”
stated Robert Dewar. “The effectiveness
of DO-178B relies on an impartial
certification process, and we strongly feel
that this is best assured by having highly
qualified third parties prepare the
certification material and perform the
required DER (FAA Designated
Engineering Representative) review.”
About GNAT Pro High-Integrity Edition
for DO-178B
GNAT Pro High-Integrity Edition for
DO-178B is an enhanced version of the
GNAT Pro technology, designed for
building safe and secure software.
Formerly known as GNAT Pro HIE, its
many features help to reduce the cost of
developing and certifying systems that
have to meet safety standards such as
RTCA DO-178B / EUROCAE ED-12B
and other high-integrity standards. The
package includes a full, multi-language
cross-compile system, a configurable Ada
run-time system, and integration with
best-in-class test capabilities. The run-
time library for the GNAT Pro High-
Integrity Edition for DO-178B has
already been certified to the highest safety
level for DO-178B Level A, as a part of
multiple avionics systems. These life
cycle artifacts are available with the
package. Further details on this new
product package can be found at:
http://www.adacore.com/home/gnatpro/sa
fety-critical
Availability
GNAT Pro High-Integrity Edition for
DO-178B is immediately available as part
of the GNAT Pro subscription. Please
contact AdaCore (sales@adacore.com)
for the latest information on pricing and
supported configurations.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where reliability, efficiency and safety are
critical. AdaCore’s flagship product is
GNAT Pro, which comes with expert
online support and is available on more
platforms than any other Ada technology.
AdaCore has customers worldwide; see

http://www.adacore.com/home/company/
customers for more information.
Use of Ada and GNAT Pro continues to
grow in high-integrity and safety-critical
applications, including avionics, defense,
air traffic control, railroad systems,
financial services and medical devices.
AdaCore has North American
headquarters in New York and European
headquarters in Paris. www.adacore.com
[See also “AdaCore — GNAT Pro 6.0.1”
in AUJ 28-1 (Mar 2007), pp.11–12. —su]

AdaCore — Support for
.NET and Vista
From: AdaCore Developer Center
Date: Friday July 27, 2007
Subject: Support for .NET and Vista
RSS: www.adacore.com/category/

developers-center/development-log/feed/
As part of the 6.0.2 release, AdaCore is
pleased to announce that support for the
Windows OS has been extended to the
new Windows Vista platform. GNAT Pro
now supports all Windows platforms from
Windows 2000 through to Vista.
In the near future AdaCore will announce
support for Microsoft .NET bringing a
commercial Ada development
environment to this platform for the first
time. The port will include support for
Microsoft Visual Studio .NET 2005.
A press release providing more details on
these ports will be issued in the coming
months.

Adalog — AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Newsgroups: comp.lang.ada
Subject: AdaControl 1.7 released
Date: Thu, 05 Jul 2007 17:29:24 +0200
Organization: Adalog
We are happy to announce the availability
of version 1.7 of AdaControl, the free
Ada controlling tool.
This version features 289 possible checks,
not counting parametrizations!
In addition, there is even better
integration with GPS (works with GPS4.x
now), and AdaGide (thanks Gautier de
Montmollin).
Please visit http://www.adalog.fr/
adacontrol2.htm for a detailed description
of old and new features.
[See also same topic in AUJ 27-4 (Dec
2006), p.206. —su]

Aonix — Ameos UML goes
open source
Aonix Contributes Ameos UML Technology

to Open Source
AMEOS Model Driven Architecture Tools

Made Available Under LGPL

Paris, France, June 20, 2007
Aonix®, a provider of solutions for
mission-critical applications development,
announced today that it is contributing its
powerful Ameos modeling technology to
the open source community. Ameos,
based on the pioneering Software through
Pictures modeling tool family, offers
UML profiles to generate C/C++, Ada,
Java, CORBA, COM, and EJB. Under the
new open source policy, Ameos is
available under terms based on the GNU
Lesser General Public License (LGPL) as
OpenAmeos. This open source strategy
for Ameos allows Aonix to focus
marketing resources on its expanding
PERC technologies for real-time Java
developers, while providing the tools to
ensure long-term value to Ameos users.
Ameos implements UML 2.0 profiles,
model-driven architecture (MDA) -based
model transformation and a modern,
convenient user interface—features
designed to powerfully meet the modeling
needs of modern and complex software
systems. Through its UML profiles,
developers can easily extend standard
UML notation and adapt it to project-
specific needs. Since the transformation
engine is based on MDA architecture,
design time is reduced as the model
process is able to mature to a greater level
prior to implementing target-specific
detail.
“Ameos is a powerful and stable
technology,” said Dave Wood, Aonix VP
marketing. “We believe that the best
means of expanding its adoption and
evolution comes by donating the source
code to Ameos users. It’s always exciting
to see how open-source communities
generously make their own contributions
available to others.”
For OpenAmeos, strong community
support is already in place. ScopeSET, a
leading expert in Ameos technology, has
partnered with Aonix in this open source
initiative. ScopeSET will provide product
support and professional services for
Ameos and customer-requested
derivatives.
“With a long history of developing and
supporting Ameos and MDA tools,
ScopeSET is pleased to lend its expertise
to this important Aonix initiative,” said
Armin Mueller of ScopeSET. “Our team
is committed to continue providing
extensive tool-specific know-how to the
OpenAmeos community. We will also act
as integrators for future OpenAmeos
distributions to ensure quality and further
development.”
Ameos is the second major technology
contributed by Aonix to the open source
community this year. The decision
illustrates Aonix’ commitment to
selecting licensing terms that best suit the
needs of users of each of its product lines.
In April, Aonix announced the open

Ada User Journal Volume 28, Number 3, September 2007

140 Ada-related Products

source availability of the Aonix Eclipse
Ada Development Toolkit. Aonix is
leading the new Eclipse-based initiative to
create an Ada Development Toolkit
(ADT) project and will collaborate with
the Eclipse Foundation™ toward that end.
Under the terms of the Ameos open
source agreement, a “clean” open source
version of Ameos, called OpenAmeos,
has been created to ensure that anyone
installing a new version of Ameos will be
able to use it freely without encumbrances
of any other source contributions. This
version is freely downloadable at
http://www.openameos.org. In addition,
any company or academic institution who
wants to distribute OpenAmeos source
code is required to also make their
changes to the source code freely
available to others in order to ensure the
continuing open evolution of Ameos.
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading high-reliability, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors. For
more information, visit www.aonix.com.
[See also “Aonix — AonixADT goes
open source” in AUJ 28-2 (Jun 2007),
p.81. —su]
From: Martin

<martin.dowie@btopenworld.com>
Newsgroups: comp.lang.ada
Subject: New open source UML tool

including Ada support
Date: Tue, 10 Jul 2007 02:38:38 −0700
Don’t know why Aonix haven’t bothered
to post here but they’ve opened up their
UML tool “Ameos” as “OpenAmeos”
Haven’t spent more than 5 minutes
looking at it yet but it seems to offer both
forward source code generation and
reverse into UML support for both Ada95
and what looks like support for
“Ravenscar” Ada 95.
Newsgroups: comp.lang.ada
Subject: Re: New open source UML tool

including Ada support
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Tue, 10 Jul 2007 20:28:37 +0200
> I also fear (since the tool you get is an

exe file) that it won’t be easily portable
to Unix (but this is another problem).

I think Ameos has a few ideas in common
with Software through Pictures™, a
venerable tool. “Since 1985 we have been
developing StP consistently and adapting

our products to the latest technologies and
requirements. Today structured methods
(StP/SE) like Structure Analysis and
Structured Design are supported, as well
as the Unified Modeling Language
(StP/UML) in the OO range.”
There are a few snapshots showing Motif
interfaces.
From: Dave Wood

<dave.wood@aonix.com>
Newsgroups: comp.lang.ada
Subject: Re: New open source UML tool

including Ada support
Date: Mon, 16 Jul 2007 17:38:26 −0700
> […] But at the moment there is only an

executable, no source. And I have been
wondering about the license this
executable is under, since anybody
getting it, can’t redistribute it under the
LGPL/modified-whatever, because,
well he hasn’t gotten the source (and
probably not not LGPL license too,
because that would guarantee him the
source).

[…]
We decided to put Ameos into open
source, and we made certain sources
available IMMEDIATELY to existing
Ameos users on an as-needed basis. As
such “is available” is not inaccurate. We
also went ahead and announced the open
sourcing so other people would know
about it. I don’t want to debate press
release semantics, but IMO this one is
fine.
Why the delay? The reality is that a
couple components of the sources need to
be “cleansed” of encumbrances before the
sources can be put on the web site for
general availability. To be distinguished,
this cleansed version is called
OpenAmeos.
This should happen within a few weeks.
Unless you happened to have a burning
need for Ameos sources RIGHT NOW, I
wouldn’t expect this interim period to be
too painful for anybody. As you can see,
the executable is provided for anyone
with actual work needing to be done, and
is indeed free as beer and will make you
almost as happy as drinking free beer.
[…]
The OpenAmeos sources and LGPL
license agreement will appear “soon” on
the OpenAmeos.org web site. Please
enjoy your free software, and free
sources, which follow many, many years
of hard work by many talented engineers.
Regards,
Dave Wood
VP Marketing
Aonix
Newsgroups: comp.lang.ada
Subject: Re: New open source UML tool

including Ada support
From: Georg Bauhaus

<bauhaus@futureapps.de>

Date: Tue, 17 Jul 2007 11:36:54 +0200
Indeed, the software has made me see the
tools again that I once had an opportunity
to evaluate (as StP/UML). I’d like to point
out that Ameos has a number of features
not usually present in UML tools. Among
these are linking parts of specification
documents to parts of the model and
performing model checks.
IIRC, code generation is/was based on a
template mechanism (these were
updated/reworked/… some time ago).
FWIW, the license text can be read now
by performing an installation of the
software.

Aonix — ObjectAda for
Windows V8.4
Aonix ObjectAda Supports Windows Vista,

.NET 2005
Best selling Ada technology updated for

latest Microsoft platform
San Diego, August 27, 2007
Aonix®, a provider of solutions for
safety- and mission-critical applications,
announced the release of ObjectAda for
Windows V8.4. ObjectAda for Windows,
the most popular commercial Ada
development solution for Windows
platforms, provides a complete enterprise-
level environment for the development of
Windows applications using the Ada
programming language. This latest release
now enables development on the
Microsoft Windows Vista platform and
lets developers use ObjectAda with the
Microsoft Visual Studio .NET 2005 tools.
ObjectAda for Windows also plugs
seamlessly into the Eclipse environment.
ObjectAda for Windows 8.4 includes the
comprehensive Ada libraries needed for
calling Windows Win32 and the Visual
C++ .NET 2005 MFC interfaces from
application source code written in Ada. In
ObjectAda for Windows, these Ada
binding libraries are fully compatible with
the Microsoft Visual Studio .NET 2005
tools and libraries. ObjectAda for
Windows can either be used standalone or
in combination with the Visual Studio
.NET 2005 compilers and the latest
Windows Platform SDK. ObjectAda for
Windows generates symbolic debugging
information compatible with the Visual
Studio .NET 2005 debugger and thereby
enables debugging of complex
applications written in multiple
languages, such as C/C++ and Ada.
“ObjectAda for Windows v8.4 builds on
the strengths of this product evident from
its inception,” noted Dave Wood, vice
president of marketing at Aonix. “Its
strengths are an easy-to-use development
environment, excellent compiler
performance, and capacity to support
development of large and complex
mission-critical applications. This latest
release enables customers to use

Volume 28, Number 3, September 2007 Ada User Journal

Ada-related Products 141

⁃ Fixed a problem with private parts of
various kinds of units not being
recognized as private.
⁃ Fixed a letter casing problem with rep
specs.
⁃ Numerous upgrades to the AXF2Ada
stylesheet.

ObjectAda in combination with the
current suite of Visual Studio .NET 2005
compilers and tools from Microsoft and
use the Windows Vista platform for the
long-term evolution and maintenance of
mission-critical applications.”
In addition to the basic compiler
development package, an upgrade
package called ObjectAda Project Pack
contains AdaJNI, an interface to call
Java™ programs from Ada, and the
AdaNav™ toolset, which provides
complete system HTML source-
navigation capabilities as well as call- and
unit-tree graphical reporting and
automatic data dictionary generation. The
AdaNav profiler also offers run-time
performance reporting to identify
application hot spots.
ObjectAda for Windows gives developers
the choice between the traditional Aonix
IDE for development and the new
AonixADT™ Eclipse plug-in. Geared to
maximize developer ease and efficiency,
AonixADT incorporates Ada-project
awareness, an Ada-language sensitive
editor, Ada-language compile and build
capabilities, and a complete Ada debugger
interface, enabling Ada developers to
enjoy state-of-the-art interface
capabilities.
[See also “Aonix — ObjectAda for
Windows 8.2” in AUJ 27-4 (Jun 2007),
p.207. —su]

Excel Software — WinA&D
and WinTranslator
WinA&D and WinTranslator for PHP
Software Design, Requirements
Management and Model Generation Tools
August 10, 2007 — Excel Software is
shipping a new version of the WinA&D
modeling tool and WinTranslator
reengineering tool that supports PHP
software design, code generation and
model generation from code.
PHP is a modern scripting language for
procedural and object-oriented
programming. It drives popular web sites
that often grow into large-scale
development projects. WinA&D adds
PHP modeling enhancements and code
generation from class diagrams or
structure charts. Often PHP programs
provide the glue between web pages and a
database engine. Data models drawn in
WinA&D can generate the SQL schema.
WinTranslator scans PHP source code to
extract design information presented as
class diagrams and structure charts in
WinA&D. Structural diagrams and
dictionary information extracted from
legacy source code, class frameworks or
open source projects yield reusable code
assets in minutes. WinA&D and
WinTranslator provide a rich, scalable
modeling environment with code

generation from models and model
generation from code.
 ⁃ UML Class Models to and from C++,
 C#, Java, Delphi, Ada, or PHP
 ⁃ Rich Data Models to and from SQL
 ⁃ Structure Charts to and from C,
 Pascal, Delphi, Basic, Fortran or PHP

In this release is the in-work version of
axf2ada.xsl, an XSLT stylesheet that
converts AXF into Ada source code. It is
a work in progress, and currently can
regenerate the Avatox and DTraq
dtqserver source code from their AXF
representations. For more information
about axf2ada, see the Avatox web page.

WinA&D is a comprehensive tool for
system models and simulation,
requirements management, structured
analysis and design, object-oriented
UML, multi-task and database design.
The new release streamlines requirements
traceability, adds fast global search across
thousands of files and folders and fully
automates model generation of multi-
threaded software systems.

Avatox 1.8 is available at
www.mckae.com/avatox.html.

PHP programs are event driven by end-
user actions like clicking a button or
selecting a menu on a web page. A user
event may trigger a thread of execution
running thousands of lines of PHP code.
WinTranslator and WinA&D sift through
and identify execution threads, then
present each in a structure chart. Reused
program branches are presented on a
shared diagram. The same automated
process applied to embedded, real-time C
code requires little human effort to reveal
the structure of a large software system.

Date: Sat, 01 Sep 2007 07:43:16 −0500
From: Marc A. Criley <mc@mckae.com>
Newsgroups: comp.lang.ada
Subject: Re: Announce: Avatox 1.8 is now

available
> Interesting — I still wonder why not

XMI. With XMI we could feed the
output into tools like umbrello [2]
which would be the first step towards
an Ada UML tool with round trip
engineering.

That’s a fair question.
AXF is seen as a first step. First let’s get
the Ada into a more malleable form that
can be processed by XML tools and
technologies. Then it becomes more
amenable to content extract and
transformation, with Avatox generating
“AXFPoint” (AXF Points Of INformation
for Transformation) elements to to assist
with transformations by providing
information beyond that of the basic
ASIS-derived semantic information.

The new WinA&D 5.1.1 and
WinTranslator 3.0.1 release is a free
download for current 5.1 and 3.0
customers. WinA&D for Windows has a
Standard edition at $495, Desktop edition
at $1195 and Developer edition at $1995.
A site license allows multi-user, team
dictionary and requirements.
WinTranslator is $495. See
www.excelsoftware.com for product
information, demo editions, pricing and
secure online ordering. In other words, AXF -> UMI would be

easier than Ada -> UMI because you’ve
lessened the “impedance mismatch”
between the source and target. In addition,
if you want to change the way Ada
constructs are mapped to UMI (or any
other target), or if you need to adapt to a
revised UMI, it’s almost always going to
be much simpler to alter an XML
processor—especially if it’s stylesheet
based—than the Ada-to-XML generator.

Company Contacts
Excel Software
Ph: (505) 771-3719
Fax: (505) 771-3718
Email: info@excelsoftware.com
Web: http://www.excelsoftware.com

McKae Technologies —
Avatox 1.8

Date: Sat, 01 Sep 2007 15:33:46 −0500 From: Marc A. Criley <mc@mckae.com>
From: Marc A. Criley <mc@mckae.com> Date: Fri, 31 Aug 2007 20:10:36 −0500
Newsgroups: comp.lang.ada Newsgroups: comp.lang.ada
Subject: Re: Announce: Avatox 1.8 is now

available
Subject: Announce: Avatox 1.8 is now

available
> So: Avatox (Ada, Via Asis, To Xml) is an

application that traverses Ada compilation
units and outputs their ASIS
representation(s) as XML document(s) in
the Avatox XML Format, AXF, file
extension “axf”. The format of the XML
in the document can be configured, and
supplemental source annotations can be
generated.

> .adb ==Avatox==> .axf ==XXX==>
.xmi ==xmi2code==> .adb

> is easier than
> .adb ==Avatox==> .xmi

==xmi2code=> .adb
Actually, yes :-)
The reason is that adb => AXF is an
almost mechanical translation, AXF being
an XML representation of the ASIS-

Changes since version 1.7:

Ada User Journal Volume 28, Number 3, September 2007

mailto:info@excelsoftware.com

142 Ada and CORBA

derived structure of the source program.
And not least, Avatox is pretty much
done.
Going directly from Ada to XMI,
however, is a much more analytical
problem, requiring the mapping of Ada
constructs to XMI equivalents. And from
what I’ve experienced with Source Code
2 Design Model converters (for any
language) they don’t do a great job. I
mean, what comes out is a pretty prosaic
representation of the _code_ as UML (or
whatever) artifacts. You would not have
diagrammed the system this way, and to
try to employ some higher level
intelligence in the converter to recognize
programming idioms and abstractions and
then map _those_ to “better” XMI
requires a lot more work (and the fact that
I don’t see it in commercial tools tells me
that it requires a LOT more work). Also,
AXF retains _all_ the information in the
original source, including comments,
line/column extents (which gives you the
original whitespace), etc. Going from
source code to model you tend to start
omitting things because of the differing
levels of abstraction.
> Only we would need XXX
Yes, which could be built incrementally.
Instead of trying to go straight from AXF
(or Ada source) to XMI, you can do some
filtering, some simple transformations,
some more filtering, some pattern
recognition, some transformations, and
eventually end up with XMI.
In this case you then have:
.adb ==[Avatox+AXF2XMI]==> .xmi
==xmi2code=> .adb
And there you go! Have at it! :-)
[See also “McKae Technologies —
Avatox 1.7” in AUJ 28-2 (Jun 2007),
p.84. —su]

Objektum — OOUnit
Objektum Launches ALM Toolset Plug-In

Programme
Croydon, UK – July 4th, 2007 –
Objektum (www.objektum.com), the
leading European provider of software
training and consulting services, today
announced that it has launched a
programme to provide support for
Application Lifecycle Management
(ALM) toolsets. Objektum has developed
two plug-ins for the acclaimed ARTiSAN
Studio® toolset:
Karner Use Case Based Estimator
Use case modelling is a technique that has
been widely used throughout the software
industry to describe and capture the
functional requirements of a software
system. Determining use case points is
now becoming the de-facto method for
estimating software development early in
the lifecycle. Objektum’s use case based
estimator plug-in utilises the Karner

method to determine the effort/cost
required to fully implement a use case, or
collection of use cases.

Objektum’s approach is fresh and
innovative. Its unique training techniques
add value by enhancing the effectiveness
of its courses and workshops whilst its
technical expertise offers creative
solutions to industry problems.

Through this fully-featured plug-in,
ARTiSAN Studio® users can now
estimate the effort and cost associated
with developing a use case, or set of use
cases that form a release, held in the
model. Technical and environmental
factors as well as cost weightings can be
adjusted and saved within the model
allowing project managers to more
accurately manage software releases.

Objektum participates in industry
organisations such as OMG, INCOSE,
Ada-UK and others to maintain its cutting
edge position within the systems and
software development arena – Objektum
also provides software development
services.

OOUnit Objektum features several leading FTSE
100 companies in its client list. The testing of object-oriented software is

fundamentally different from the testing
of non-object-oriented software due to
such factors as Information hiding,
Encapsulation and Inheritance. The
OOUnit framework integrates with
ARTiSAN Studio® to overcome these
challenges to provide a seamless
environment for developers and testers to
generate automated test cases, build upon
the best practise of well-known test tools,
such as IPL’s AdaTEST and the AUnit
framework.

Contacts:
Andy Bissell, Derek Russell
Objektum Ltd.
Phone: 0800 019 49 50
E-mail: info@objektum.com

Ada and CORBA
OMG Data Distribution
Service bindings
From: Per Sandberg

<per.sandberg@bredband.net>
By simply right-clicking a class in
ARTiSAN Studio®, the test infrastructure
can be automatically generated (attributes,
operations, parameters etc), taking the
tedium out of unit, integration and system
testing. Stubs can be automatically
created allowing testers to concentrate on
the test sets (initial data and expected
results) and not the labour intensive
frameworks or scripts normally associated
with testing. Currently OOUnit supports
the Ada programming language but a
C/C++ variant is to be launched soon.

Newsgroups: comp.lang.ada
Subject: DDS and Ada
Date: Fri, 22 Jun 2007 14:54:33 +0200
We are in the process of producing a thick
Ada 2005 binding to DDS the current
plan is to write a binding that resembles
of the Java binding specified by OMG.
And the binding shall only depend on the
C libraries for DDS as specified by OMG.
Artifacts to be produced:
⁃ IDL to Ada generator
⁃ Support packages for the generated
code.
⁃ Bindings as specified by the DDS.idl
file.

Derek Russell said “At Objektum we have
used our insight into the UML
development lifecycle and toolset
technologies to launch an ALM toolset
plug-in programme.” He adds “We see
our plug-ins as enabling the convergence
of technologies to maximise the
efficiency of managers, analysts,
developers and testers. We are working
closely with companies such as
ARTiSAN Software to develop a suite of
fully integrated tools that support the
entire software development lifecycle.”

The current path is to use the idl2Ada
specification for CORBA and and then
tweak the bindings to resemble of the
DDS Java interface.

AdaCore — OMG tags
assigned to PolyORB
From: AdaCore Developer Center About Objektum
Date: Thursday August 2, 2007 Objektum is an ISO 9001:2000 certified,

independent provider of tailored training,
consultancy and mentoring, specialising
in object oriented, real-time and
embedded systems. Its customised
courses and workshops are designed to
provide the skills, tools and knowledge
necessary to implement systems
accurately and de-risk projects.

Subject: [polyorb] Official OMG tags
assigned to PolyORB

RSS: www.adacore.com/category/
developers-center/development-log/feed/

PolyORB has received official OMG
profile tags, service tags, component IDs,
vendor minor code IDs and ORB type IDs
from the OMG. Note that users who rely
on PolyORB-specific features across
partitions in an application (including all
users of the DSA application personality)
will have to upgrade all partitions at the
same time so that they use a consistent set
of tags.

Objektum’s consultancy and mentoring
service provides its technical experts to
work alongside existing teams assisting in
the integration of new technologies and
processes. Objektum is a specialist in the
UML2.0, SysML and CORBA standards.

Volume 28, Number 3, September 2007 Ada User Journal

References to Publ icat ions 143

Ada and GNU/Linux
Debian transition to GCC
4.2
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Newsgroups: comp.lang.ada
Subject: Ada in Debian: transition to GCC

4.2
Date: Thu, 28 Jun 2007 19:19:12 +0200
I’ve just completed the task of updating
the existing patches from GCC 4.1 to
GCC 4.2. These patches introduce
libgnatvsn and libgnatprj, and link
gnatmake and friends dynamically rather
than statically. Now, the next task I’ve
assigned myself is to build the
setjump/longjump version of libgnat in
addition to the zero-cost exception
mechanism. Would anyone be interested
in participating?
I am planning to upload gnat-4.2 without
SJLJ this weekend or early next week,
after today’s upload of gcc-4.2 has been
built on all architectures. I have not yet
started work on SJLJ; that will come in a
future upload. Help is appreciated to test
GCC 4.2, build the SJLJ version of the
library, and move gnat-glade (the
distributed systems) to GCC 4.2 with
SJLJ.
If you want to build gnat-4.2 for yourself,
go to [1] and read the files
README.maintainers and TODO.
GCC 4.2 is already the default Fortran
compiler in Debian unstable. The plan is
to transition C and C++ packages to GCC
4.2 in the next weeks [2], with the
ultimate goal to use GCC 4.2 as the
default compiler for all languages except
Java.
It is not yet known at this point whether
GCC 4.3 will be released in time for
Lenny, the next stable version of Debian
which is scheduled for release in October
2008 (the toolchain freeze will take place
6 months prior to that). So, I would like
to complete a transition of all Ada
packages to 4.2 before considering 4.3.
That transition requires that all items in
the TODO list be completed first.

Ada and Macintosh
GPS 4.0 for Mac/PowerPC
Date: Tue, 05 Jun 2007 13:20:44 +0300
Subject: Re: Looking for GPS 4.0 for

Mac/PowerPC
From: Martin Krischik

<krischik@users.sourceforge.net>
Newsgroups: comp.lang.ada
> unfortunately the latest GPL-ed version

of GNAT/GPS (2007) is available only
for Windows and Linux, the Mac/PPC
binary is no longer offered by AdaCore.

I am wondering whether it will be made
available soon, or, if not, is there
anyone who compiled it for the
Mac/PPC? I tried to compile the system
from the Linux sources but there are so
many libraries missing that I gave up…
:-(

All the libraries needed are available from
The GNU Ada Project. If you search our
repository you will also out which lib to
compile first.
Now the bad news: GPL 2007 was not
able to compile the newest GPS 4.1.1 —
in fact no available compiler is. The next
best — GPS 4.1.0 — can be compiled
with GCC 4.2.0 but again not with GPL
2007. Probably the reason why
GNAT/GPL 2007 comes with a quite
outdated GPS.
[1] http://gnuada.sf.net
From: Simon Wright

<simon.j.wright@mac.com>
Newsgroups: comp.lang.ada
Subject: Re: Looking for GPS 4.0 for

Mac/PowerPC
Date: Sun, 03 Jun 2007 18:55:12 +0100
I believe there was some problem
building gnat-gpl-2007 … but there is an
FSF compiler here:
http://www.macada.org/macada/
Welcome.html

References to
Publications
ARTiSAN Newswire
[Extracts from the table of contents. See
elsewhere in this news section for selected
items. —su]
Date: 11 Jul 2007 14:28:28 −0000
To: santiago.uruena@upm.es
From: ARTiSAN Software Tools

<info@artisansw.com>
Subject: ARTiSAN Newswire — July2007
Welcome to the July edition of the
ARTiSAN Newswire. In this issue we
bring you news about our NEW SysML
poster, Objecktum Plug-In programme,
Events we are attending and Training
course Information.
Latest News
Objektum Launches ALM Toolset Plug-
In Programme
As part of Objektum’s Application
Lifecycle Management (ALM) Plug-ins,
Objektum now offers the following plug-
ins for the acclaimed ARTiSAN Studio®
toolset:
⁃ Karner Use Case Based Estimation plug-
in: A fully integrated plug-in that allows
project effort and cost to be estimated
based on use cases held in the model.
⁃ OOUnit: An integrated plug-in that
generates executable test cases from

classes held in the model. The test
framework exploits the features of
AdaTest or AUnit (C / C++ coming
soon).
[…]
Upcoming events for your diary:
The Ada UK Conference 2007. Sept 25th
– Manchester, UK
This event is organised to promote
awareness of the Ada programming
language, and to highlight the increased
relevance of Ada in safety- and security-
critical programming. We will be
exhibiting and presenting a paper on
“Implementing Design Patterns in Ada”.
Register now: http://www.ada-uk-
conference.co.uk/index.html
[…]
To find out more about this course and the
other courses we offer, please visit our
Service and Solutions are on our website:
http://www.artisansw.com/services/
training/courses/

EE Times
From: Bob Spooner <rls19@psu.edu>
Newsgroups: comp.lang.ada
Subject: reply to article in EE Times
Date: Mon, 9 Jul 2007 16:10:15 −0400
Organization: Penn State University, Center

for Academic Computing
Robert Dewar, President and CEO of
AdaCore has replied in the Crosstalk
column of the July 2, 2007 issue of EE
Times to some statements in Richard
Goering’s article “Ada 2005 speaks to
real-time embedded applications.” Look
on page 48.

Application Software
Developer
From: AdaCore Developer Center
Date: Wednesday July 11, 2007
Subject: Need Secure Software?
RSS: www.adacore.com/category/

developers-center/development-log/feed/
Following on from Ben Brosgol’s SSTC
paper, this week sees the publication of an
interesting article on language choice for
security-critical software:
Security in modern embedded systems is
critical — software developers must keep
ahead of the “bad guys”. A key decision
is the choice of programming language:
while some languages make it easier to
produce secure code, others seem to
exacerbate rather than solve the problem.
This article identifies the key
requirements that a programming
language must satisfy, and shows how
Ada effectively meets these demands.
To read the article in full, [see
http://www.applicationsoftwaredeveloper.
com/features/june07/article2.html —su]

Ada User Journal Volume 28, Number 3, September 2007

144 References to Publ icat ions

GNAT Pro Insider
newsletter

[see http://www.adacore.com/wp-
content/files/attachments/BrosgolGiccaPr
esentation-SSTC2007.pdf —su]

From: AdaCore Developer Center
Date: Wednesday July 4, 2007
Subject: Spring newsletter available
RSS: www.adacore.com/category/

developers-center/development-log/feed/
The latest edition of the GNAT Pro
Insider newsletter is now available. This
edition includes articles on:
⁃ What’s New in GNATbench 2.0
⁃ Major New Air Traffic Control System
Using GNAT Pro
⁃ Current Releases
⁃ Spotlighting a GAP Member
⁃ Ada 2005 is an Official ISO Standard!
⁃ In the Pipeline
⁃ Interview with Arnaud Charlet
⁃ Technology Webinars
⁃ AdaCore Partner Vector Software Helps
Certification Effort for DO-178B
⁃ AdaCore at Conferences
To download the newsletter [see
http://www.adacore.com/wp-
content/files/attachments/adacore_news_0
607_web.pdf —su]

SSTC
From: AdaCore Developer Center
Date: Monday July 2, 2007
Subject: Designing High-Security Systems
RSS: www.adacore.com/category/

developers-center/development-log/feed/
Ben Brosgol’s presentation from the
recent SSTC event entitled “Designing
High-Security Systems: A Comparison of
Programming Languages”
The high degree of interconnectivity in
today’s computing systems and the
increasing threat from technically
sophisticated adversaries make security an
essential requirement in modern military
software. Many technical factors affect
the ease or difficulty of meeting this
requirement, including the programming
language, the software development tools,
the operating system, and the application
program interface. This presentation
focuses on the programming language,
which is arguably the factor that a
development project manager can control
most directly, and assesses three major
language families with respect to the
criteria that a secure system must meet:
⁃ Ada 2005 and the Ada-based SPARK
language
⁃ C and C++
⁃ Java and its relevant extensions (Real-
Time Specification for Java, Safety-
Critical Real-Time Java)
The presentation focuses in particular on
how modern language features (such as
the data type model, Object-Oriented
Programming (”OOP”), exception
handling, and concurrency) affect
application security, and compares the
requirememts for security and for safety.

Micro Technology Europe
From: AdaCore Developer Center
Date: Monday September 3, 2007
Subject: Ada: New features, same

performance for the embedded market
RSS: www.adacore.com/category/

developers-center/development-log/feed/
Jose Ruiz describes some of the the
advantages of using Ada for developing
embedded systems in this month’s Micro
Technology Europe magazine.
“The complexity of embedded software
increases at least at the same pace as the
processing power of the processors used.
Additionally, many embedded
applications require high reliability or are
safety-critical. To meet these demands a
programming language needs high-level
features that support sound software
engineering…”

Avionics Magazine
From: AdaCore Press Center
Date: Thursday September 6, 2007
Subject: C-130 Avionics Modernization

Program
RSS: www.adacore.com/category/

press-center/feed/
Avionics Magazine
Having survived ethical, technology and
cost challenges, the C-130 Avionics
Modernization Program is nearing key
development and production milestones

COTS Journal
From: AdaCore Press Center
Date: Thursday September 6, 2007
Subject: Ada a Winner for High-Integrity

Real-Time Apps
RSS: www.adacore.com/category/

press-center/feed/
COTS Journal
Despite some challenges from C++ and
Java, Ada is still the technology to beat in
high-integrity real-time military
applications. New features in Ada 2005
help sweeten the deal.

Blue GNU — AdaCore
Interview
Author: Don Parris
From: AdaCore Developer Center
Date: Wed, 2007-08-15 23:21
Subject: Ada Core Technologies: Free

Software Business Model Is Viable
RSS: http://blue-gnu.biz/blog/feed
It has been said there is no such thing as a
‘true’ Free Software business. Blue GNU
interviewed the Ada Core Technologies
team to learn about the company that has
been a ‘true’ Free Software business for

over 20 years. Ada Core is one of a few
businesses listed as such by the Free
Software Foundation/GNU Project.
Note: In studying the company’s website,
I mistakenly thought that Gnat Pro must
be non-Free software, but the ACT team’s
response helps to clarify the issues for our
readers.
First off, What is Ada, and in what kinds
of applications is it most commonly used?
(For non-programmers in the audience)
Ada is a modern programming language
that was first created in 1983 and was
recently ratified by ISO for its third
revision. It is primarily used in large,
long-lived applications where reliability,
efficiency and safety are critical, such as
commercial and defense aircraft avionics,
air traffic control, railroad systems,
financial services and medical devices. To
learn more about the language peruse the
Ada Information Clearing House at:
http://www.adaic.org
Can you tell me a little bit about the
Executive team’s involvement in the
development of Ada?
Several members of AdaCore’s executive
staff were involved with the original
GNAT Ada development effort at NYU.
See:
http://www.adacore.com/home/company/
exec_team.
What events led up to the launch of
AdaCore Technologies?
In 1994, at the completion of the GNAT
Ada project at NYU, members of the
GNAT Ada development team founded
AdaCore Technologies.
AdaCore was the first company to launch
full language support for Ada 95, the
second ISO revision of the language.
AdaCore developed a full Ada compile
system to support the language based on
the GNU technology, called GNAT. This
technology was and is still made available
to the GNU community free of charge.
What AdaCore provides its customers is a
production quality version of this product
named GNAT Pro along with top notch
support for the product in terms of bug
fixes and enhancement requests, as well
as the industry’s foremost Ada language
expertise to help customers better
understand the language and design their
applications.
How big, in terms of employees, is
AdaCore?
AdaCore has approximately 55 employees
worldwide. AdaCore has North American
headquarters in New York and European
headquarters in Paris.
The GNU Project lists AdaCore
Technologies as developing Free
Software exclusively. Is that still true, or
have things changed over the years? I ask
because the website refers to
“commercial open” technology, yet

Volume 28, Number 3, September 2007 Ada User Journal

Ada Inside 145

GNAT Pro pricing appears to be on a
“per seat” basis. Is GNAT Pro Free
Software?
GNAT Pro is free software. However, it is
important to understand that the “Free” in
Free Software has nothing to do with cost,
it is about the freedom of the license.
Also, “commercial” is not a synonym for
“non-free.” That confuses two entirely
different issues. A program is commercial
if it is developed as a business activity. A
commercial program can be free or non-
free, depending on its license. The two
questions, what sort of entity developed
the program and what freedom its users
have, are independent.
AdaCore is the original creator of GNAT
and the primary maintainer of the product.
Some versions are available free of
charge. However, customers typically
want top quality support beyond just free
software. AdaCore provides this top level
support via a supported version of the
GNAT product named GNAT Pro along
with an industry-leading staff of Ada
language experts. This all adds up to our
customers being successful in their
development efforts. […]
The million-dollar question is, how does a
business survive — never mind thrive —
“selling” Free Software? Aren’t you
giving away the farm?
Selling Free Software is a perfectly viable
business model. AdaCore has been
growing at a rate of approximately 30%
per year. This is due mostly to word-of-
mouth about the incredible added value
we provide behind the GNAT Pro
product, in terms of correcting problems,
adding features and such, as well as the
expertise we provide to help our
customers successfully use the Ada
language for their development projects.
How does your model compare to that of,
say, MySQL, a company that dual-
licenses its software?
We use dual licensing in the context of
our academic program, but for our
commercial customers we use only Free
Software licensing.
What is unique to Ada Core’s situation
that makes Free Software development a
viable business model?
Free Software is a viable model in many
cases. AdaCore’s model is not unique.
Just like Microsoft, we sell copyrighted
software with support and a license
allowing limited copying. The only
difference is that the license gives much
greater freedom to the recipient, which is
a commercial advantage for our
customers. Obviously, our model is also
heavily support-based.
What trends do you see, away from or
towards, a greater focus on Free Software
businesses?

There is a clear trend towards greater use
of Free Software licenses (e.g., in the
wide adoption of GNU/Linux systems)
Anything you would like to add or that
you think our audience should know?
We strongly urge you to check out The
Free Software Foundation website, which
should clarify many of the questions you
have regarding “Free Software” in
general:
http://www.fsf.org/licensing/essays/free-
sw.html.
And they said it couldn’t be done.

Ada Inside
UK — NextGeneration Air
Traffic Control Systems
From: AdaCore Press Center
Date: Tuesday June 19, 2007
Subject: GNAT Pro Chosen for UK’s Next

Generation ATC System
RSS: www.adacore.com/category/

press-center/feed/
NEW YORK and TAMPA, Fl., June 19,
2007 — Systems & Software Technology
Conference — AdaCore, provider of the
highest quality Ada tools and support
services, today announced that Praxis has
selected AdaCore’s GNAT Pro for the
implementation of the UK’s next-
generation Interim Future Area Control
Tools Support (iFACTS) air traffic
control system for its client NATS.
iFACTS will use a new program that is
being designed and implemented from the
start with the SPARK Ada language, a
choice based on Ada’s proven strength in
developing large, long-lived, high-
reliability systems. The program will be
using the GNAT Pro native toolset on
IBM AIX workstations as the
development environment. AdaCore’s
unparalleled support is one primary
reason that Praxis chose AdaCore.
AdaCore provides state of the art Ada
compilation systems and support for this
and many other native and embedded
platforms.
iFACTS will provide Air Traffic
Controllers with a set of advanced tools to
increase capacity to meet the growing
demand from the civil aviation industry. It
will also alert Controllers to flights which
are not following their flight plan and
detect medium term conflicts, which will
also enhance safety capability.
Keith Williams, Praxis’ Managing
Director, said, “It is extremely exciting to
be able to deploy our capability in critical
software on the iFACTS project and work
with partners who combine advanced
technology with rigorous safety
certification — AdaCore was the perfect
solution for our high integrity SPARK
Ada development needs.”

“iFACTS is the future of air traffic
control,” said Robert Dewar, President
and CEO, AdaCore. “The combination of
Praxis’ experience in critical systems
engineering and the high integrity of
SPARK Ada enables the development of
this vitally important and sophisticated
system.”
NATS has pioneered research and
development of advanced air traffic
control tools for several years from its
simulator and research centre at Hurn.
The iFACTS project will deliver a subset
of these tools onto the system at the
company’s main en-route Control Centre
at Swanwick in Hampshire. Currently
undergoing trials, iFACTS will be
installed at the London Area Control
Centre, Swanwick. Following full
development, training, and installation of
a new workstation at Swanwick, iFACTS
will be introduced into service.
About Praxis
Praxis is a systems engineering company
specialising in safety- and mission-critical
applications. Praxis leads the world in
specific areas of advanced systems
engineering specifically: ultra low defect
software engineering, safety engineering
for complex or novel systems, and
tools/methods for systems engineering.
Praxis offers clients a range of services
including turn-key systems development,
consultancy, training and R&D. Key
market sectors are Aerospace, Defence,
Air Traffic Management, Railways and
Nuclear. The company operates
internationally with active projects in the
US, Asia and Europe. UK offices include
London and Bath. It is wholly owned by
Altran Technologies which is a global
leader in innovation engineering and
employs 16,000 engineers across the
world. www.praxis-his.com

UK — SPARK Ada for
Thales
Praxis wins contract to supply SPARK Ada

for Thales aircraft software system
30 August 2007 — Praxis has won a
contract with Thales UK, Air Operations
in Wells, to supply the SPARK Ada
toolset as part of ongoing product
development by Thales in Aircraft
Mission management and Mission
Planning. Thales UK specialises in
developing high integrity software for
evaluation and validation of mission plans
and to ensure that this software is
developed to the required standard,
SPARK Ada is used as part of a rigorous
development process. One of the primary
goals was to select a tool with a proven
reputation in the Safety community. The
SPARK tool met all of the requirements
and is now being used on a major
programme.
SPARK provides a programming
language and verification environment for

Ada User Journal Volume 28, Number 3, September 2007

146 Ada Inside

high-integrity software. The core SPARK
language combines an unambiguous
subset of Ada with annotations or
“contracts” that allow wholly static
verification of key program properties
such as information-flow, absence of run-
time errors, program correctness, and
invariant safety and security properties.
The toolset offers a combination of
soundness, completeness, efficiency and
analytical depth which is unmatched by
any other language. SPARK also meets
all known regulatory requirements and
standards for high-integrity software.
“We are very pleased that Thales UK has
selected SPARK for this programme” said
Rod Chapman, SPARK Products
Manager and Principal Engineer at Praxis.
“This win further re-enforces SPARK’s
position as the de-facto choice for
software where high-integrity or ultra-low
defect rates are required.”

Successful Ada projects
From: Ed Falis <falis@verizon.net>
Subject: Re: Current status of Ada?
Newsgroups: comp.lang.ada
Date: Sun, 26 Aug 2007 18:46:17 GMT
[…] there appears to be a growing
recognition within the Open Group that
Ada has a place for safety and security
sensitive systems. It’s going to take a
long time for it to be completely flushed
away. As you said, there are a surprising
number of programs still using the
language.
From: Ed Falis <falis@verizon.net>
Date: Sun, 02 Sep 2007 20:05:05 GMT
Subject: Re: Current status of Ada?
Newsgroups: comp.lang.ada
And for another perspective that I
consider valuable check out “Lean
Software Strategies” by Middleton and
Sutton. It won the 2007 Shingo award,
which Business Week has called the
“Nobel Prize” of manufacturing. They
recommend Ada not for its technical
merits, but for its role in ensuring the
integrity of the software production
process. An interesting point of view that
may resonate with some of you here.
From: Rod Chapman

<roderick.chapman@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Sun, 02 Sep 2007 21:29:25 −0000
Indeed it did. Jim Sutton (of Lockheed)
was one of the designers of the software
process that’s used on the C130J Mission
Computers. Which programming
language do they use? Yup… SPARK…
:-)
From: Rod Chapman

<roderick.chapman@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Tue, 28 Aug 2007 07:58:35 −0000

> There is no major Ada project that is
visible to the larger community of
software developers.

You don’t consider iFACTS to be a
“major” Ada project? Perhaps you don’t
think it counts because it’s based in the
UK?
> At present, I am the last hold-out for

keeping Ada in some small part of our
curriculum.

I would suggest keeping SPARK on the
curriculum and just quietly forget to tell
your colleagues that it’s Ada… :-)
I can think of one US government agency
that’s very interested in having faculty
teach strong software engineering, static
verification, formal methods and so on:
the NSA. We have several such
universities doing so right now, using
SPARK as the primary vehicle.
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 29 Aug 2007 05:23:09 GMT
OK. iFACTS is a major project.
However, it is not very visible in the U.S.
Agree about JSF. However, the decision
to use C++ was a bit insane.
NSA might be actually using Ada, or it
might be simply exploring it. If they are
using it, some of my former NPS students
who are now at NSA might be in the
picture somewhere. However, I’ll never
know that since they abandon all contact
once they are shackled to their cubicle at
Ft. Meade [NSA headquarters —su].
I am trying to keep an active interest in
SPARK. There are a few professors in
our formal methods area who have an
interest in SPARK and when you next
visit NPS, I’ll make sure you have a
chance to present a little seminar for
them.
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Tue, 28 Aug 2007 04:46:38 −0700
[…] I might not be the most informed in
the subject, but I have an impression that
Ada is currently better supported in
Europe than in US. Some French
universities use Ada quite heavily. I also
have some signals from other European
countries where students choose Ada as a
vehicle for their automatics projects.
From the “spectacular projects
department”, high-speed trains come to
mind. Of course I mean — European
high-speed trains.
The last conference on Ada (and
thereabouts) was held in Geneva.
Some of the frequent posters on this
group work in Europe as well and it looks
like they are using Ada at work.

Projects like AWS or PolyORB seem to
have European origins.
In short — the fact that US military
industry turns away from Ada is at most
the US problem, not the Ada problem in
general. Nothing to fuss about.
Just my 0.05 Euro. ;-)
BTW: Ada Lovelace was European as
well…

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Job Description: United Arab Emirates
Ada Application Developer — United
Arab Emirates
[…] looking for creative Ada 95
Application Developers to work in the
United Arab Emirates to assist our
customers as they solve complex business
problems in unique technology
environments.
We are currently seeking experienced
Ada 95 software engineers who are
personable and able to work
independently on a small team.
Must be familiar with Rational Apex,
Java, C and Sybase.
Salary up to $65 hourly plus living
expenses depending on experience.
Skills and Experience:
 ⁃ Must be US Citizen.
 ⁃ Ada 95 Application Developer with 3
or more years experience required.
 ⁃ Experience must include: Ada 95,
Rational Apex, Java, C, Sysbase
 ⁃ B.S. in Computer Engineering or
Electrical Engineering from a leading
engineering school such as Rose-Hulman
preferred.
Job Description: India
[…]
Essential:
 1. Ada programming hands on (At least
he/she has done programming for 1.5 to
two years)
 2. UML Design hands on (At least he
has done design for 1.5 to two years)
 3. Avionics domain (usage of DO and
ARINC standards)
Added advantage:
 1. Flight Management Concept (FMS)
 2. Rhapsody in Ada/ C
Positions available with a Multinational
co based in Guindy.
Job Description: France
[…]
Mission:
Implementation of software engineering
and numeric techniques for the

Volume 28, Number 3, September 2007 Ada User Journal

Ada Inside 147

development of software for distributed
and mobile systems.

The AdaIC took a survey of Ada usage in
2005. Since the data was self-reported, its
hard to know how accurate the results are.
There is a presentation with a summary of
the results at [1] and a article with results
at [2].

Activities:
⁃ Design and implement middleware for
distributed systems
⁃ Specify middleware modules and
services according to the specific needs of
the distributed application
⁃ Contribute to the existent middlware
created by the group
⁃ Contribute to research projects,
particularly in the domains of real-time
embedded systems, massively parallel
systems and ad hoc networks.
⁃ Specify and model a middleware and
related services for deployment and
verification of the distributed system.
⁃ Port and adapt software to new
machines and new systems.
⁃ Assist and support users of the
developed applications
⁃ Participate in writing of documentation
and project proposals in English and
French.
Skills:
⁃ Knowledge and experience in systems
and networks: Unix, TCP/UDP, SQL
⁃ Knowledge and experience in
programming: C, Java, (Ada appreciated)
⁃ Knowledge and experience in
distribution technologies: CORBA, RMI,
⁃ Experience in software specification and
modeling: UML, ADL,
⁃ Experince in algorithms for distributed
systems: global state, distributed memory
⁃ Experience in verification: petri nets,
synchronous languages
⁃ Degree equivalente to a Master in
informatics
Context:
In a department responsible for teaching
and research in data processing and
networks of a school of engineers leader
in the field of telecommunications
In a group specialised in software
development (10 Professors and 10 PhD
students) and strongly connected to the
competitiveness clusters Cap Digital and
Systém@tic.
 [Translated from French. —su]

Ada usage in secret projects
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Tue, 21 Aug 2007 17:29:01 −0500
[See original post for references —su]
> I am conducting market research

regarding the amount of Ada code in
active use today. […] This estimate
should include, and emphasize if
necessary, legacy code that was written
more than ten years ago and is either
being used as-is or with minor
modifications.

From: Jeffrey R. Carter
<jrcarter@acm.org>

Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 22 Aug 2007 00:53:12 GMT
[See original post for references —su]
> And it is fair the say that the survey

under-reports as many people working
DoD related projects get enough
briefings about violation of export laws
that they are not going to risk their jobs
to answer a survey that asks for specific
project names.

And some projects using Ada
commercially consider it a competitive
advantage and keep it secret.
Richard Riehle made a similar inquiry
about new Ada projects recently (May 03)
and might be able to give you some
additional information. See [3].
From: Markus E Leypold <kontakt@m-e-

leypold.de>
Date: Thu, 23 Aug 2007 10:13:13 +0200
Subject: Re: Current status of Ada?
Newsgroups: comp.lang.ada
> […] It seems to me it’s in the

companies’ best interests to say
whether they are using Ada, since Ada
developers are tricky to get hold of.
Keeping it secret seems to me both
difficult (what do you write in the job
ads?) and counterproductive.

Depends what you’re offering. If you’re
offering a program component it might be
in your best interest to offer it in a
language the customer uses or might want
to use (and if your customer works in
defense or aerospace that might well be
Ada). If you’re offering a complete
application it depends on the customer:
I’ve been bidding for projects where the
customer then went for getting the thing
done in C# (by someone else). I’ve
actually had other projects where the
customer didn’t care too much (because
he’d have to buy maintenance from a
third party anyway). I suggest that in the
latter case it’s often more useful to focus
on the properties / features of the system
to be developed, not on the
implementation technique or the
language: That would only serve to
confuse the customer (looking up Ada in
“the Internet” could even give them the
impression that they are getting sold a
dead end technology and now amount of
“arguing” will server to clean up this
impression: You won’t get the
opportunity to argue very much at all). I
wouldn’t keep the use of Ada secret in
this cases, but neither would I try to dilute
my sales pitch by introducing the
irrelevant question of which technology

will be actually used: The important
bottom lines are features (including
stability, freeness from software defects
and this like).
It rather depends on the given situation
whether commitment to a certain
language or development method is a
competitive advantage. […]
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Sun, 26 Aug 2007 10:51:38 −0700
I once had a commercial client that
required a non-disclosure agreement
about their use of Ada because of
competitive reasons. In their view, their
competitors would use this fact against
them as a sales gimmick. The fear was
that the competitors would ridicule them
for “using a language that was not part of
the mainstream and had been rejected by
the Department of Defense.” […]
As noted in an earlier post, I made an
inquiry some time ago about the current
state of Ada usage. I am constrained
from publishing the names of projects that
are using Ada, but I was surprised to find
that there are still quite a few.
Unfortunately, such constraints do not
help to promote the awareness that Ada is
real and continues to be a valuable tool
for building software systems. I promote
it whenever I can for my own students
and have had thesis students do their M.S.
thesis using Ada. I make it clear in all of
my software engineering classes that Ada
continues to be the most effective
language when one needs to take an
engineering view of the software process.
But individual professors of computer
science are of little importance in the
effort to improve the state of Ada
utilization and awareness. We need some
kind of larger effort. The Ada Resource
Association (or whatever it is currently
called) has proven ineffectual. The
AdaIC web site, while in capable hands,
has no pro-active role. And the Ada
compiler publishers seem to be ashamed
to admit, broadcast, or let anyone know
that they have Ada products. When is the
last time that Rational had any
information about its Ada compiler at a
conference or trade-show? When is the
last time that any Ada compiler publisher
had a booth at a trade-show? When have
we last seen any publicity about the value
of Ada for some major project? Where
has anyone seen an Ada textbook for sale
in a bookstore? Even the computer-
centric bookstores have no books on Ada
— none.
As long as Ada remains invisible the
number of projects will decline. As long
as officials in the DoD believe that Ada is
not supposed to be used for military
projects anymore (many believe just that),
Ada will be in decline. […]

Ada User Journal Volume 28, Number 3, September 2007

148 Ada in Context

From: Maciej Sobczak
<maciej@msobczak.com>

Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 22 Aug 2007 01:44:10 −0700
> And it is fair the say that the survey

under-reports as many people working
DoD related projects

[…]
It is interesting, but the problem is really
in what kind of information this survey is
expected to provide. For the sake of
mental experiment, let’s assume that 50%
of Ada projects are classified. At first
sight, the survey under-reports by 50%.
But if the survey is supposed to provide
some insight on how strong and vibrant is
the Ada community (for example, the
requester wants to be sure that she will
not be left alone with her problems), then
the survey is 100% exact, because it
comes from those contributions that
actually form that vibrant and responsive
part of the community. Anybody else is
effectively out of the community.
It is more or less analogous to the report
that says that we might have fuel
problems within the next N years. Does it
under-reports the reality considering the
fact that there are whole *planets* in our
solar system that are composed almost
entirely of methane or hydrogen? They
might be somewhere there to look at, but
are effectively unreachable in the same N-
years time frame, and so are completely
useless in this context.
What I want to say is that every time a
similar question is raised, the Ada
community tries to “pump up” or visually
inflate itself by mentioning some
nebulous DoD or otherwise classified
activity. This is cheating — the Ada
community is effectively as strong as the
number of people that are able and willing
to talk about their experiences. Everything
that is outside of this is just as useful as
hydrogen on Jupiter.
From: Jeffrey Creem

<jeff@thecreems.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 22 Aug 2007 12:15:01 GMT
If the purpose of the study is what you say
then I totally agree. If the purpose of the
study is to see how many projects/Lines
of code are being done in Ada to
determine if there is enough activity to
support the various vendors so that ‘the
community’ is not left in the cold by lack
of vendor support, then I would assert that
these surveys fail.Note the projects in
question don’t even need to be classified.
Public release of almost any information
can cause problems in big organizations.
From: Steve Marotta

<smarotta@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 22 Aug 2007 15:33:34 −0000

[…] I should clarify the nature of my
interest in Ada usage. I am not
particularly interested in how much Ada
is being used in brand-new code. I am
more interested in knowing how much
legacy Ada code the DoD or other
government agencies are sitting on, either
maintaining or using as-is.

Ada in Context
Unit Checking and Ada
From: Martin

<martin.dowie@btopenworld.com>
Newsgroups: comp.lang.ada
Subject: SI Units — has Ada missed the

boat?
Date: Sun, 08 Jul 2007 08:13:39 −0700
One of my pet hopes for Ada 2005 was
that it would include some method of
automatically checking systems of units at
compilation time or with minimal run-
time checking. Alas it was voted down
due to time pressures and technical issues
(see http://www.ada-auth.org/ai-
files/minutes/min-0403.html#AI324 and
http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/AIs/AI-
00324.TXT?rev=1.3).
C++ now has the Boost library (see
http://svn.boost.org/trac/boost/browser/sa
ndbox/units) with zero-runtime cost (or at
least when optimisation is switched on).
And now Java has a proposal for a similar
beast (see https://jsr-
275.dev.java.net/files/documents/4333/34
956/jsr-275.pdf).
I’ve been playing around with the C++
Boost library and it seems quite good —
at least for the sort of things I would use it
for (embedded avionics).
Is anyone still working on an Ada
solution to this?
From: Kevin Cline

<kevin.cline@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: SI Units — has Ada missed the

boat?
Date: Wed, 18 Jul 2007 00:11:12 −0700
A basic but usable implementation is
obvious to anyone who understands C++
template metaprogramming. Of course a
fully general implementation is
considerably more work.
This is rather unwieldy since Java does
not allow operator overloading. Who
wants to read code like:
time_aloft =
 sqrt(height.times(2).divide(g))

Nor can Java check the correctness of that
computation at compile time.
A satisfactory solution seems impossible
until Ada allows implicit generic
instantiation, and then it would be
relatively simple.

Date: Mon, 09 Jul 2007 10:55:53 +0200
From: “Grein, Christoph (Fa. ESG)”

<Christoph.Grein@eurocopter.com>
Subject: WG: SI Units — has Ada missed

the boat?
Newsgroups: comp.lang.ada
Organization: Eurocopter Deutschland

GmbH
> One of my pet hopes for Ada2005 was

that it would include some method of
automatically checking systems of units
at compilation time or with minimal
run-time checking. Alas it was voted
down due to time

I have to admit that I was the main
perpetrator who killed that proposal.
> Is anyone still working on an Ada

solution to this?
I don’t think so, if you mean a method to
include in the Ada standard.
But there are a lot of such methods
distributed in some home pages, see
Dmitry Kazakov, mine, … (I guess there
are plenty others)
I don’t know C++ and so I do not know
how it deals mit rad, Newton Meters and
Joule in
Work [Joule] = Torque [Newton*Meter] *
Angle [rad]
Or sin x = x + x**3/3! + … where x is in
rad, sin x has dimension 1 (not rad).
Or Bq = 1/s, Hz = 1/s, but Bq ≠ Hz.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: WG: SI Units — has Ada

missed the boat?
Newsgroups: comp.lang.ada
Date: Mon, 9 Jul 2007 11:49:15 +0200
> I have to admit that I was the main

perpetrator who killed that proposal.
Fortunately. Be praised for that!
> I don’t think so, if you mean a method

to include in the Ada standard.
Yes, and if we’d put together more or less
obvious requirements of how an Ada™
solution should look like, we would easily
see a need in some language changes. My
strong impression is that these changes
should go beyond sole units support. For
example, it is quite obvious that the unit
constraint should be put on the object, be
it a floating-point number or a matrix of.
We just don’t have any universally
working mechanism for that. Same with
dimensioned literals, which would imply
a user-defined literals support, etc.
In short, units is just a use case, it should
not be viewed as a language feature.
The new version of my measurement
units for Ada with GTK tree view cell
renderers and combo boxes for
dimensioned values is coming soon.
> I don’t know C++ and so I do not know

how it deals with radians, Newton,
Meters and Joule in …

Volume 28, Number 3, September 2007

Ada in Context 149

Such differences should be handled
outside the unit system. It cannot know
the semantics of the values. So rad = 1 SI.
Or else m (of height) ≠ m (of distance on
a highway)
But how C++ handles (I guess it does not)
 X := Vector (I); -- Both X and Vector
are dimensioned
 Y : Unit := Ask_User_For;
 Z : Magnitude := 5 dB; -- May I have
logarithmic scales?

From: Hyman Rosen <hyrosen@mail.com>
Newsgroups: comp.lang.ada
Subject: Re: WG: SI Units — has Ada

missed the boat?
Date: Tue, 10 Jul 2007 01:26:08 GMT
Here’s a description of implementing
units using the Boost Metaprogramming
Library.
<http://www.boost.org/libs/mpl/doc/
tutorial/dimensional-analysis.html>
I expect that most C++ implementations
will follow the rule that 90% of the way is
enough, and not bother with radians or
trying to distinguish between becquerel
and hertz or Fahrenheit, Celsius, and
Kelvin. But if someone wants to go the
whole way, they can do it. It’s just a
matter of writing more complicated
combining rules for the templates. And
none of it has any runtime overhead at all
— objects of dimensioned types take no
more space than plain numbers.
Date: Wed, 11 Jul 2007 21:27:30 −0400
From: Joe Simon
Newsgroups: comp.lang.ada
Subject: Re: WG: SI Units — has Ada

missed the boat?
Back in the 1980s I was working on a
simulator, where we the software people
wrote the infrastructure and the various
subject area specialists wrote the code for
the things they wanted to simulate.
We (software weenies) created a package
(wish I could remember the name of it)
that provided basic types
LENGTH_UNITS, TIME_UNITS,
SPEED_UNITS, DISTANCE_UNITS,
TEMPERATURE_UNITS,
ANGLE_UNTIS, etc. and then defined all
of the overloaded operators to convert
between those.
The upshot of this was the converse stuff
got so large and complex that we wrote a
program that would read a text file that
would define the conversions i.e.
LENGTH_UNITS = SPEED_UNITS *
TIME_UNITS… etc, the program then
was able to define the base conversion
and the related conversions (
SPEED_UNITS = LENGTH_UNITS /
TIME_UNITS), etc. I don’t remember
the details but there was also a way to
define the conversion from various units
into the generic _UNITS. For instance for
LENGTH_UNITS, METERS would = 1,
feet would be whatever the conversion

from feet to meters is, furlongs would be
defined similarly.
This program would then write the Ada
specs and bodies for the conversion.
Down side:
This was in 1986ish. The “UNITS”
package took about 4 hours to compile
(on a VAX using VAX Ada) and every
component took a long time to compile
because every expression had to be
compared to the myriad of overloads to
determine if the expression was valid.
If a conversion didn’t exist, you added the
appropriate info to the conversion file
(and hope you did it right), checked it
back into CM, and the build ran
overnight. The next morning you could
compile your expression.
Up side:
We NEVER had unit conversion issues,
as the unit analysis was done by the
compiler.
This enabled the subject matter experts to
write code that defined a value of type say
mytime : TIME_UNITS, and myspeed :
SPEED_UNITS, mydistance :
LENGTH_UNITS (sorry rusty Ada
syntax) and then mytime :=
FROM_FOTNIGHTS (10.0) ; myspeed
:= FROM_METERS_PER_SECOND (
100.0); mydistance = myspeed * mytime;
PRINTLN (TO_FURLONGS (
mydistance)) ; and myint : INTEGER ;
myint = 10 ; mydistance = myspeed *
myint ; would not compile.
You can see why the conversion package
got so big… it had to define ALL valid
conversions.
Sorry this was so long. Wish I could
remember more of the details. It was one
of the most fun Ada jobs I worked on.
From: Dr. Adrian Wrigley

<amtw@linuxchip.demon.co.uk>
Subject: Re: WG: SI Units — has Ada

missed the boat?
Newsgroups: comp.lang.ada
Date: Fri, 13 Jul 2007 22:20:32 GMT
Interesting.
I tried out something similar a while back,
and the method was to add the overloaded
functions only when they were needed. I
found that there were rather few
overloaded functions needed in practise.
This is because expressions tend to be
rather stereotypical — exotic
combinations of dimensional expressions
never arise. I think my solution used
generic instantiations, in the end, cutting
the amount of source.
An interesting project which does include
full units and dimensions support is Sun’s
Fortress:
http://research.sun.com/projects/plrg/
Fortress/overview.html

This is very ambitious and complete in
scope — at least for parallel, concurrent
scientific codes.
What do people here think of their
efforts? I don’t see Ada mentioned in
their white papers, even although there’s a
lot of overlap in requirements.
One interesting feature of Fortress is that
“for” loops execute in any order (or
none), by default. This gives the very fine
grain parallelism opportunities I was
talking about here a while a go.
I think any general purpose language
should come with proper physical types
— I’m surprised that it’s normally left
out. (VHDL was the first language I used
which had them)
As regards Ada and units/dimensions, I
think the way forward for most users is to
put the units/physical types into a package
and add overloadings by hand when
needed. More intensive use warrants the
use of generic packages. It’s easy and the
incremental effort is low.
If you want a comprehensive approach,
write an Ada pre-processor to extend the
language with a new syntax for
dimensional types. Use something like
ASIS as a front end, and spit out standard
Ada. One way would be to check
dimensional consistency and then
generate the necessary package(s) with
the particular types and functions needed,
adding “with” clauses where necessary.

Number crunching in Ada
From: Nasser Abbasi <nma@12000.org>
Newsgroups: comp.lang.ada
Subject: Re: Interested about number

crunching in Ada
Date: Wed, 15 Aug 2007 23:43:02 −0700
[See original post for URLs —su]
> I have stumbled upon Ada 95 and I

have found that a recent addition was
made to the language standard [1]. An
addition I, a student of scientific
computing, are highly interested in.

> What is the best online resource to get
into the core of the new high
performance vector and matrix
features? Does there exist some book
(yet) which covers this area? Or any
other field which might be related to
me (concurrency, Fortran bindings
etc.)? I know C and Pascal good and I
have a good start into Fortran 90/95.

> I applicate your time and help. I hope
that, with a push in the right direction I
will be a productive “Ada numerics
hacker” in a near future.

I am also interested in this subject. Check
Numeric Annex for Ada 2005 [2]
It seems to have support for Vector and
Matrix objects, and the following
operations: (there is a version for real and
complex)

Ada User Journal Volume 28, Number 3, September 2007

150 Ada in Context

function Unit_Vector
function Transpose
function Solve
function Inverse
function Determinant
function Eigenvalues
procedure Eigensystem
function Unit_Matrix
This is an old paper called “Can Ada
replace FORTRAN for numerical
computation?” published in 1981 ! [3]
Dr. Martin J. Stift, uses Ada for
Astrophysics [4]
Here is some Finite elements code in Ada
[5]
Just few days ago, I also wrote short Ada
program (even though my Ada is VERY
dusty as I use Mathematica mostly these
days and also Matlab and Maple), I wrote
an Ada program to solve a simple second
order ode using finite elements using the
new Ada2005 Solve function. I wrote the
same code in Mathematica and then in
Ada (and also in Maple). Item #6 on this
page below. It worked great and was very
fast as expected. One nice thing about
Ada as always, is that once one gets a
clean compile, most likely than not, the
code will run without problems. With
other languages/systems, this is not the
case. With the Ada program, once I get a
clean compile, that was it. Using the other
systems, I had to spend more time
debugging run time errors and go back fix
the code, and run again and fix errors,
etc… So the Ada program was completed
much faster than the others at the end. [6]
If you google around, you’ll find some
Ada package for matrix/vector operations
and more scientific code in Ada (such as
fast Fourier transforms, etc..)
I think Ada as a language is great for
numerical and scientific programming.
These were number of discussion on this
vs Fortran on the net, check this one
thread: [7]
I just do not think the current Ada 2005
numeric annex contain enough
functionality.
One can always link to BLAS and
linpack/lapack libraries (which are written
in Fortran), I just googled around for Ada
binding to blas, here is the link [8]
Here is a question I have: Why is there no
standard binding to all of these libraries
(blas, linpack, lapack) as part of the
standard? or is there? Will Ada numeric
annex be extended to do that? I think the
current Numeric annex is too small.
I have no idea why any one would choose
C or C++ over Ada for numerical work.
It is simply beyond my understanding.
I can understand one choosing Fortran
over Ada, simply due to the inertia that
Fortran has in this domain, and the huge
amount of existing Fortran code out there.
But from a language point of view, I think

Ada is definitely better for numerical
work than Fortran, but having a better
language is not enough in the real world.
From: Jerry <lanceboyle@qwest.net>
Newsgroups: comp.lang.ada
Subject: Re: Interested about number

crunching in Ada
Date: Fri, 17 Aug 2007 02:43:01 −0700
The above binding [8] is written for Ada
95. It seems to me that a binding for Ada
2005 would have to be different from this
one in that it would use the official types
for vectors and matrices, that is,
type Real_Vector is array
 (Integer range <>) of Real'Base;
type Real_Matrix is array
 (Integer range <>,
 Integer range <>) of Real'Base;

as defined in Annex G.3, whereas the Ada
95 bindings at the link above use these
definitions:
type Vector is array
 (Positive range <>) of Float;
pragma Convention (Fortran, Vector);
type Matrix is array
 (Positive range <>,
 Positive range <>) of Float;
pragma Convention (Fortran, Matrix);

which are declared in the user’s program.
(Similarly for complex vectors and
matrices.)
From: Jerry <lanceboyle@qwest.net>
Newsgroups: comp.lang.ada
Subject: Re: Interested about number

crunching in Ada
Date: Thu, 16 Aug 2007 15:55:06 −0700
The new numerical aspects of Ada
(Annex G.3) are excellent, providing a
number of types and function overloads.
The new facilities are rather basic as far
as actual algorithms, but see a very recent
discussion regarding linking to BLAS and
LAPACK, if your installation doesn’t
already do that. (It seems that BLAS and
LAPACK are quasi- officially
recommended — the Ada designers
weren’t foolish enough to ignore these
venerable numerical packages.)
More broadly as to the appropriateness of
using Ada for numerical work, I
personally haven’t run across a better
solution. I’m a relatively new user of Ada
and am stunned at how well it works for
numerical work. I have used Fortran,
Pascal, Matlab/Octave, Mathematica,
Maple, Igor Pro, and some others too
obscure to mention or remember. Ada
tops them all for programming.
(Mathematica, Maple, Igor Pro e.g. have
many other reasons to recommend them.)
What I (and many others) have done is to
write some overloaded procs and
functions to handle vector-matrix things
and whatever other structures your work
requires (For example, vectors and
matrices of transfer functions for signal
processing and control systems.) With a
few overloaded functions, you can write

concise yet clear code that Matlab aspires
to but doesn’t entirely succeed at. And
you can do better than Matlab thanks to
Ada’s strong typing. If you have a vector
x, Matlab will not allow you to compute
1.0/x but Ada will (with an overload).
I’d be glad to share my collection of
overloads that allow mixing arithmetic
between Integers, Long_Floats, Complex,
and real and complex vectors and
matrices. I know that there are a lot of
combinations to fully flesh out all of
these, but I’ve found that not all are
required; and if I run across one that I
don’t have yet, it’s just a couple of
minutes to write it.
From: Jerry <lanceboyle@qwest.net>
Newsgroups: comp.lang.ada
Subject: Re: Interested about number

crunching in Ada
Date: Fri, 17 Aug 2007 02:52:07 −0700
[See original post for URLs —su]
> Speaking on the subject, Numerical

Recipes, considered by some as the
reference for this subject, has
releases the 3rd edition of this famous
work. A huge and large book.

> And it is that is written in nothing else
but C++ !

Fromhttp://www.nr.com/aboutNR3book.h
tmlit says: “Its code is wholeheartedly
object oriented, demonstrating diverse
techniques for using the full power of
C++.”
> I bet the next version will be Numerical

Recipes in Java.
> Then after that a Numerical Recipes in

C#?
> I am waiting for Numerical Recipes in

Visual Basic to come out, and may be
also a version in JavaScript, and why
not Numerical Recipes in Perl? :)

> I guess the authors found that Fortran is
no longer ‘popular’ enough, and C++ is
the more sexy language now for selling
more copies of the book.

> I think a version in Ada will be great,
but of course we know that Ada is not
sexy or popular enough, so I am sure
this will never happen.

The old Fortran version of the book of
course had a Pascal appendix and an
associated smaller book dedicated to
Pascal. (I have both.) Recent digging
around on the official Numerical Recipes
web site reveals that the later versions of
the software were never made available in
Pascal. (I could be partially wrong--was
the original version of Numerical Recipes
converted to another flavor of Pascal
other than basically the Jensen and Wirth
flavor?)
Anyway, the Pascal-to-Ada converter
p2ada is said to have successfully
converted the entire Numerical Recipes
into Ada. Look here: [9]

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 151

Exceptions and out
parameters
From: Adam Beneschan

<adam@irvine.com>
Newsgroups: comp.lang.ada
Subject: Re: Exceptions and out procedure

arguments (using GNAT GPL)
Date: Mon, 18 Jun 2007 08:44:57 −0700
> Consider a procedure that starts like

this:
> procedure My_Procedure (O: out

integer) is
> begin
> O := 999;
> raise My_Exception;
> […] and has an exception handler
> exception
> when My_Exception =>
> null;
> Is the routine which calls

My_Procedure guaranteed to get a
value […]?

No. When My_Procedure completes
abnormally, due to an exception raise, X
should have the value that it had before
My_Procedure was called. An Ada
compiler that causes X to be 999 here (if
it wasn’t 999 before) is incorrect. This
isn’t a matter of “is the compiler allowed
to optimize” or “all bets are off” or “you
can’t rely on the value”; rather, the
semantics *require* that X be unchanged.
This is because O is a by-copy parameter
(6.2(3)), which means that inside the
subprogram, O denotes a *separate*
object from X (6.2(2)), and O is copied
back to X only on *normal* completion
of the subprogram (6.4.1(17)), but an
exception raise causes My_Procedure to
be completed abnormally (7.6.1(2)).
By-reference parameters work differently.
If, for example, your OUT parameter
were a tagged record, and you had
assigned a component of it to 999, it
should still be 999 even after the
exception in My_Procedure is raised. As
I interpret the rules in 11.6, this might not
be the case if the exception raise is due to
a language-defined check; if, after you
assign the component to 999, you do an
array access on a nonexistent element, so
that Constraint_Error is raised, this is a
language-defined check, and now I think
the compiler may be allowed to optimize
in a way so that the assignment of the
component to 999 might not take place.
But in your example, you have an explicit
raise of a user-defined exception, and 11.6
doesn’t apply to those, as I read it. The
same would apply in an access parameter
case; if My_Procedure is abandoned due
to a raise of a user-defined exception, you
can count on any assignments that you’ve
already done through the access value, but
you can’t count on assignments done

before My_Procedure is abandoned due to
a language-defined check.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Exceptions and out procedure

arguments (using GNAT GPL)
Newsgroups: comp.lang.ada
Date: Tue, 19 Jun 2007 22:07:59 +0200
> My gut feeling is that, in the abstract, a

subprogram should either produce a
result *or* (perhaps) raise an exception,
but not both; in general, if your
definition of a subprogram is that,
under certain conditions, the
subprogram will raise an exception
AND the caller can expect a certain
value to be returned (whether in an
OUT parameter or an IN OUT or a
global or in something pointed to by an
access parameter or whatever) even
though an exception is raised, the
design is wrong. It’s better to use an
OUT status code of some sort in that
case.

I don’t think this is a good advice. In my
view a right design assumes that whether
an exception is propagated or not, the
subprogram should not leave anything in
an undefined state.
That is independent on the way an in-out
parameter is passed. If the parameter is
by-reference, then the subprogram shall
document all side effects on it, which
cannot be rolled back.
(Thee is a quite specific case of non-
initialized out parameters, but I don’t like
the idea of using that pattern rather than
result anyway.)
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: Exceptions and out procedure

arguments (using GNAT GPL)
Date: Tue, 19 Jun 2007 16:40:31 −0500
> I eliminated the problem by modifying

the offending procedure to not raise
exceptions. It now returns a status code
in an additional out argument.

My initial reaction to this was that it is
like cutting off your foot because your toe
itches. ;-)
But I do have to agree with Adam that
there is something wrong with the design
if you are expecting to get results back
even if an exception is raised. That does
seem to be inappropriate use of an
exception; it’s not an error at all if you
expect results (it’s just another normal
case).
Still, in general result codes make me ill,
so I would be at least as concerned about
a design that seems to be combining two
operations (one to return the initial
results, and one to make the checks that
lead to errors).

Representation issues
From: petter_fryklund@hotmail.com
Newsgroups: comp.lang.ada
Subject: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Tue, 19 Jun 2007 06:16:53 −0700
The Size of the following record is 112 on
Linux, but 104 on Solaris.
type Something is record
 A : Packed_16;
 B : Packed_8;
 C : Packed_8;
 D : Packed_8;
 E : Packed_32;
 F : Packed_32;
end record;
pragma Pack (Something);

Where
type Packed_Byte is mod 2 **8;
for Packed_Byte'Size use 8;
type Packed_Bytes is
 array (Natural range <>) of
 Packed_Byte;
for Packed_Bytes'Alignment use 1;
for Packed_Bytes'Component_Size use
 Packed_Byte'Size;
type Packed_8 is new
 Packed_Bytes (0 .. 0);
for Packed_8'Size use 8;

and similar. Why is pragma Pack
ignored?
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
From: Georg Bauhaus

<rm.tsoh+bauhaus@maps.futureapps.de
>

Date: Tue, 19 Jun 2007 16:02:13 +0200
I don’t think pragma Pack is ignored,
there are “should”s in the RM and then
alignment. You might need a rep spec,
though.
From: petter_fryklund@hotmail.com
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Tue, 19 Jun 2007 07:15:41 −0700
We used to have rep spec’s very early in a
previous project, but one of the other team
members found that pragma Pack did the
work as well for Solaris, so we decided to
do without rep specs. We thought it was a
good decision when the number of similar
records increased over 500. Now we are
not so sure anymore. The before
mentioned team member thinks it is a bug
and will probably submit a bug report to
ACT.
As a former UNISYS employee, word
size is always 36 ;-)
From: Bob Spooner <rls19@psu.edu>
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Wed, 20 Jun 2007 11:51:27 −0400
Organization: Penn State University, Center

for Academic Computing

Ada User Journal Volume 28, Number 3, September 2007

152 Ada in Context

Are the processors different on the two
systems? For some processors, the
overhead for retrieving a 32-bit value that
is not aligned on an even address or an
address divisible by four could be enough
higher that the default record layout will
be different from what you experienced
with Solaris. Then, depending on the
interpretation of “storage minimization
should be the main criterion when
selecting the representation of a
composite type” for pragma Pack in the
RM, the packed layout may be different
as well, since pragmas are only advice to
the compiler. If you use a record
representation clause, I would expect that
if the compiler could not generate code to
give you what you asked for, it would
generate an error. You can use the 'Size
attribute to specify the overall record size,
but then the compiler is still free to
rearrange the order of components to
optimize storage and retrieval of the
record components. For exchanging
binary data between heterogeneous
systems, my experience has been that
record representation clauses are
necessary to insure that the data
representations are identical.
From: Adam Beneschan

<adam@irvine.com>
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Wed, 20 Jun 2007 09:35:58 −0700
> For exchanging binary data between

heterogeneous systems, my experience
has been that record representation
clauses are necessary to insure that the
data representations are identical.

Absolutely. You can’t count on Pack to
do things a certain way; the RM says that
the compiler is free to rearrange the
components as it sees fit to make things
smaller. Pack is appropriate when you
want the type to be as small as possible
but don’t really care how it’s laid out. It’s
not appropriate if you care how your
record is laid out; you’ll need a record rep
clause for that.
From: Simon Wright

<simon.j.wright@mac.com>
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Wed, 20 Jun 2007 21:50:12 +0100
Or (if on GNAT) you could use a version
of the compiler’s stream support that uses
XDR representations ‘on the wire’ — we
transparently communicate between
PowerPC and Intel hardware like this as a
matter of course without having to think
about it or expend any effort.
There’s always a price to pay, of course;
the packing isn’t dense, and it can be
quite a challenge to work out what bytes
are actually being sent (eg, if you find
yourself having to talk to C after all).
From: Bob Spooner <rls19@psu.edu>

Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Thu, 21 Jun 2007 10:50:55 −0400
Organization: Penn State University, Center

for Academic Computing
Yes, XDR takes care of things like
endianness, etc. that otherwise get in the
way, but as you point out, there’s always
a price to be paid for generality. In some
cases it looks like it even will take care of
differing floating point representations,
although I wonder about out of range
problems when converting. Isn’t there an
XDR library for C? I know that there is
one for Fortran. I would think that as long
as you have an XDR library for the
language with which you need to
communicate, you wouldn’t have to
decode the bytes yourself; or have I
misunderstood what you are saying?
From: Simon Wright

<simon.j.wright@mac.com>
Newsgroups: comp.lang.ada
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: Fri, 22 Jun 2007 06:20:55 +0100
For us that was a big ‘if’. There was a
scripting language that didn’t understand
anything beyond bytes on the wire, so you
had to be pretty conversant with the actual
layouts used by the Ada. We used an
ASIS-based tool to work this out, but it’s
not well integrated into the build process.
Fortunately message definitions on the
interfaces where it matters don’t change
very often.
Another problem was that the message
header had to contain the length of the
message body — the easiest way to do
that is of course to construct the body
first! (or perhaps a dummy message body
during program
initialization/elaboration?)
From: Ole-Hjalmar Kristensen <ole-

hjalmar.kristensen@sun.com>
Subject: Re: pragma Pack does not work on

GNAT 5.01a for Redhat Linux.
Date: 07 Aug 2007 12:51:25 +0200
Newsgroups: comp.lang.ada
Sorry for any confusion. My point was
simply that XDR has been a de facto
standard available to C programmers for a
very long time. If you have an XDR
library for Ada, you can exchange
messages between C and Ada programs
with no problems, since the protocol is
described in terms of XDR, and not tided
to any specific language.

Portability and System calls
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Newsgroups: comp.lang.ada
Subject: System calls — GNAT library vs.

direct bindings
Date: 31 May 2007 07:58:40 −0700

Let’s suppose that the problem is a
network-aware application on the POSIX
system. Ada doesn’t know about network
per RM, so we have to look around for
libraries. One option is to use the GNAT
library that has some package for sockets.
Another is to write thin wrappers that
bind directly to relevant system calls
(socket, connect, read, write, close, bind,
listen, accept, select — that’s it for the
basic stuff).
1. The advantage of using GNAT library
is portability across various systems that
are targeted by GNAT. (I assume that the
GNAT library is available outside of
POSIX — if not, please correct me.)
2. The advantage of writing custom thin
wrappers is portability across various
compilers that target POSIX platforms.
The first is not really important for me, I
will probably use only POSIX systems.
The second is not important neither, I will
probably use only GNAT.
In other words — the focus for evaluation
should go elsewhere. Performance?
Maintainability? Some other factors?
From: Simon Wright

<simon.j.wright@mac.com>
Subject: Re: System calls — GNAT library

vs. direct bindings
Date: Thu, 31 May 2007 21:07:50 +0100
Newsgroups: comp.lang.ada
Our compiler is GNAT, and we develop
and unit test on Windows, the target is
VxWorks on PowerPC.
We decided that GNAT.Sockets was
perfectly OK for our needs (that doesn’t
mean we think it’s perfect) and that we
had enough to do developing our
application without doing a socket library
as well.
AdaSockets wasn’t really an option given
that GNAT already has a library. It would
have been yet another library to justify to
the technical authority.
From: Simon Wright

<simon.j.wright@mac.com>
Newsgroups: comp.lang.ada
Subject: Re: System calls — GNAT library

vs. direct bindings
Date: Fri, 01 Jun 2007 20:29:21 +0100
> Why is it not perfect?
Because it was created by humans …
Specifically, the behaviour with UDP
streams is bizarre — it all looks as though
the data is transferred correctly, but each
atomic data item is sent/received in a
separate datagram.
The implementation of Socket_Type (and
there’s a naming issue straight away!)
suffers from not being controlled, and
might be better reference-counted (we’ve
just had to deal with a file descriptor leak
caused by this).
I’m not sure that it was necessary to use 2
(3, temporarily) invisible sockets in the

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 153

implementation of Selectors (perhaps it is,
haven’t thought about it deeply).
From: Georg Bauhaus

<bauhaus@futureapps.de>
Date: Thu, 31 May 2007 23:10:30 +0200
Newsgroups: comp.lang.ada
Subject: Re: System calls — GNAT library

vs. direct bindings
Are standards and portability still an issue
in Ada projects?
Aonix seems to offer a standards
conforming POSIX binding. Can’t say
how much networking it offers.
From: Pascal Obry <pascal@obry.net>
Date: Fri, 01 Jun 2007 22:13:49 +0200
Subject: Re: System calls — GNAT library

vs. direct bindings
Newsgroups: comp.lang.ada
> Performance — use the OS’s core

language. Which normally means using
C instead of writing code in Ada or
using Wrappers. But as the
performance of the code goes up the
maintainability starts to drop. This is
due to the fact that performance
algorithms are normally tied to the
hardware and as hardware is update the
algorithms may need to be rewritten
just to maintain current performance
levels which increases the
maintainability cost.

That’s nonsense! An intern project
comparing the “same” application built
with OpenMP/C++ and Ada shows that
we have the same level of performances.
Ada is slightly better in fact. This is not
one-to-one kind of comparison as we
wanted to use both technology as it
should. So in OpenMP/C++ we have
parallel loops on the Ada side we have
designed a pipeline of tasks. The Ada
architecture is then higher level, but gives
slightly better performances.
I’m fighting days after days the idea than
low-level gives better performances. This
is just plain wrong. It has probably be true
at some point with tailored assembly
applications. This is just not possible
those days as processors are so complex
than only a compiler can schedule the
instruction properly. So no, C based
languages, as low-level as they seems, are
not necessary faster.
Today discussion was about the C ternary
operator being faster than a standard if.
The gain is three CPU cycles (well that’s
what the guy was arguing). Who cares ?
Especially when the algorithm is just a
mess of non optimal code :(How often
people get swamped by low-level stuff
amaze me!
Now please this is ONE bench. It just
shows that at least low level does not
necessary means faster, that’s all. I have
not said that Ada is always faster right :)
From: Jeffrey R. Carter

<jrcarter@acm.org>
Newsgroups: comp.lang.ada

Subject: Re: System calls — GNAT library
vs. direct bindings

Date: Fri, 01 Jun 2007 17:42:36 GMT
It’s usually better to reuse something that
has been widely used than to recreate the
wheel. Reuse is generally less effort than
creating a new library. An existing library
is usually better tested and has fewer
errors than a custom library. And an
existing library’s maintenance is generally
not part of your project’s maintenance
effort, while a custom library’s
maintenance is.
Portability is generally a good thing, even
if you don’t think you need it. Many
systems that were created under the
assumption that portability wasn’t an
issue were later ported at greater effort
than would have been involved in creating
them to be portable in the 1st place.
To my mind, given the existence of a
library that is portable across compilers
and platforms, such a library should be
used. In the absence of such a library, but
given the existence of an existing library
such as GNAT’s, I’d probably choose the
existing library, but would add a wrapper
around it in case I need to use another
compiler. Only in the absence of any
existing libraries would I write my own,
and I’d try to make it portable across
compilers and platforms.

Dynamically reallocated
buffer
From: Maciej Sobczak

<see.my.homepage@gmail.com>
Subject: Dynamically reallocated buffer
Date: Thu, 31 May 2007 23:33:46 −0700
Newsgroups: comp.lang.ada
I need a dynamically reallocated buffer of
bytes, which I can extend at run-time by
appending new fragments to the whole
buffer. The purpose of the buffer is to
pass it later to the subprogram that writes
it “en bloc” to some external device.
For those of you who know C++ I need
something like:
vector<unsigned char> buffer;
// fill the buffer with push_back or
 insert at end
// …
write_to_device(&buffer[0],
buffer.size());

The problem is that
Ada.Containers.Vectors does not provide
the necessary guarantees to be any useful
in this context.
What are your suggestions?
From: Matthew Heaney

<mheaney@on2.com>
Newsgroups: comp.lang.ada
Subject: Re: Dynamically reallocated buffer
Date: Fri, 01 Jun 2007 07:49:09 −0700
Right, that container does not guarantee
that the underlying structure is a
contiguous array (as is the case in C++).

Think of it not as an unbounded array
(which would a physical view), but rather
as a container that provides random
access (which is the logical view).
In your case you’ll probably have to use
an unbounded array directly. If you want
a vector-like thing then you can just grab
the vector source code and modify it as
you see fit.
Newsgroups: comp.lang.ada
Subject: Re: Dynamically reallocated buffer
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sat, 02 Jun 2007 08:38:02 −0400
>> The problem is that

Ada.Containers.Vectors does not
provide the necessary guarantees to be
any useful in this context.

> Right, that container does not guarantee
that the underlying structure is a
contiguous array (as is the case in
C++). Think of it not as an unbounded
array (which would a physical view),
but rather as a container that provides
random access (which is the logical
view).

SAL.Poly.Unbounded_Arrays.
http://stephe-leake.org/ada/sal.html
Newsgroups: comp.lang.ada
Subject: Re: Dynamically reallocated buffer
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Mon, 04 Jun 2007 20:25:59 −0400
> How would I pass the array storage of

an Array_Type object to a byte copying
function? (As in
write_to_device(&buffer[0],
buffer.size());)

That operation is not provided. You need
to derive from Array_Type and provide
an access function that returns the address
of the current actual storage.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Dynamically reallocated buffer
Newsgroups: comp.lang.ada
Date: Fri, 1 Jun 2007 09:30:04 +0200
type Device_Buffer is
 array (Positiver range <>) of
Interfaces.C.unsigned_char;

The maximal block size is usually known.
If not, then device is stream-oriented and
blocks can be safely split into chucks of
known size. In that case Device_Buffer is
a segmented buffer. In most cases you
don’t need to realloc anything.
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Re: Dynamically reallocated buffer
Date: Fri, 01 Jun 2007 06:08:31 −0700
I might want to pack it.
[…] in the worst case I need a list (or
some other container) of Device_Buffers.
Yes, that makes sense.
Date: Fri, 01 Jun 2007 13:32:19 +0200

Ada User Journal Volume 28, Number 3, September 2007

154 Ada in Context

From: Georg Bauhaus
<bauhaus@futureapps.de>

Newsgroups: comp.lang.ada
Subject: Re: Dynamically reallocated buffer
I’d use references to normal arrays and if
I wanted to be sure that a program can
rely on realloc() I’d consider a simple
storage pool using this OS function.
(GNAT has System.Memory with ready
made bindings on some platforms.)
Then just call new Flex_Buffer(as
needed). Possibly behind some Container
like interface (or Controlled and
Reserve_Capacity in Initialize).

Returned constant objects
From: Alex R. Mosteo
Newsgroups: comp.lang.ada
Subject: Amount of copying on returned

constant objects
Date: Fri, 15 Jun 2007 19:19:00 +0300
[…] I know that some “in” arguments
may be passed as copies or as references,
at compiler discretion (this is one of these
things that “programmers shouldn’t care
about”, many times quoted).
I wonder however about results of
functions, that are not modified. Look for
example at the Element function of the
new Ada.Containers. They return the
stored item, that may well be a quite large
controlled tagged type, for example.
Now, many times I want to query an
element just for read-only purposes. I’m
faced with two options:
1) Just call Element on the container
Key/Index, and be done with it.
2) Do a Find+Query_Element, which
requires defining an extra procedure and
somewhat breaks the flow of control, but
ensures no copying.
I tend to go with 1) because of laziness
and the “no premature optimization” rule.
In C++ I could use constant references.
Now, I wonder if
a) is there something in the ARM that
prevents an equivalent transparent
optimization in the Ada side (returning
the reference when it is detected that the
returned object is not modified)?
b) If not, do you know of compilers that
do this in practice? (Specially interesting
for me would be GNAT at -O2/-O3).
Failing these, I guess I could define
constant accesses for use in my own
functions, but I find this not very Ada-
like. Any other ideas?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Newsgroups: comp.lang.ada
Subject: Re: Amount of copying on returned

constant objects
Date: Fri, 15 Jun 2007 18:32:25 +0200
The “compiler discretion” does not apply
to all cases. The compiler is required to
pass parameters of limited and tagged

types by reference. I’m not entirely sure
that that also applies to the result of a
function call, but that would seem
reasonable. If the function returns a class-
wide or other unconstrained type, then the
object will have to be on the heap (in the
region GNAT calls the “secondary
stack”).
> 1) Just call Element on the container

Key/Index, and be done with it.
That would be my approach.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Newsgroups: comp.lang.ada
Subject: Re: Amount of copying on returned

constant objects
Date: Mon, 18 Jun 2007 20:23:49 +0300
> I might want a constant copy because

the object in the container is going to be
modified… Can a compiler detect this?

I don’t think it can, at least easily. I guess
that if you’re keeping a copy, constant or
not, the optimization opportunity is lost.
But what about short-lived objects, like…
if Container.Element ("key").Is_Nice
 then -- Container for some tagged type
 …
end if;
This is the kind of copies that I see
interesting to optimize away. I don’t
know enough about compilers to say if it
is reasonable to expect one to detect this
situation or not.
If not, one possibility would be to have
function Element (Key : Key_Type)
 return Element_Type;
and
type Constant_Access is access
 constant Element_Type;
function Element (Key : Key_Type)
 return Constant_Access;

but I’m not sure about the amount of
ambiguities one would get in that case. In
any case this does not exist in the standard
05 containers.
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: Amount of copying on returned

constant objects
Date: Mon, 18 Jun 2007 15:25:33 −0500
> Or in a more Ada 2005 way:
> function Element
> (Key : Key_Type) return access

constant Element_Type;
The problem with this is that this access
can be saved, and any operation on the
original container could make it become
dangling (and thus any further use be
erroneous). That is *very* unsafe and
virtually impossible to detect.
There were a substantial number of
people (a group that includes me) that
want the containers to be safer than using
raw access types (because they can do
checks that would be too tedious to do in

hand-written code). That’s why the
containers access-in-place routines use
access-to-subprograms, because they can
have tampering checks that prevent the
dangling access problem (you get
Program_Error if you try to do something
that could make the element inaccessible).
That makes them much safer than
returning a raw pointer.
We actually spent quite a bit of effort on
trying to find a way to secure access
values returned this way. But it isn’t quite
possible: even if you make them
uncopyable; they still can be held onto
long enough to potentially cause trouble
with a renames.
What really would help would be a way
for the container to know when the access
was destroyed, but there isn’t any obvious
way to do that in Ada.
Dmitry might (will?) tell us that a user-
defined “.all” operation would do the
trick, but it’s not obvious how to define
that operation so that the “.all” definition
itself would not expose the original
problem.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Amount of copying on returned

constant objects
Newsgroups: comp.lang.ada
Date: Tue, 19 Jun 2007 10:26:38 +0200
In Ada, which has no procedural types
closure itself is a problem because an
access type is still there (now to the
procedure). Further, this approach does
not work if we needed to access several
elements of the same or different
containers. How to do this:
 (Get (A, First (A)) + Get (A, Last (A))) /
2;
with closures in a more or less readable
form?
There is a problem of complexity
introduced by each new type here. There
is a type of the container, there are types
of the element and the index. That’s
already triply dispatching in the most
general case. [Actually, it is far more if
ranges and other subsets of index are
introduced] I don’t want yet another type
of the access to element, or a type of the
procedure to access to the element etc. It
is a mess when the container gets derived
from. We have no any language
mechanism to bind all these geometrically
exploding combinations of types together.
BTW, which problem we are talking
about. There are at least two:
1. An “easy” one is Alex’s example:
if Container.Element (Key).Is_Nice then
What he actually needs here is to force the
compiler to infer from Element’s Is_Nice
a new container operation:
if Is_Nice (Container, Key) then
composed out of container’s Element and
element’s Is_Nice.

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 155

2. A difficult one:
Declare
 X : Item renames Get (Container,
 Key_1);
 Y : Item renames Get (Container,
 Key_2);
begin
 Remove (Container, From => Key_3,
 To => Key_4);
 X := Y;
end; -- This must be safe and efficient

From: Randy Brukardt
<randy@rrsoftware.com>

Newsgroups: comp.lang.ada
Subject: Re: Amount of copying on returned

constant objects
Date: Tue, 19 Jun 2007 16:33:26 −0500
> I guess then that some reference

counting companion type (or maybe
making Cursors tagged and more
heavyweight) was discarded because
the distributed overhead?

Cursors can be tagged if the
implementation so chooses, but that
doesn’t have an effect on the element
access problem. For that you need
something that allows direct
dereferencing, and in Ada as it stands,
that can only be an access type.
Having a companion type would work if
it was impossible to separate the access
from the reference counter. But there is no
way in Ada to have a visible access type
that cannot be assigned out of its
surrounding wrapper. (Which is why I
said that Dmitry would say that
redefinition of “.all” for a private type
could solve the problem.)
From: Markus E Leypold <kontakt@m-e-

leypold.de>
Subject: Re: Amount of copying on returned

constant objects
Date: Wed, 20 Jun 2007 03:31:19 +0200
Newsgroups: comp.lang.ada
I wonder whether you can’t hide the
dereferencing. I had a similar Problem
some time ago when implementing a
cache of (rather large) objects, but didn’t
want to make copies of every object when
iterating over them (i.e. for sorting or
filtering purposes). My solution was to
have a generic function “Iterate” which is
instantiated with the cache and a function
“operation” that will be doing the work on
the elements. The elements are passed to
operation (in this case) as ‘in’ parameters,
so ‘operation’ will not be able to change
the elements, only read them.
I wonder whether container
implementations couldn’t use a similar
trick: Instead of dereferencing a
“do_with” generic would take an
operation as a parameter to which in turn
the elements are passed (control passes to
do_with, do_with dereferences and passes
elements to operation).
This doesn’t avoid the problem of cursors
that become invalid. The solution I see
there would be to avoid cursors altogether

and use generic traversal and iteration
functors like fold() for lists. This way
position is never made explicit and cannot
be saved into a variable.
What about a tagged type that is the
abstraction of a storage cell with method
like Get(), Set() and
Pass_Me_the_Data()?
I’ve not thought much about the details,
but that should cover the most common
use cases.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Amount of copying on returned

constant objects
Newsgroups: comp.lang.ada
Date: Wed, 20 Jun 2007 09:34:06 +0200
Actually it would be only a half of the
solution. The access type for which .all
gets overridden is an implementation of
the cursor. The public view of, should be
a derived type of Element:
-- This is far not Ada!
type Cursor is new Element with private;
-- I can do with a Cursor anything I could
 do with an Element
function Get (Collection : Container,
 What : Key) return Cursor;
-- Factory
private
 type Cursor is access Element with
 interface Element;
 -- Privately Cursor is an access type
 that implements the interface
 -- of Element. It could be also a fat
 record rather than access, with
 -- a reference to the container and an
 index within. Whatever, it
 -- cannot be seen from outside.
function Is_Nice (Item : Cursor)
 return Boolean;
-- Implementation of Element's interface
 by Cursor
-- + Getter/Setter, of course

Here the referential nature of Cursor is
hidden and Cursor is a full substitute of
Element

Generation of optimized
machine code
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: sub-optimal code for packed

boolean arrays — bug or inherent
limitation

Date: Mon, 9 Jul 2007 21:06:34 −0500
> Some inline assembly is unavoidable.

There are two other bitboard operations
that are required:
First_One(Bitboard_T) returns Natural
and Last_One(Bitboard_T) returns
Natural; They return the position of the
least significant and most significant set
bit respectively. On x86 processors you
can do this with one instruction BSF
(bit scan forward) and BSR (bit scan
reverse), and you cannot expect a
compiler to generate them.

There’s a reason for that: Intel
recommended to compiler writers to not
use “complex” instructions, as sets of
simple instructions are often supposed to
be faster. The “complex” instructions
were implemented essentially as “macros”
of simple instructions. (This is
information is somewhat old, so it may
vary on the most recent processors.)
My point is that it might not actually be
faster to use those instructions than to use
a loop of your own design (and there is a
small chance that they’d be slower). As
suggested elsewhere, you need to test that
in a suitable benchmark. The number of
instructions has had no real bearing on the
execution time since the 486 came out
(and indeed, given that some instructions
are much slower than others, it never had
much bearing on Intel’s x86 processors).
From: Steve <steved94@comcast.net>
Newsgroups: comp.lang.ada
Subject: Re: sub-optimal code for packed

boolean arrays -- bug or inherent
limitation

Date: Tue, 3 Jul 2007 20:22:36 −0700
> As for the proof that the hand coded

version is faster, here it is:
> Hand coded: 2 MOV, 1 SHL, 1 XOR
> Compiler: 2 MOV, 1 SHL, 1 XOR, 1

SHR, 1 ROL, 2 AND, 1 OR
> 5 extraneous instructions, Q.E.D.
Twenty years ago I might ave agreed with
this logic, but not today.
In the good ole’ days you could associate
an amount of time with each instructions,
add them up and get a total amount of
execution time. This hasn’t been possible
for a long time. Ever heard of
“instruction scheduling” and “concurrent
execution”?
Today’s CPUs contain “pipelines” that
sometimes merge several operations into
a single clock. In some cases you will
find that NOPs are added to increase the
speed of execution based on a detailed
knowledge of the underlying processor.
I agree with Jeff’s assessment. You must
benchmark to measure and compare
performance.
I work frequently with time intensive
code where simulating more permutations
translate to more value recovered. These
small differences in code generation
seldom have a significant impact on the
overall performance. Greater benefits are
found by changes to algorithms or
approaches to a problem.
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: sub-optimal code for packed

boolean arrays -- bug or inherent
limitation

Date: Sun, 08 Jul 2007 18:53:11 −0400
> You should also be aware that you’re

sending the compiler conflicting
messages. Packing the array indicates

Ada User Journal Volume 28, Number 3, September 2007

156 Ada in Context

that you want the compiler to minimize
storage, even at the expense of speed,
…

Well, sort of. Pack means to minimize
storage even at the (possible) expense of
speed of accessing the components.
Speed overall can be improved by
packing. For example, speed of copying
and comparing the whole packed object,
and passing it around as parameters, will
typically be improved by packing.
And of course using less memory will
typically improve cache and paging
performance.
So on a desktop computer with “plenty”
of memory, packing is mainly used to
improve speed — there’s no “ime/space”
tradeoff. A small embedded system
might have such tradeoffs.
> … while “pragma Optimize (Time);”

indicates that you want to minimize
time, even at the expense of storage.
Obtaining speed often requires wasting
storage; the fastest

I’d say, “sometimes”, nor “often”.
Usually, wasting storage means wasting
time.
> implementation might be to not pack

the array. I don’t know how many of
these you have, but with the large
memories on modern machines, you
might be better off with the additional
56 bytes per array. Again, you won’t
know for sure until you have a working
version you can measure.

Measurement is a Good Thing.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Newsgroups: comp.lang.ada
Subject: Re: sub-optimal code for packed

boolean arrays -- bug or inherent
 limitation
Date: Tue, 03 Jul 2007 18:36:31 GMT
> Now, concerning efficiency: these basic

operations on bitboards are used 1e8 to
1e9 times every time the program tries
to decide what to move next. Even the
smallest improvement in speed can
mean the difference between searching
10 or 11 ply deep, which can mean an
improvement of over 50 Elo points in
strength.

I’m sure that’s true. However, you have
not demonstrated that there’s a speed
difference between the 2 versions. Even if
there is, it doesn’t necessarily mean that
there will be a difference in the # of plys
that can be searched. The old rule, “1st
get it right, then make it fast,” still
applies. Once you have it finished you can
easily see if modifying this single
procedure actually makes a difference.
Until then, you’re wasting a lot of effort
on something you don’t know is
important. […]
From: Jeffrey Creem

<jeff@thecreems.com>

Date: Wed, 04 Jul 2007 06:15:19 −0400
Newsgroups: comp.lang.ada
Subject: Re: sub-optimal code for packed

boolean arrays -- bug or inherent
 limitation
> My reaction is due to an allergy to

premature optimization, the root of all
evil.

“Premature Optimization” is one of those
pieces of conventional wisdom that gets
repeated often but which is in fact not the
problem at all. Not really.
In any real-world problem, you rarely get
to spend 6 months making it faster
because you did such a poor job up front
in designing the problem.
Often, by the time one has created a
design mess that is slow everywhere,
spending the short time optimizing the
scary loops is not enough because the
design itself is broken.
The real problem is not so much
premature optimization but crazy micro-
optimizations done early that also hurt
maintainability/clarity of the code and
often do little if anything to actually make
the code faster.
Spending time up front thinking about the
overall design and even worrying a little
about specific performance details when
not taken to the extreme and when done
with the benefit of metrics backed
experience (v.s. I heard one time that
compiler X was slow on this) is actually
not all that bad.
This is of course especially true when one
considers that by the end of the project
when you go to start profiling the code to
find the hotspots and find out that your
lousy tool set does not support profiling
with programs with tasks, or does not
support profiling of non-trivial programs
at all.

AVR-Ada quality
From: Simon Clubley

<clubley@eisner.decus.org>
Newsgroups: comp.lang.ada
Subject: AVR GCC/GNAT port quality ?
Date: 25 Jun 2007 06:47:35 −0500
I’m thinking of using the AVR
microcontroller along with the AVR
GNAT compiler in a project.
Would anyone here like to offer an
opinion on the quality of the GNAT AVR
port ?
From: Rolf Ebert <rolf.ebert@gmx.net>
Newsgroups: comp.lang.ada
Subject: Re: AVR GCC/GNAT port quality ?
Date: Tue, 26 Jun 2007 12:04:10 −0700
Nice to see that someone is interested in
AVR-Ada. I can only encourage you to
try it out. I built a data logger (several
temperatures and gas consumption) for
my home based on the cheap AVR-

Butterfly. And I also managed to make
the first steps with the Asuro robot [1]
The Ada compiler itself is quite good.
When I started the project some years ago
I had some ICE (internal compiler errors);
they all seem to be ironed out by the time.
But then you have to be careful what Ada
constructs you want to use. Most of them
require extensive support in the run time
system. For most constructs I do not yet
provide the necessary files in the RTS.
Most notably there is no support (yet) for:
⁃ tasking
⁃ exceptions
⁃ run time dispatching (aka tagged types)
On the other hand you can:
⁃ access all IO pins
⁃ attach procedures to interrupts
⁃ use some predefined routines for LCD,
RS232, flash memory, eeprom, etc.
⁃ have a lot of fun squeezing Ada
programs into a few hundred bytes.
I recommend you to join the mailing list
at http://lists.sourceforge.net/mailman/
listinfo/avr-ada-devel or send me some
direct email.

Trampolines vs. Thunks
From: Jerry <lanceboyle@qwest.net>
Subject: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 17 Jul 2007 20:56:35 −0700
Newsgroups: comp.lang.ada
I’ve been hearing a lot lately about
LLVM, the Low Level Virtual Machine.
Apparently it is kind of like the GCC
arrangement with a front-end and back-
end for compilers. The difference with the
LLVM is that it is supposed “super easy”
to make a front end. So naturally one
wonders, what is the likelihood of Ada
being supported?
http://llvm.org/
From: Duncan Sands <baldrick@free.fr>
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Wed, 18 Jul 2007 09:48:39 +0200
Newsgroups: comp.lang.ada
I’m porting GNAT to it. Most likely it
will not be in the next LLVM release, but
in the one after that. However it should
be possible to check out a development
version in the near future. I will post an
announcement here once something
usable is publically available. It works
quite well in my development tree, for
example all the ACATS tests pass except
for a bunch of tasking tests (I don’t know
why those fail yet).
From: Duncan Sands <baldrick@free.fr>
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Thu, 19 Jul 2007 16:56:26 +0200
Newsgroups: comp.lang.ada
> I read LLVM specification long time

ago. There weren’t many operations

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 157

needed to run Ada programs on it. Such
as overflow checks on integer
arithmetic (even divide by 0),

These are generated as explicit
conditional statements by the front-end,
the same as for gcc, so no special LLVM
support needed here. If it had special
support that would be great of course.
But it is no worse than gcc in this respect.
> variable access from nested subprogram

by lexical level,
I’ve implemented nested functions and
(for the Intel x86) pointers to nested
functions.
> allocation in stack variables of unknown

(till runtime) size,
All these kinds of variable size things
have been implemented.
> multitasking,
These is done using library calls, so no
special support is needed.
> asynchronous jumps,
The only such jumps are for exception
handling. I recently helped complete the
LLVM exception handling
implementation. […]
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Thu, 19 Jul 2007 17:30:07 −0400
> PS: the only thing that needed new

LLVM functionality, i.e. functionality
that didn’t exist and wasn’t being
worked on, was pointers to nested
functions.

How did you implement those?
GNAT uses trampolines, which are less
than ideal for several reasons.
From: Duncan Sands <baldrick@free.fr>
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Fri, 20 Jul 2007 09:44:06 +0200
Newsgroups: comp.lang.ada
I used trampolines. I really couldn’t do it
any other way without a bunch of
modifications to the GNAT front-end.
Also, this seems to be the only solution if
you want to be able to pass such pointers
to foreign language routines, which seems
nice to have if not essential. The major
downside I see is that they seem to be
extremely expensive, presumably because
you take an icache hit every time you
jump to the stack. I plan to implement a
bunch of small optimizations which may
help, such as converting direct calls to
trampolines into direct calls to the nested
functions (inlining hopefully will create
such direct calls). Any suggestions for a
better approach than trampolines? I’m
also curious to hear what the other less
than ideal properties of trampolines are!
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada

Subject: Re: LLVM--Low Level Virtual
Machine--and Ada

Date: Fri, 20 Jul 2007 10:06:25 −0400
The main problem with trampolines is
what you said — they’re slow.
Another problem is that some modern
machines use DEP (which I think stands
for “data execution prevention” or
something like that). DEP means the
operating system prevents writable data
from being executed as code. The
purpose is to prevent certain kinds of
security holes that are common in
languages that don’t do array-bounds
checking. But DEP prevents trampolines
from working, so users have to turn it off
in order to run some Ada programs (such
as the compiler). It’s a pain because users
get some mysterious error message when
trampolines are used. […]
The alternative to trampolines is to
represent access-to-nested-subprogram as
a pair, sometimes called a “fat pointer”:
(address-of-code, static link). AdaCore is
thinking about doing this at some point.
You are correct that this won’t work when
interfacing to C. The answer is: if the
Convention of the access type is C, and
the procedure is nested, use a trampoline.
Trampolines are probably also required
for 'Unrestricted_Access, because it
allows you to bypass the normal
accessibility rules.
Access-to-nested subprograms is much
more important in Ada 2005 than in Ada
95, because we now have downward
closures. (See the Iterate procedures in the
Containers packages for examples.)
When using downward closures, you
almost always want nested subprograms.
(Downward closures are one of my
favorite features, by the way.)
Another issue is nested type extensions —
dispatch tables contain pointers to
subprograms. E.g. type T1 is library
level, and “T2 is new T1” is nested. The
primitives of T2 need a static link. You
don’t want to store static links for T1 —
that would be a distributed overhead.
T2’s primitives can be trampolines, but
that’s inefficient. There’s a trick
mentioned in the AI that introduced this
feature: store the static link as an implicit
component of T2. T2’s primitives can be
a wrapper that loads the static link and
then calls the user-defined code. This
eliminates any overhead on T1, and is still
more efficient than trampolines for T2.
See the AI for details.
One use for nested type extensions is
when you want a Finalize procedure of a
controlled type to be nested.
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Mon, 23 Jul 2007 21:12:08 −0500

> I’m not sure that [DEP] is a problem
anymore: gcc uses a bunch of tricks
(eg: setting a flag on the program that
notes it runs code on the stack) to
inform the operating system that the
trampoline is kosher IIRC. That said, I
haven’t tried to implement any of this
in LLVM yet, which is also why I’m
vague on the details.

That would be bad, as it would effectively
turn off DEP for LLVM programs. These
error detections are critically needed and
turning them off just means you have
buggy software that you can’t/won’t fix
and that you’re willing to remain part of
the problem.
Honestly, I never understood why
programs *ever* needed to execute
permission on stack and data. When we
did our first 32-bit compilers, I kept those
segments completely separate and was
dismayed to find out that we couldn’t set
the permissions on the segments to
actually match the uses (and thus detect
bugs earlier). I managed to get the DOS
extender versions sort-of-right by
discarding the overlapping writable
segments given to us by the OS and
creating new non-overlapping ones for the
data and stack. But neither Unix nor
Windows provided anything that helped
at all. I find it bizarre to find people
deciding to apply the obvious technique
of least privilege nearly 20 years later —
what the heck have they been doing in the
mean time? (Not caring if software is
correct is one obvious answer…)
Janus/Ada has never used any executable
data/stack in its 32-bit versions; such code
would save no more than a clock cycle or
two (out of hundreds or thousands) and as
such could not be significant. We use
compiler-generated thunks rather than
run-time generated trampolines, and I’m
not sure why anyone would use the latter
(given that they increase the exploitability
of a program). Must be something I don’t
understand…
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 24 Jul 2007 14:21:30 −0500
> How do these thunks work?
Generally, the compiler passes the address
of the thunk to wherever it is needed, and
it is called indirectly. The thunks
themselves adjust the parameters as
needed and call the real routine.
This is necessarily a very general
description; we use many different kinds
of thunks, and the details are different for
each. There are some where the address of
the routine to call is passed in as well;
some of them are just wrappers, and some
implement entire operations (like an
allocator).

Ada User Journal Volume 28, Number 3, September 2007

158 Ada in Context

In general, the front end generates the
thunks; the back end knows about them
for optimization and debugger and error
message purposes, but it doesn’t generate
any. I would expect it to be fairly hard to
retrofit them if the front end is insisting
on doing something else.
(It’s also possible that trampolines are
much faster on some architectures; I’ve
primarily looked at the x86 machines
where there is little advantage.)
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 24 Jul 2007 14:58:03 −0500
> Presumably pointers to nested functions

are “fat pointers” containing both the
identity of the nested function
(equivalently, the identity of a “thunk”
that knows about the nested function)
and also some kind of pointer into the
stack of the parent of the nested
function. Is that right?

Janus/Ada uses displays rather than static
links (that was originally a requirement of
the University project that led to
Janus/Ada, and we never changed it), so
in most cases, you don’t need any special
stack pointers. (You only need them when
you call to a place that is outside of the
normal nesting of subprograms.) There
are some cases when you do need them,
and in those cases we need to provide a
replacement display. That is usually saved
in a well-known place (i.e., for shared
generics it is part of the generic data
block) and shared with a number of
related thunks, although for anonymous-
access-to-subprogram it will be part of the
pointer. Even in these cases, we determine
in the thunk how much of the display
needs to be replaced (it is often none) so
as to keep the overhead to a minimum,
and all of this code is part of the thunk,
not part of the call site.
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 24 Jul 2007 19:28:30 −0400
Are you saying that executable data
necessarily means the program is buggy?
If so, I don’t agree. Trampolines are not
bugs. They’re slow. Turning off DEP
might expose _other_ bugs that cause
security holes, but those can be
detected/prevented by array-bounds
checking and the like.
The need for DEP is really because we
live in a C world. And DEP doesn’t even
solve the problem.
There are several legitimate reasons why
a program might want to execute data.
For example, consider a JIT compiler.
I agree with you about “least privilege”.
To me, that means that writeable

stack/data areas should be no-execute by
default. But a program should be allowed
to change that. […]
Here’s the reason for trampolines:
 The GCC dialect of C allows nested
functions (unlike standard C).
 They wanted to allow pointers to these
functions.
 They wanted to make those pointers fit
in one machine word, for two reasons:
 Some C programs might assume a
pointer-to-function has that representation
(a single address — of code).
 Programs that obey the standard (i.e. do
not nest functions) should not pay extra
(no distributed overhead). […]
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 24 Jul 2007 19:39:26 −0500
The vast majority of programs have no
need for executable data. Which includes
virtually all Ada programs, and it is bad to
be turning off things which protects the
program from bugs.
Of course it doesn’t “solve” the problem,
but it surely helps. And remember that
even Ada programs have to call C code to
access OS facilities and the like. Probably
50% of the bugs (and by far the worst
ones) are in those interfaces, where the
checking of Ada is no help. (And another
10% is compiler bugs that would have
been detected by DEP; overwriting the
return address of something is probably
the most common symptom of compiler
bugs that I have to track down. That may
be because those are the hardest to
find…)
How many people are writing JIT
compilers or overlay managers so they
can get 2 megabytes of compiler code to
execute on a 640K MS-DOS machine??
Hardly anyone, and people who need to
do such things should be put through
extreme hoops before being allowed to do
so. (I’d suggest that they be required to
write all of the JIT code in SPARC or a
similar proof system, except that SPARC
won’t allow such dynamic things — it’s
major failing IMHO.)
> A pointer-to-nested function needs

access to the function’s environment,
and the only way to do that, while
keeping such a pointer in a single word,
is trampolines.

That’s not quite true, as the use of
displays rather than static links would
allow up-level access without any fat
pointers. Although they might have
wanted non-nested access, for which that
wouldn’t work. (Non-nested access
shouldn’t work IMHO, because of the
significant risk that the stack frames no
longer exist when the routine is called.
That’s the reason the anonymous access-
to-subprogram parameters can’t be

converted to other kinds of access-to-
subprogram.)
In any case, Ada has restrictions such that
these aren’t needed for most access-to-
subprograms, and fat pointers are fine for
anonymous access-to-subprogram
parameters (because you can’t give these
a convention and thus they don’t need to
be interoperable with C or anything else).
GNAT is probably screwed though,
because of the mistake of
’Unrestricted_Access for subprograms.
Still, I think GNAT should do what it can
to avoid them; most Ada access-to-
subprogram types don’t need them
(although you would have to insist on
having convention C on those types that
are intended for interface use; perhaps
that would be unacceptable).
> Trampolines are not efficient! Because

after writing the code, the instruction
cache needs to be flushed before calling
the thing — that is expensive on
modern machines.

True. Thunks have similar issues in that
the address of the thing isn’t known
before the call (so there is a pipeline
stall), but at least we don’t have to flush
the cache. And there sometimes is the
possibility of in-lining the call (something
we don’t currently do, but it is on the
radar).
From: Robert A Duff <duff@adacore.com>
Newsgroups: comp.lang.ada
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Tue, 24 Jul 2007 22:00:59 −0400
[…] Ada itself does not require
trampolines.
So why use them? Well, I suppose it was
an easy implementation. They could be
got rid of, except in the cases of interface-
to-C, and ’Unrestricted_Access.
[…] That’s how it works in gcc C -- you
can pass a pointer to a nested function to
another procedure, and that thing might
save it in a global, and then call it later. It
works, so long as the outer function is still
active. I.e. it’s unsafe. Ada prevents that
sort of thing.
'Unrestricted_Access might need to use
trampolines. The standard Ada features
can avoid them. […]
From: Duncan Sands <baldrick@free.fr>
Subject: Re: LLVM--Low Level Virtual

Machine--and Ada
Date: Wed, 25 Jul 2007 15:14:20 +0200
Newsgroups: comp.lang.ada
> […] Trampolines are worse than

thunks, efficiency-wise.
> But it’s only in Ada 2005 that it started

to matter much.
In programs that use Ada.Containers
heavily, my profiling tools regularly show
“code on the stack” (i.e. trampolines) as
where the program is spending most of its
time.

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 159

Emmett Paige’s 1997 DoD
Memo
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Sun, 26 Aug 2007 10:51:38 −0700
[…] When Emmett Paige wrote his
famous memo abrogating the Ada
mandate, the memo was widely
interpreted as the equivalent of the DoD
admitting that Ada was a mistake, and
direct abandonment of its use for future
DoD projects. Although that was not the
intent of the memo, that interpretation is
now widespread both within and outside
the DoD.
It is unfortunate that the memo was
written in a way that left it open to Ada’s
enemies to misinterpret. The damage
done is widespread. The educational
institution where I teach once required
Ada of its students. Now the language is
almost non-existent except in a two-week
portion of an eleven week class that I
teach. No one else in our computer
science department gives it any credibility
at all.
The real-time software projects are now
being written in Java. The funding for
research will not support anything with
the Ada language involved. The newly-
hired faculty members regard Ada as a
quaint era of the past, not something to be
taken seriously.
I have been an Ada advocate for about
twenty years, but it is becoming clear that,
without some miracle or absent someone
in the DoD coming to their senses, the use
of the language will continue to decline
both in the commercial world and in the
DoD. When I was still consulting and
teaching Ada, one of my major clients, a
DoD contractor building one of our major
weapons systems, switched from Ada to
C++. It was a massively stupid decision.
But the man who was previously in
charge, who understood the value of Ada,
retired. His successor knew little about
Ada and was a strong advocate of C++.
Without the mandate in place, he could
blithely ignore the wisdom of using Ada
and demand that everything be written in
C++.
I asked the question, at the time, “What
makes you think you can use a language
such as C++ that is inherently error-prone,
and expect a result that is error-free.” My
credibility suffered from my resistance to
C++. The more I saw of, and continue
to see of, C++, the more I realize how
dangerous the language is and how
wrong-headed it is to use C++ for military
software systems, but my opinion carries
no weight. At the same time, in an effort
to offset the known dangers of C++, many
DoD organizations and their contractors
have chosen Java. This is also a dumb

decision, but the new real-time features of
Java make it more difficult to clarify the
points that make Ada a better choice.
There is no single strong advocate for
Ada at present. There is no powerful
corporate sponsor as there is for Java.
There is no major Ada project that is
visible to the larger community of
software developers. The language is
seen as “old-fashioned” and out-of-date
by those who have graduated within that
past ten to fifteen years. It is an oddity.
The damage to Ada was the result of
many factors. The AJPO never quite got
it right. The DoD certainly never got it
right. The infighting between Ada
vendors never helped. The fact that Ada
compiler vendors charged outrageous
prices for their compilers helped to
discourage commercial organizations
from using Ada: COBOL, C, C, Pascal,
were more affordable. Most PC versions
of Ada had less capability for building PC
applications directly than BASIC. With
exception of the Meridian Compiler, there
were no good libraries for creating MS-
DOS applications. Even Meridian got it
wrong by defining the data type for
system address incorrectly.
With Ada 95, the designers and
contributors to the design of the language
did get a lot of things right. Ada finally
became a language for the ordinary
programmer. The time was also right. A
lot of people renewed their interest in the
language. Then, grabbing defeat from the
jaws of potential victory, the letter from
Mr. Paige muddled the entire decision-
making process. A delay of two or three
years before writing that kind of letter
might have made a difference. Instead,
the developer community ran as fast as it
could to find other options.
JSF is being developed in C++. A truly
dumb decision. Missile Defense Agency
has completely abandoned Ada. […]
This is truly unfortunate. Ada continues
to be the best hope as a language for
software engineering. In my view, it is
still the best language for use in safety-
critical, mission-critical, and military
software systems. It offers a lot to
commercial software developers, as well.
How we get that message out, now that
there is no powerful sponsor and no
effective Ada consortium, I don’t know.
At one time, I used to write a lot of
articles about the value of Ada for
software magazines such as JOOP, HP
Professional, Embedded Systems
Programming, and others. That seemed to
help a little. I have yet to see anyone
publish an article about the Ada 2005
standard — even in DoD publications. It
is as if it never happened.
I no longer have the time to devote to Ada
since my role has changed. I am no
longer directly involved in Ada, though I
continue to promote it whenever I can. I

can still teach it in some of my classes,
but I get the question from my colleagues,
“Why are we bothering with that old
language?” At present, I am the last
hold-out for keeping Ada in some small
part of our curriculum. When I am gone,
Ada will also be gone. Or as newer
faculty members take over my courses,
Ada will vanish entirely.
I wish I could outline an action plan
instead of posting a tale of lament.
Perhaps someone from this forum can
come up with a solution for improving the
situation. I wonder if someone might
write and publish some articles about the
new standard and the continuing viability
of the language? Maybe we can get
someone in the DoD, someone with a
brain in their head who understands
software, to reinvigorate and reinstate the
interest and committment to Ada. I
would hope so, but it is a faint hope at this
point.
From: Gary Scott

<garylscott@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Mon, 03 Sep 2007 11:36:10 −0500
[…] In one particular environment (test
equipment), all of themodels, real-time
data capture/processing, etc. were in
extended Fortran 77 plus embedded and
standalone assembly modules. It wasn’t
that C would have improved the specific
product at all, it was very well structured
(although non-portable, but it was very
hardware specific so it wouldn’t be
portable in any language). It was the
feeling that the world was passing them
by as EVERYTHING was in Fortran 77.
At one point, the directive to use Ada
applied to this environment as well so
they began porting to Ada. However, the
Ada compiler was so new and inefficient
(little optimization), the application set
would no longer execute on a system with
several times the memory and CPU
capacity of the Fortran/assembly based
one. It eventually was completed, but this
experience negatively tainted
management against Ada. No other
attempts were ever made that I am aware
of to use Ada for the test environments.
Likewise, there was no concerted attempt
to understand WHY the Ada development
foundered. It was of course a mixture of
operating system inefficiency, compiler
inefficiency, and software/hardware
architecture inefficiency.
The older system used extensive
proprietary parallel processing, DMA, and
shared memory and the new system used
COTS message passing schemes. Before
the advent of fast CPUs, there simply was
no other way to accomplish the task in a
cost efficient manner than to use parallel
processing. With the advent of fast
CPUs, much less thought goes into the
hardware design with the thought that the
CPU is so fast, we’ll just emulate that part

Ada User Journal Volume 28, Number 3, September 2007

160 Ada in Context

of the hardware in software or perform its
processing job in a separate process or
thread without really thinking through the
overhead (cache utilization, interrupt
processing, task switching time).
From: Gary Scott

<garylscott@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Sun, 02 Sep 2007 15:03:54 −0500
[…] I have discussed these issues with
many programmers and it is a somewhat
pervasive attitude that not keeping their C
language skills honed places them at a
competitive disadvantage. Defense has
somewhat frequent employment ups and
downs. They simply want to be
competitive with those competing for
commercial jobs.
I had a conversation with Nancy Leveson
(Safety Critical Software). She tends to
be somewhat language agnostic in her
books, but it is my belief that she agrees
with the above but is hesitant to voice
such a heretical view.
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 29 Aug 2007 05:31:37 GMT
Today I presented the Ada module in my
“programming paradigms” course. The
reaction from students is good. Soon,
though, I may lose that course to one of
our junior faculty who knows nothing
about Ada.
Ed Falis indicated surprise that anyone
could misinterpret Paige’s memo. The
fact is that the misinterpretation was
widespread and that wrong interpretation
was received with a certain amount of
glee in some quarters. For some reason,
Ada has enemies. It is not entirely clear
why this should be the case.
From: Ed Falis <falis@verizon.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Wed, 29 Aug 2007 14:27:29 GMT
Richard, you misinterpreted the sense of
my comment: I don't see how anyone
could have interpreted Paige's memo as
anything other than DoD walking away
from Ada.
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Fri, 31 Aug 2007 07:25:08 −0700
> Which does not contradict my statement

in the context of the times. Despite the
superficially “fair” wording of the
memo, it was almost universally
interpreted as DoD walking away from
Ada. One of my colleagues was at a
meeting recently where some yoyo got
up and said “Thank God we got rid of
Ada”! Probably because that was the
“cool” view among those who felt

oppressed by the mandate (largely in
terms of their short-term profit
margins).

I published an article in Crosstalk several
years ago that attempted to clarify Mr.
Paige’s intent. I even sent him a draft of
the article for his approval before
publishing it. He agreed with my
assessment and the content of the article.
His original hope was that, having been
proven successful in a lot of DoD
projects, Ada would stand on its own and
be chosen without the coercion of a DoD
mandate. It has been suggested by some
that there was a lot of “behind the scenes”
influence from DoD contractor executives
to get rid of the Ada mandate. There may
have been some of this, but there was also
a lot of controversy generated in other
quarters.
Some people in this forum may recall the
flurry of email and forum postings from
some pipsqueak (I cannot recall his name)
who constantly bombarded Mr. Paige and
other DoD executives with diatribes about
both Ada and their management of Ada.
It did not help at all that some former
AJPO officials, in particular Don Reifer,
became turncoats and used their visibility
in the software industry to publicly
denigrate and discourage the use of Ada
in DoD publications such as Crosstalk.
I used to do a lot of training and
consulting for Lockheed and CSC related
to the Aegis project. Soon after the Paige
memo, Lockheed dictated that the
software for Aegis would be written in
C++ instead of Ada. Almost all training
in Ada stopped, and the programmers
were given intensive training in C++. I
told everyone that it was a big mistake,
but my advice was of little interest to
those who were already biased toward
C++. The answer was, “We can find
C++ programmers right out of university
CS programs, but no one teaches Ada in
CS.”
A lot of the early frustration with Ada 83
was justified. There were things one
could not do easily with it. Some of the
work-arounds required on some projects
were horrible. There was no language
defined data type for unsigned integers
and I recall a project where that took a lot
of time away from the programming
effort just to invent a work-around.
Hobbyists, many of whom were more
influential than anyone realized, found
they could not easily format a simple MS-
DOS screen with most compilers. The
compiler vendors resorted to ANSI.SYS,
which was simply another work-around.
Alsys did have a special package that
supported an unsigned integer, and I
recall a USMC project where we were
able to access B800(Hex) area of memory
to directly access the video display
mapping.

With Ada 95, a lot of things got better.
We no longer had to make excuses for,
nor invent work-arounds for, that lack of
inheritance. It does not matter who made
the mistake of excluding inheritance from
the language in the first place. I
remember many discussions where I was
defending Ada 83 because it did not
support extensible inheritance. As it turns
out, we still don’t use inheritance that
much for safety-critical software anyway.
And we certainly don’t use dynamic
binding.
In spite of the good efforts of people like
Ed Falis and Ben Brosgol at Alsys,
commercial adoption was a failure. In
fact, it was due to the efforts of those two
people that Ada 95 did become hospitable
to commercial and business data
processing applications. Unfortunately,
the compiler publishers ensured that no
one in the commercial world would use
Ada by: 1) pricing the compilers so no
one could afford them, and 2) separating
Ada from the rest of their product line by
relegating it to a sales option for their
Federal division. At IBM and Rational,
very few people on the commercial side
of the sales force had any knowledge of
Ada.
The consortiums (ARA, etc.) found a way
to waste money on some of the most
absurd ad campaigns ever launched.
Does anyone remember those ridiculous
ads in the late 1990s. That was money
down the drain.
Ada continues to be the best option for
safety-critical and military weapon
systems. I work in a DoD organization
and try to promote it whenever I can. My
reasons for promoting Ada for DoD
software have little to do with Ada, per se,
but with my concern about the
dependability of software that must work
right every time it is used. With Ada we
have a better chance of achieving that
goal than we do with C or C++, or even
Java. I have even been called an “Ada
bigot,” and sometimes described as a
“throwback” for my views on
programming language choice.
As nearly as I can tell, my continued
advocacy of Ada for DoD software puts
me in a very small minority of the “quaint
but tolerated” software community. Most
of my Ada-knowledgeable colleagues
have given up the fight and gone on to
other things. They have concluded that
C++ is good enough; Java is good
enough; Python is good enough. One
of my students told me recently of a
flight-control system on one of our
military aircraft where the software is
written in VisualBasic. I hope he is
wrong.
When the Paige memo came out, I
commented in a public article (in JOOP)
that, if the DoD cannot manage a single
language policy, how do they expect to
manage a multiple-language policy. They

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 161

can’t. They have decided to let the
contractors make the choice. The long-
term consequences of this abrogation of
responsibility will be dire, but no one
seems to care.
I realize that many in this forum are not
concerned with warfighting software.
Perhaps the commercial software you are
developing will make enough difference
that some of those in the DoD who need
to understand the issues of software
decision-making will come to their senses
when they see the results of your work.
However, it is too late for influencing the
DoD contractors. They are now free to
use any language they wish, including
some proprietary language they might
invent or extensions to some existing
language that no one else knows about.
The Paige memo did its damage. Now we
need to find some way to repair that
damage. It might be too late. On the
bright side, SPARK is “sparking”
renewed interest in Ada — as long as we
don’t call it Ada.
From: Adam Beneschan

<adam@irvine.com>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Fri, 31 Aug 2007 10:18:42 −0700
[…] I frankly wouldn’t expect good
results from *anyone* who can program
in language X because it’s what they
learned in college but couldn’t pick up
language Y; to me, I wouldn’t trust
someone like that to have a real
understanding of “software” or
“programming”, and because of that I
wouldn’t expect them to write good
software no matter how good language X
is, even if it were Ada. Ada is not a good
enough language to make up for a
fundamental lack of software engineering
understanding. […]
From: Ole-Hjalmar Kristensen <ole-

hjalmar.kristensen@sun.com>
Organization: Sun Microsystems
Date: 04 Sep 2007 09:07:12 +0200
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
[…] In the late eighties I worked on an
automated toll gate system, and among
the team were two junior members. One
had EE background and lots of experience
with C. The other had CS background and
no experience with C whatsoever, but a
thorough understanding of software
engineering. After a couple of weeks on
the project the CS guy was definitely
more productive in terms of delivering
code that worked….
From: Richard Riehle

<adaworks@sbcglobal.net>
Newsgroups: comp.lang.ada
Subject: Re: Current status of Ada?
Date: Sun, 2 Sep 2007 12:04:57 −0700
> But part of the issue has been

unhappiness of the programmers
themselves. When told that they would

have to program in Ada, the C
programmers were turning down job
offers. Not because they couldn’t pick
up Ada, but because they wanted to
keep their C skills polished in case they
found a better position elsewhere. You
do get rusty from non-use, and you fall
behind the latest standards over time.

I have heard this argument from the so-
called managers who were using it as an
excuse for not using Ada. When the
interviewing manager says something
such as, “Of course, in our shop you will
be programming in Ada instead of C. I
know this is a little bit out of the
mainstream, but the government
programming we do requires us to use
Ada.” Or some similar line of apologetic
interviewing, what can we expect. Yes.
Too often, the managers would apologize
for using Ada instead of focusing on the
benefits of using it. And there are a lot of
benefits. Adam mentioned the software
engineering benefits, and those benefits
are substantial.
When I was just a programmer, even a
programming manager, before
discovering Ada, I did not really
understand software engineering very
well. Most of what passed for (and still
passes for) software engineering was the
adoption of Industrial Engineering
protocols on the software process. There
was very little of what any real engineer
would call engineering. I have Ada to
thank for helping me rise above the
programming model that I had been stuck
with for so many years.
Hardly anyone engineers software in C.
Very few really use C++ to engineer
software solutions. As long as we remain
tied to the notion that programmers are
the driving force in the software process,
we are doomed to a long nightmare of
horrible applications where debugging is
the norm and design is the exception. If
C++ is the answer, someone is asking the
wrong question.
Where C is often called a “universal
assembler,” C++ is an object-oriented
assembler, and not as universal as C. If
software engineering is, in part, about
levels of abstraction, C++ is at a very low
level of abstraction. As long as we
continue to think of software in terms of
computers instead of in terms of the
required solutions, we will be stuck with a
model of software that continues to focus
on the low-level issues.
When I first began to learn Ada, coming
to it as an old-fashioned programmer, it
was a strange and difficult transition. My
first inclination was to look for ways I
could leverage Chapter 13 for my code.
It took a while to understand the finer
points of the language. Once I was able
to understand those, it seemed strange to
me that I used to write programs in a
different way.

Sadly, those LMCO managers on Aegis
who made the decision for C++ instead of
Ada simply don’t understand Ada. They
are still thinking in terms of programming
languages, not in terms of engineered
software. This is true of most of the DoD
contractors I have known over the past
twenty+ years. They have no idea of the
benefits of software engineering,
something they can do with Ada better
than with most other options. It is a
matter of ignorance, nothing more. If
they did understand the difference, there
would never have been abandonment of
Ada in favor of C++.
So, instead of learning how to apply good
software engineering principles, most of
them have behaved like human lemmings,
blindly following the idiotic choices made
by those in the software industry who also
know little about engineering, but a lot
about programming.
Until the DoD, and industry in general,
begins to take more of an engineering
approach to the development of software,
we will continue to wrestle in our
bedclothes with the software nightmares
that continue to haunt us, only to wake in
the morning and discover that our best
efforts to control those nightmares have
consummated themselves in nothing more
than a simple wet-dream.

Multithreaded callbacks
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Interfacing to C: multithreaded

callbacks
Date: Tue, 12 Jun 2007 12:56:30 −0700
I have identified three problems with
interfacing to C, I will describe them in
separate posts.
Suppose there is a C library that creates
additional threads (system- level threads
in the pthread_create sense) and can call
the client code back via function pointers
that the client code provides to the library.
Asynchronous I/O library that notifies the
client about state changes can be a good
motivating example.
It is possible to pass Ada callback to the C
library — it’s enough to pragma
Export(C, My_Procedure) and pass
appropriate access to procedure. This way
we could, for example, use the standard C
function qsort. The problem is when the C
library creates additional threads and calls
the client back in the context of those
threads. ARM says nothing (?) about the
relation between Ada tasks and system
threads. If the relation is 1:1 (ie. tasks are
implemented as system threads), then the
whole scheme might work just fine,
provided that there is no task- specific
data that Ada runtime expects and will not
find. On the other hand, if the relation
between tasks and threads is not 1:1, we

Ada User Journal Volume 28, Number 3, September 2007

162 Ada in Context

will just enjoy undefined behavior. Looks
like a shaky ground.
Is there any water-proof implementation
pattern for such problems? Consider both
the general case and then GNAT as the
target Ada compiler on POSIX systems.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Interfacing to C: multithreaded

callbacks
Newsgroups: comp.lang.ada
Date: Wed, 13 Jun 2007 10:11:30 +0200
Yes, when Ada tasks aren’t mapped onto
system threads, then system calls
potentially might block all Ada tasks.
This includes whatever POSIX layer.
You can marshal messages from C
callbacks. With busy waiting and one
publisher — one subscriber, you don’t
need anything but shared memory to
implement that.
However, when talking about POSIX
targets, I would assume Ada tasks being
POSIX threads.
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: multithreaded

callbacks
Date: Wed, 13 Jun 2007 08:23:08 −0700
> You can marshal messages from C

callbacks.
Yes, that might be some possibility.
Going further in this direction, I might
even isolate the C library in a separate
process and communicate with it from
Ada client using some appropriate IPC. I
can imagine scenarios where that makes
sense.
> However, when talking about POSIX

targets, I would assume Ada tasks
being POSIX threads.

Yes, that should be obvious
implementation strategy. It doesn’t
automagically solve all problems, though.
The threads started by C library will be
“pure virgin threads”, without any Ada-
related context information that might be
stored in TLS (Thread Local Storage), for
example. Crossing the border between C
and Ada in a callback is a matter of
calling convention and single pragma, but
depending on what the Ada subprogram
tries to do next it might work or not. Just
imagine that such a subprogram will try to
do some tasking-related stuff (rendezvous
with other Ada task? etc.) and from the
point of view of Ada runtime will be just
a foreigner. I think that C threads should
not pretend to be Ada tasks, unless we
know *everything* about the particular
Ada implementation. Some GNAT
developers might shed some light here.
Fortunately, the C library I have in mind
offers (possibly blocking) polling as
alternative to callbacks, so that it should
be possible to set up “normal” Ada task

that will poll the library for state changes
and then do regular Ada callbacks to other
subprograms when needed. This way C
threads will not mess around Ada
runtime. But I can imagine C libraries that
don’t provide this opportunity; then
marshaling or total isolation might be the
correct solution.
From: Simon Wright

<simon.j.wright@mac.com>
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: multithreaded

callbacks
Date: Wed, 13 Jun 2007 20:57:35 +0100
For GNAT, see
GNAT.Threads.Register/Unregister_Thre
ad — they seem to think it’s quite tricky,
maybe other vendors have a different
slant.

Unknown binary layout
interface
From: Lutz Donnerhacke <lutz@iks-

jena.de>
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: API with

structures but without binary layout
Date: Tue, 12 Jun 2007 20:19:27 +0000

UTC
Organization: IKS GmbH Jena
> Another problem with interfacing:

consider a C function that expects some
data structure that is defined in terms of
C struct definition, but without clear
binary layout.

Hard problem even in C. The binary
layout of passed structures might differ
between different executables notably
between kernel and application, if the C-
compiler options of both are different
enough.
> Now, in order to call such a function we

need access to the appropriate header
file, where the actual structure
definition is provided. But Ada doesn’t
understand C headers and pragma
Import(C, connect) will not be enough.

I wrote a very thin binding to the Linux
kernel (resulting in a inlined INT 80 after
all). If the API/ABI does not define the
structure closely enough to use
representation clauses, an Ada record with
layout Pragma(C) did always the job.
> A straightforward solution is to create a

thin wrapper (in C) for the given
function that will expect parameters in
well-defined form and layout and just
forward them to the interesting system
call. This wrapper will have to be
compiled separately on each target
system, picking the actual structure
definition from the appropriate system
header. Ada can then call the wrapper
function.

> Is this THE solution?
It is the canonical way, yes. Given the
majority of existing software, you can

collect the information directly and
provide platform specific Ada sources.
This is causes by the platform specific
API, which can’t be described portable by
a higher level language.
From: Jeffrey Creem

<jeff@thecreems.com>
Date: Tue, 12 Jun 2007 18:36:16 −0400
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: API with

structures but without binary layout
There are a few possibilities.
1) Define the Ada records to match what
you expect and hope for the best (not
great but fine in some cases)
2) Create the wrappers that you have
suggested (I’ve used this in some cases)
3) Use an automated bindings generator
for some of the thin stuff and create the
bindings during the ./configure step. This
is certainly what some other languages do
in some cases (e.g. Python). SWIG is a
tool that can in theory be used in this
cases. The current official sources do not
support Ada but the maintains have
indicated they will accept patches when
they are ready. In the mean time, there is
a branch being worked within the gnuada
project SVN structure on sourceforge.
If you have a large library you want to
bind to, contributing to SWIG may be an
overall cost neutral approach and be
helpful in the long term.
Having said that, many C libraries have
gotten so cluttered with defines and decl
specs and exports of various flavors that I
suspect that some libraries will forever
resist effective automated binding
generation.
4) Something else similar. Specifically,
GtkAda has a perl script that is semi-
specific to Gtk that helps in the creation
of bindings. It is sort of a middle ground
and is an effective approach in some
special cases.

Interfacing to C macros
From: Maciej Sobczak

<maciej@msobczak.com>
Newsgroups: comp.lang.ada
Subject: Interfacing to C: API with macros
Date: Tue, 12 Jun 2007 13:17:29 −0700
Yet Another Problem (YAP): consider a
C function that is defined together with
some helper macros. Motivating example:
select(2) system call, with its FD_XXX
helper macros.
(it is unspecified whether FD_XXX
helpers are macros or functions, but we
can assume the worst)
There is no way to pragma Import(C,
FD_SET) and the binary layout of fd_set
data structure is not specified, so we
cannot fake it with Ada.

Volume 28, Number 3, September 2007 Ada User Journal

Ada in Context 163

Again, the straightforward solution: thin
wrapper in C, that itself is simple enough
to be easily imported by Ada code. […]
From: Lutz Donnerhacke <lutz@iks-

jena.de>
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: API with

macros
Date: Tue, 12 Jun 2007 20:25:17 +0000

UTC
Organization: IKS GmbH Jena
Have a look at the semantics of those
macros, you will notice, that they are a
application level language in C hiding the
expressiveness holes of the language.
Now you have a higher level language
and you are expected to use it!
We know that fdset_t is a bitarray on all
known systems. Therefore
type fdset is Array (0..1023) of Boolean;
pragma Pack(fdset);
and you are done.
If you try to meet your counterpart at the
most evil place, your program will look as
ugly as the counterpart. Use the
abstraction of your language! Program
what they mean, not what they code.
From: Tom Moran <tmoran@acm.org>
Newsgroups: comp.lang.ada
Subject: Interfacing to C: API with macros
Date: Tue, 12 Jun 2007 19:18:55 −0500
If you are interfacing to something that
isn’t documented, then you will indeed
have to experimentally determine the
interface, or make a wrapper from
unknown to known interface spec.
Usually the interface is documented
(though too often erroneously), though
you may have to look carefully to see, for
instance, what some bit-field packing
macro is doing. Once you know, you can
write a direct Ada interface. Claw, for
instance, uses a great number of Windows
API calls, and it uses no wrappers in C
(though the whole point of Claw is to give
an Ada-flavor wrapper to the Windows
API). Many APIs in the Windows world
also have typelib descriptions that can be
used to automatically generate an Ada
wrapper.
From: Steve <steved94@comcast.net>
Newsgroups: comp.lang.ada
Subject: Re: Interfacing to C: API with

macros
Date: Wed, 13 Jun 2007 07:06:15 −0700
> Looks like in order to write any

nontrivial system software the poor
Ada programmer has to start with an
awful lots of wrappers — where is
maintainability and productivity when
you need them? ;-)

Fortunately the Ada programmer gains
enough efficiency in other areas to offset
the time generating wrappers. Some tools
(ie: c2ada) are available for automatically
generating wrappers, but do not in general
do 100% of the job.

System IO and text files
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: Mixing reading and writing to

a text file
Date: Thu, 2 Aug 2007 20:26:33 −0500
> I’m facing a situation, where I need to

access a text file for both input and
output.

The only way to read and write the same
file is using Ada.Streams.Stream_IO. Use
Reset or Set_Mode to change from
Reading to Writing and vice versa.
> This file is used for storing a sequence

of different records (of various lengths
— it’s not possible to define the upper
bound) defining operations that need to
be performed. Some errors could occur
and the processing might be aborted. In
this case it is crucial to store state of the
processing (in the simplest case only
the number of the last record processed)
must be saved, so that it may be
resumed later.

> The task seems simple as I have
complete control over the file format.
I’d rather use human-readable format
but a binary one is also acceptable.

> The problem I have is with writing the
state information back to file.
Ada.Text_IO and
Ada.Streams.Stream_IO only allow
opening file for input or for output. In
the latter case the file is being truncated
(as far as I understand the ARM).

The ARM was screwed up in Ada 95 vis-
a-vis Ada.Streams.Stream_IO. This was
fixed in the Amendment (and the fix is
supposed to apply to Ada 95 compilers as
well). Specifically, stream files are *not*
truncated when they are opened for output
(otherwise it would be virtually
impossible to use the positioning
functions to write a stream file).
But a warning: almost all compilers got
this wrong when we tested them while we
were working on the Amendment. (The
main reason that we were willing to
change it was that virtually every
compiler tested did something different.)
So it is not impossible that your
implementation gets this wrong in some
way. But if it does, that is a compiler bug,
not a language issue. Report it to your
implementer.
Also note that you don’t need to Open the
file to change the mode of a stream file;
Set_Mode should do the job. And even
the buggy Ada 95 manual didn’t imply
that Set_Mode should truncate, so that
ought to work (but again, not all
compilers get this right — unfortunately,
there was no ACATS test for it).
From: Marcin Simonides

<msimonides@power.com.pl>
Newsgroups: comp.lang.ada

Subject: Re: Mixing reading and writing to
a text file

Date: Mon, 06 Aug 2007 00:35:54 −0700
Thanks for clarification. I wrote a simple
test that opens an In_File and then Resets
it as Out_File and writing works as
expected — data is overwritten over the
bytes that I wish to change and there is no
truncation (the compiler is GNAT GPL
2007).
(I have read A.8.2 File Management and
only skimmed over description of
Ada.Streams.Stream_IO, so this has been
mostly an RTFM issue :)).

Self pointer in limited record
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Self pointer in limited record
Newsgroups: comp.lang.ada
Date: Thu, 5 Jul 2007 10:22:59 +0200
> Consider:
> type T_Access is access all T;
> type T is new

Ada.Finalization.Limited_Controlled
with record

> Self : T_Access :=
T'Unchecked_Access;

> -- more components
> -- …
> end record;
> I have seen this pattern repeatedly.

What is the use for Self?
The pattern (also called Rosen trick) is
used:
1. to have mutable arguments of
functions:
function Search (X : T; K : Key) return
 Value is
 Object : T renames X.Self.all;
begin
 … -- Modify the search cache
 associated with X via
 -- mutable Object view

2. to re-dispatch from primitive
operations:
type T_Access is access all T'Class; --
Note 'Class
type T is new
Ada.Finalization.Limited_Controlled with
record
Self : T_Access :=
T'Unchecked_Access;
procedure Bar (X : T); -- Primitive
procedure Foo (X : T); -- Primitive
procedure Foo (X : T) is
Object : T'Class renames X.Self.all;
begin
 Bar (X); -- This does not dispatch!
 Bar (Object); -- This dispatches
 Bar (T'Class (X)); -- This dispatches
as well

The later (view conversion) should better
be removed from the language, so I
always prefer Rosen trick for such
purpose.

Ada User Journal Volume 28, Number 3, September 2007

164 Ada in Context

Both defeat the type system in some sense
and potentially indicate a design problem.
> And why is it Unchecked?
Because of accessibility rules.
From: Adam Beneschan

<adam@irvine.com>
Newsgroups: comp.lang.ada
Subject: Re: Self pointer in limited record
Date: Fri, 31 Aug 2007 10:37:10 −0700
> Then you have seen illegal Ada code

repeatedly. I wish this were possible
myself. Or more simply:

> type T is -- limited or not
> Self : access T :=

T'Unchecked_Access;
> …
> end;
> But the compiler will remind you that

Unchecked_Access is not available for
types.

No, this can be legal. Normally, you
can’t apply 'Unchecked_Access to a type
name. But within the definition of a type
T, the use of T in a context like this refers
to the “current instance”; that is, it will
refer to whatever object is declared with
that type. So if you later declare “X : T;”,
then the T in T'Unchecked_Access will be
replaced by X for that declaration (and
X.Self will thus point to X). See 8.6(17).
However, it’s only legal if T is limited (in
Ada 2005, the rule is slightly more
restrictive), because 'Unchecked_Access
can only be applied to an aliased entity,
and 3.10(9) says that the current instance
of a *limited* type is defined to be
aliased.
Date: Sat, 01 Sep 2007 15:33:09 +0200
From: Georg Bauhaus

<bauhaus.rm.tsoh@maps.futureapps.de>
Newsgroups: comp.lang.ada
Subject: Re: Self pointer in limited record
> T cannot be non-limited, because

otherwise passing it by copy would
make rubbish out of Self. In any case it
would make little sense if not access
T'Class.

I think there is an interesting use of a .Self
pointer of simple limited records with
state variables of packages.
Say a procedure in a package P controls
the state of some variable in the package’s

body. The state variable is of type access
T, where T is a limited record type
declared in P. The purpose of the state
variable is to remember the object of type
T that will be the target of subsequent
package operations.

Newsgroups: comp.lang.ada
Date: Sat, 1 Sep 2007 15:46:27 +0200
> (The true O-O programmer might

suggest that we should simply pass an
additional object-as-module parameter
to every package subprogram…)

Yes, it is better to keep packages stateless. A natural way to remember a particular
object is to point to the object. But
package clients should not have to worry
about this pointing mechanism. So the
package shouldn’t declare a public access
type used for internal mechanism only.
Instead there is a procedure of one T
argument that can be called by clients
when they want to indicate the object to
be used in subsequent P operations.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: Re: Self pointer in limited record
Newsgroups: comp.lang.ada
Date: Sat, 1 Sep 2007 18:03:00 +0200
> Though by using tagged objects for a

module and not a stateful package, you
will dismiss a few properties of
packages that can be helpful when
modeling singleton modules: This is where .Self can be used. We

cannot take 'Access or
'Unchecked_Access of subprogram
arguments unless they are aliased (such as
those of type T'Class). But the .Self
component of the subprogram’s argument
supplies the access value that is needed
for storing a pointer to the argument in the
package body.

> 1.- If there is just one object in the
problem domain a package is a perfect
match and will be straight forward,
safe, and simple to implement. No need
to worry about static and dynamic
scopes of module-objects passed
around because there is just this one
named package for the problem domain
object. package P is

 type T is limited private;
 procedure Choose (Selected: in out T);
 -- sets target T for subsequent
 operations
 procedure Work;
 private
 type Bits is array(0 .. 15) of Boolean;
 type T_Access is access all T;
 type T is limited record
 Self: T_Access :=
 T'Unchecked_access;
 Slots: Bits;
 end record;
end P;

Yes, yes, but this is a different case.
Dealing with singletons, I probably would
use a [stateful] package instead of objects.
Types presume multiple instances of.
Singleton in OO breaks this concept. Ada
offers a cleaner alternative. Why should
we force it into a type? Let it be a
package.
I think the empiric rule could be: if a
package is used to declare types, then it
should have no mutable state. Otherwise
it should not have type declarations.

package body P is
 Current: T_Access; - - state variable,
 target object
 procedure Choose (
 Selected: in out T) is
 begin
 Current := Selected.Self; -- here
 end Choose;
 procedure Work is
 begin
 Current.Slots(3) := not
 Current.Slots(3);
 end Work;
end P;

> 2.- Nesting packages is an option, a
distinguishing feature of Ada IMO; a
package nested inside a subprogram is a
simple solution to the life cycle
problem of module style objects.

Hmm, a subprogram has all properties of
a package. So there is no obvious reason
why nested package (except instances of
generic packages, of course), might be
useful there.
BTW, I guess child and separate packages
might probably replace nested packages.
Excluding generics, I mean. Maybe if
there were no generic packages we could
drop them altogether.

[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: Re: Self pointer in limited record

Volume 28, Number 3, September 2007 Ada User Journal

166 Conference Calendar

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conference and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2007

October 02-05 23rd IEEE International Conference on Software Maintenance (ICSM'2007), Paris, France. Topics

include: software and systems maintenance, evolution, and management.

October 03-05 10th Italian Conference on Theoretical Computer Science (ICTCS'2007), Rome, Italy. Topics
include: formal languages; formal methods and model checking; models of concurrent and distributed
systems; principles of programming languages; program analysis and transformation; specification,
refinement and verification; etc.

October 11 Automotive SPIN Italy - 2nd Workshop on Automotive Software, Milan, Italy. Topics include: any
aspects of Software Process and Software Engineering in the Automotive Domain, such as Tool and
technical solutions supporting software process improvement, Software Certification issues in
automotive, Safety implication for automotive software, etc.

October 11-12 7th International Conference on Quality Software (QSIC'2007), Portland, Oregon, USA. Topics
include: Software quality (review, inspection and walkthrough, reliability, safety and security, ...);
Evaluation of software products and components (static and dynamic analysis, validation and
verification); Formal methods (program analysis, model checking, ...); Applications (component-based
systems, distributed systems, embedded systems, safety critical systems, ...); etc.

October 11-12 12th Nordic Workshop on Secure IT Systems (NordSec'2007), Reykjavik, Iceland. Topics include:
Language-based Techniques for Security, Security Education and Training, Trust and Trust
Management, etc.

October 15-17 2007 International Multiconference on Computer Science and Information Technology
(IMCSIT'2007), Wisla, Poland.

☺ Oct 15-17 1st Workshop on Advances in Programming Languages (WAPL'2007). Topics
include: Compiling techniques; Domain-specific languages; Formal semantics and
syntax; Generative and generic programming; Languages and tools for trustworthy
computing; Language concepts, design and implementation; Metamodeling and
modeling languages; Model-driven engineering languages and systems; Practical
experiences with programming languages; Program analysis, optimization and
verification; Program generation and transformation; Programming tools and
environments; Proof theory for programs; Specification languages; Type systems; etc

☺ October 16 International Workshop on Real-Time Software (RTS'2007). Topics include: real-
time system development, real-time scheduling, safety, reliability, dependability, fault-
tolerance, standards and certification, software development tools, model-based
development, automatic code generation, real-time systems curricula, etc.

October 15-19 21st Brazilian Symposium on Software Engineering (SBES'2007), Joao Pessoa/PB, Brazil. Topics
include: Component-based software engineering; Empirical software engineering and metrics;
Generative or transformation-based software development; Model driven development; Software
architecture, design and frameworks; Software engineering for embedded and real-time Software;
Software engineering tools and environments; Software safety, dependability, and reliability; Software
maintenance and reverse engineering; Software analysis and design methods; Software engineering
metrics; Software quality; Software reuse; Software testing and analysis; Software verification,
validation and inspection; etc.

Volume 28, Number 3, September 2007 Ada User Journal

http://www.cs.kuleuven.be/%7Edirk/ada-belgium/events/list.html

Conference Calendar 167

☺ October 18 4th Workshop on Programming Languages and Operating Systems (PLOS'2007), Stevenson, WA,
USA. Topics include: critical evaluations of new programming language ideas in support of OS
construction; type-safe languages for operating systems; language-based approaches to crosscutting
system concerns, such as security and run-time performance; language support for system verification;
etc.

☺ October 21-25 22nd Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA'2007), Montreal, Canada. Topics include: programmer productivity, secure and reliable
software, changing hardware platforms, ultra-large scale systems, improve programming languages,
refine the practice of software development, etc.

☺ October 21 6th "Killer Examples" workshop. Theme: "Process in OO Pedagogy". Topics include:
"killer" examples of teaching the process of programming; "killer" examples of teaching
OO modeling and programming; analyses of the process which students use to solve
problems; what are needs of industry - what will keep students competitive in the
workplace?; etc.

October 21 3rd Workshop on Library Centric Software Design (LCSD'2007). Topics include:
Design and implementation of libraries; Program and system design based on libraries;
Evolution, refactoring, and maintenance of libraries; Design of language facilities and
tools in support of library definition and use; Validation, debugging, and testing of
libraries; Extensibility, parameterization, and customization; Specification of libraries
and their semantics; Assessing quality of libraries; Using several libraries in
combination; etc.

☺ October 22 1st Workshop on Programming Languages and Integrated Development
Environments (PLIDE'2007). Topics include: techniques for supporting languages in
IDEs.

☺ October 22 2nd International Conference on System Safety 2007, London, UK. Includes: talk on "Certification of
Object Oriented Programs", by Robert Dewar, AdaCore.

October 26 1st York Doctoral Symposium on Computing (YDS'2007), York, UK. Topics include: High integrity
system engineering, within the context of Formal methods, Verification and Formal verification,
Theorem proving, Model checking, Testing; Information systems, within the context of Formal Methods
in Software Engineering, Model Driven Development, Object-Oriented Modelling and Development,
Systems Engineering Methodologies, Modelling Formalisms (Languages and Notations), CASE Tools
for System Development, Security, Component-Based Development, Software Architecture, Software
Engineering for Concurrent and Distributed Systems, Software Quality, Software Verification
(Validation and Inspection), ...; IT Security; Programming languages and systems; Real-time systems;
etc.

October 27-31 14th Working Conference on Reverse Engineering (WCRE'2007), Vancouver, British Columbia,
Canada. Theme: "Using evolution history for reverse engineering". Topics include: Mining software
repositories; Empirical studies in reverse engineering; Program comprehension; Redocumenting legacy
systems; Reverse engineering tool support; Software architecture recovery; Program analysis and
slicing; Program transformation and refactoring; etc.

☺ October 30-31 4th Workshop on Object-oriented Modeling of Embedded Real-Time Systems (OMER-4),
Paderborn, Germany. Topics include: Architectures/frameworks for platform independent, reusable
software components; Formal verification at the model and code level; Software components as
products; Software quality; Standards and guidelines (e.g., AUTOSAR, IEC 61508, MISRA, UML, ...);
Respective trends in automotive software development; etc.

October 30-31 IEEE International Conference on Software - Science, Technology & Engineering (SwSTE'2007),
Herzliya, Israel. Topics include: Verification, validation, and testing; Software engineering education
and training; Safety, reliability, and fault tolerance; Embedded systems and real-time software; Open-
source software; Analysis, design, and implementation; Modeling languages and tools; Programming
languages and environments; Analysis and design patterns; Maintenance, reuse, and evolution; etc.

♦ Nov 04-08 2007 ACM SIGAda Annual International Conference (SIGAda'2007), Fairfax,
Virginia, USA (a suburb of Washington, DC). Sponsored by ACM SIGAda, in
cooperation with SIGAPP, SIGCAS, SIGCSE, SIGPLAN, SIGSOFT, Ada-Europe, and Ada

Ada User Journal Volume 28, Number 3, September 2007

168 Conference Calendar

Resource Association. Topics include: Safety, security and high integrity development
issues; Language selection for a high reliability system; Use of ASIS for new Ada tool
development; Mixed-language development; High reliability software engineering
education; High reliability development experience reports; Static and dynamic code
analysis; Use of new Ada 2005 features/capabilities; etc. Deadline for submissions:
October 15, 2007 (nominations for SIGAda Awards).

☺ Nov 08-09 NIST SAMATE Static Analysis Summit II. Topics include: basic research,
applications, experience, or proposals relevant to static analysis tools, techniques, and
their evaluation.

November 05-09 18th IEEE International Symposium on Software Reliability Engineering (ISSRE'2007),
Trollhaettan, Sweden. Topics include: Reliability, availability and safety of software systems;
Quality/reliability-related security issues; Verification and validation; Industrial best practices;
Empirical studies of those topics; etc. Includes workshop on Automotive Software Reliability. Deadline
for early registration: October 7, 2007

November 07-09 6th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2007),
Rome, Italy. Topics include: Software methodologies, and tools for robust, reliable, non-fragile software
design; Automatic software generation versus reuse, and legacy systems, source code analysis and
manipulation; Intelligent software systems design, and software evolution techniques; Software
optimization and formal methods for software design; Software security tools and techniques, and
related Software Engineering models; End-user programming environment; Software Engineering
models, and formal techniques for software representation, software testing and validation; etc.

November 14-15 9th International Conference on Formal Engineering Methods (ICFEM'2007), Boca Raton, Florida,
USA. Topics include: Abstraction and refinement; Tool development and integration for system design
and verification; Techniques for specification, verification and validation; Techniques and case studies
for correctness by construction; Applications in real-time, hybrid and critical systems; Development
methodologies with their formal foundations; etc. Deadline for early registration: October 14, 2007.

November 14-16 10th IEEE International Symposium on High Assurance Systems Engineering (HASE'2007), Dallas,
Texas. Topics include: Design and development of highly reliable, survivable, secure, safe, and time-
assured systems; Policies for reliability, safety, security, integrity, privacy, and confidentiality of high
assurance systems; Formal specification, specification validation, testing, and model checking for high
assurance systems; High assurance software architectures and design; Case studies, experiments and
tools for high assurance systems; etc.

November 22-23 7th International Workshop on Advanced Parallel Processing Technologies (APPT'2007),
Guangzhou, China. Topics include: Parallel/distributed system architectures; Middleware, software tools
and environments; Parallelizing compilers; Software engineering issues; Task scheduling and load
balancing; Security in networks and distributed systems; Fault tolerance and dependability; etc.

☺ November 25-30 9th International Symposium on Distributed Objects and Applications (DOA'2007), Vilamoura,
Algarve, Portugal. Topics include: Application case studies of distribution technologies;
Interoperability with other technologies; Reliability, fault tolerance, quality-of-service, and real time
support; Scalability and adaptivity of distributed architectures; etc.

November 26-27 4th International Workshop on Rapid Integration of Software Engineering techniques (RISE'2007),
Luxembourg, Luxembourg. Topics include: Software reuse, Lightweight or practice-oriented formal
methods, Software processes and software metrics, Software patterns, Design by contract, Defensive
programming, Software entropy and software re-factoring, Programming languages, Software
dependability and trustworthiness, High-availability or mission-critical systems, Resilient business and
grid applications, Embedded systems and applications, Development environments, etc.

Nov 29 – Dec 01 5th Asian Symposium on Programming Languages and Systems (APLAS'2007), Singapore. Topics
include: foundational and practical issues in programming languages and systems, such as semantics,
type systems, language design, program analysis, optimization, software security, safety, verification,
compiler systems, programming tools and environments, etc.

☺ December 03-06 28th IEEE Real-Time Systems Symposium (RTSS'2007), Tucson, Arizona, USA. Topics include: all
aspects of real-time systems design, analysis, implementation, evaluation, and case-studies.

Volume 28, Number 3, September 2007 Ada User Journal

Conference Calendar 169

☺ December 03-06 8th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2007), Adelaide, Australia. Topics include: Formal methods and programming
languages, Software tools and environments, Component-based and OO Technology,
Parallel/distributed algorithms, Task mapping and job scheduling, High-performance scientific
computing, etc.

December 03-12 3rd International Joint Conferences on Computer, Information, and Systems Sciences, and
Engineering (CISSE'2007), Internet. Includes 4 e-conferences, among others the International
Conference on Systems, Computing Sciences and Software Engineering (SCSS'2007) with topics:
Programming Models and tools, Parallel and Distributed processing, Modeling and Simulation,
Embedded Systems and Applications, Programming Languages, Object Based Software Engineering,
Parallel and Distributed Computing, Real Time Systems, Multiprocessing, etc. Deadline for
submissions: October 5, 2007.

☺ December 06 Journée Ada-France, Brest, France. Theme: "Méthodes, processus, modèles et outils pour l'ingénierie
du logiciel embarqué temps réel critique". Topics include: des expérimentations d'outils, de modèles
et/ou de méthodes utilisés ou susceptibles d'être utilisés pour la réalisation de systèmes embarqués temps
réel critiques. Deadline for submissions: October 20, 2007 (presentation proposals).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 17 BCS-FACS 2007 Christmas Workshop: Formal Methods in Industry, London, UK. Topics include:
industrial uses of formal methods, lessons learned from applying formal methods in industry, industrial
case studies demonstrating the use of formal methods, use of formal methods tools in industry,
opportunities for applying formal methods in industry, etc. Deadline for submissions: October 1, 2007

December 18-21 14th IEEE International Conference on High Performance Computing (HiPC'2007), Goa, India.
Topics include: Parallel and Distributed Algorithms, Parallel Languages and Programming
Environments, Scheduling, Scientific/Engineering Applications, Software Support, etc.

2008

☺ January 10-12 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL'2008), San Francisco, California, USA. Topics include: fundamental principles and important
innovations in the design, definition, analysis, transformation, implementation and verification of
programming languages, programming systems, and programming abstractions.

January 13 2008 International Workshop on Foundations of Object-Oriented Languages (FOOL'2008), San
Francisco, California, USA. Topics include: language semantics, type systems, program analysis and
verification, concurrent and distributed languages, language-based security issues, etc. Deadline for
submissions: October 8, 2007.

February 13-15 16th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP'2008), Toulouse, France. Topics include: Parallel Computer Systems (embedded parallel and
distributed systems, fault-tolerance, ...); Models and Tools for Parallel Programming Environments;
Advanced Applications (numerical applications with multi-level parallelism, real time distributed
applications, ...); Languages, Compilers and Runtime Support Systems (object-oriented languages,
dependability issues, scheduling, compilers for multicore architecture, ...); etc.

February 18-21 7th IEEE/IFIP Working Conference on Software Architecture (WICSA'2008), Vancouver, BC,
Canada. Topics include: Software Architecture Modeling and Analysis Methods and Tools; Architecture
Description Languages and Model Driven Architecture; Software Architecture for Legacy Systems and
Systems Integration; Industrial case studies; etc.

February 25-29 7th International Conference on Composition Based Software Systems (ICCBSS'2008), Madrid,
Spain. Theme: "Weaving Composite Systems". Topics include: composibility and integration scenarios,
technologies for interoperability, standards, legal issues (including FOSS), etc.

☺ March 04-07 CISIS2008 - International Workshop on Multi-Core Computing Systems (MuCoCoS'2008),
Barcelona, Spain. Topics include: programming languages and models; performance modeling and
evaluation of multi-core systems; tool-support for multi-core systems; compilers, runtime and operating
systems; etc. Deadline for paper submissions: October 10, 2007. Deadline for early registration:
December 15, 2007

Ada User Journal Volume 28, Number 3, September 2007

170 Conference Calendar

☺ March 12-14 SIAM Conference on Parallel Processing for Scientific Computing (PP'2008), Atlanta, Georgia,
USA. Topics include: Programming languages, models, and compilation techniques; The transition to
ubiquitous multicore/manycore processors; Tools for software development and performance
evaluation; Parallel computing in industry; Distributed/grid computing; Fault tolerance; etc. Deadline
for submissions: October 1, 2007 (minisymposium proposals), October 8, 2007 (abstracts)

☺ March 12-15 39th ACM Technical Symposium on Computer Science Education (SIGCSE'2008), Portland, Oregon,
USA. Visit the ACM SIGAda booth!

March 16-20 23rd ACM Symposium on Applied Computing (SAC'2008), Fortaleza, Ceara, Brasil.

☺ Mar 16-20 Track on Object-Oriented Programming Languages and Systems (OOPS'2008).
Topics include: Design and implementation of novel abstractions, constructs and
mechanisms; Multi-paradigm features; Language features in support of adaptability;
Component-based programming; Generative programming; Program structuring,
modularity; Distributed objects and concurrency; Middleware; Compilation techniques;
etc.

Mar 16-20 Technical Track on Software Verification. Topics include: Data flow analysis, control
flow analysis, type effect systems, constraint systems and abstract interpretation
techniques for verification; Techniques to validate system software (such as compilers)
as well as assembly code or bytecode; Software certification and proof carrying code;
Integration of formal verification into software development projects; etc.

Mar 16-20 Track on Software Engineering (SE'2008). Topics include: Component-Based
Development and Reuse; Dependability and Reliability; Fault Tolerance and
Availability; Maintenance and Reverse Engineering; Verification, Validation, Testing,
and Analysis; Formal Methods and Theories; Empirical Studies, Benchmarking, and
Industrial Best Practices; Applications and Tools; Distributed, Embedded, Real-Time,
High Performance, Highly Dependable Systems; etc.

Mar 29 – Apr 06 European Joint Conferences on Theory and Practice of Software (ETAPS'2008), Budapest,
Hungary. Deadline for submissions: October 5, 2007 (research and tool paper abstracts), October 12,
2007 (research and tool papers).

Mar 31 – Apr 04 7th International Conference on Aspect-Oriented Software Development (AOSD'2008), Brussels,
Belgium. Deadline for submissions: October 5, 2007 (research paper abstracts), October 12, 2007
(research papers), October 19, 2007 (workshops), November 21, 2007 (tutorials, demos, industry track
submissions)

☺ April 01-04 3rd European Conference on Computer Systems (EuroSys'2008), Glasgow, UK. Topics include: All
areas of operating systems and distributed systems; Systems aspects of: Dependable computing, Parallel
and concurrent computing, Distributed algorithms, Programming language support, Real-time and
embedded computing, Security, ...; Experience with existing systems; Reproduction or refutation of
previous results; Negative results; Early ideas. Deadline for submissions: November 23, 2007
(workshops).

April 01-04 12th European Conference on Software Maintenance and Reengineering (CSMR'2008), Athens,
Greece. Theme: "Developing Evolvable Systems". Topics include: Software migration strategies and
technologies; Empirical studies in maintenance and reengineering; Experience reports on evolution,
maintenance and reengineering; Education in maintenance and reengineering; etc. Deadline for
submissions: October 12, 2007 (papers), October 19, 2007 (doctoral symposium papers, industrial track
papers, workshops, tool sessions)

☺ April 14-18 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2008), Miami,
Florida, USA. Topics include: all areas of parallel and distributed processing, such as Applications of
parallel and distributed computing; Parallel and distributed software, including parallel programming
languages and compilers, runtime systems, middleware, libraries, and programming environments and
tools, etc. Deadline for submissions: November 15, 2007 (tutorials)

May 07-09 7th European Dependable Computing Conference (EDCC-7), Kaunas, Lithuania. Topics include:
Architectures for dependable systems; Fault tolerant distributed systems; Fault tolerance in real-time

Volume 28, Number 3, September 2007 Ada User Journal

Conference Calendar 171

systems; Hardware and software testing, verification, and validation; Formal methods for dependability;
Safety-critical systems; Software reliability engineering; Software engineering for dependability; etc.

☺ May 10-18 30th International Conference on Software Engineering (ICSE'2008), Leipzig, Germany. Topics
include: Software components and reuse, Theory and formal methods, Engineering secure software,
Software dependability, safety and reliability, Reverse engineering and maintenance, Software
economics and metrics, Empirical software engineering, Engineering of distributed/parallel software
systems, Engineering of embedded and real-time software, Software tools and development
environments, Programming languages, etc. Deadline for submissions: October 12, 2007 (Education
Papers, Tutorial Proposals, Workshop Proposals), November 30, 2007 (Research Demonstrations),
December 14, 2007 (Doctoral Symposium)

May 26-30 15th International Symposium on Formal Methods (FM'2008), Turku, Finland. Topics include: all
aspects of formal methods research, both theoretical and practical, in particular the experience of
applying formal methods in practice.

June 04-06 10th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2008), Oslo, Norway. Topics include: Semantics and implementation of object-
oriented programming and (visual) modelling languages; Formal techniques for specification, design,
analysis, verification, validation and testing; Applications of formal methods; Experience report on best
practices and tools; etc. Deadline for submissions: January 8, 2008 (abstracts), January 15, 2008
(papers)

♦ June 16-20 13th International Conference on Reliable Software Technologies – Ada-
Europe 2008, Venice, Italy. Organized and sponsored by Ada-Europe, in cooperation
with ACM SIGAda (approval pending). Deadline for submissions: November 4, 2007
(papers, tutorials, workshops), January 13, 2008 (industrial presentations)

June 17-20 28th International Conference on Distributed Computing Systems (ICDCS'2008), Beijing, China.
Topics include: theoretical foundations, reliability and dependability, security, middleware, etc.
Deadline for submissions: November 15, 2007 (papers).

June 30 – July 02 13th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008), Madrid, Spain.

☺ June 30 – July 04 Technology of Object-Oriented Languages and Systems (TOOLS Europe'2008), Zurich, Switzerland.
Topics include: all modern approaches to software development, with a special but not exclusive
emphasis on O-O and components.

July 06-13 35th International Colloquium on Automata, Languages and Programming (ICALP'2008),
Reykjavik, Iceland. Topics include: Principles of Programming Languages; Formal Methods and Model
Checking; Models of Concurrent and Distributed Systems; Models of Reactive Systems; Program
Analysis and Transformation; Specification, Refinement and Verification; Type Systems and Theory;
Foundations of Secure Systems and Architectures; Specifications, Verifications and Secure
Programming; etc. Deadline for submissions: October 31, 2007 (workshops), February 10, 2008
(papers).

☺ July 07-11 22nd European Conference on Object Oriented Programming (ECOOP'2008), Paphos, Cyprus.
Topics include: analysis, design methods and design patterns; concurrent, real-time or parallel systems;
distributed systems; language design and implementation; programming environments and tools; type
systems, formal methods; compatibility, software evolution; components, modularity; etc. Deadline for
submissions: December 19, 2007 (papers).

July 07-13 20th International Conference on Computer Aided Verification (CAV'2007), Princeton, USA. Topics
include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Applications and case studies, Verification in industrial practice, etc. Deadline for
submissions: October 15, 2007 (workshops), January 28, 2008 (papers, CAV Award nominations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

Ada User Journal Volume 28, Number 3, September 2007

SIGAda 2007

Annual International
Conference on the

Ada Programming Language
4 - 9 November 2007

Washington, DC, USA

For Detailed Advance Program and Registration visit

http://www.sigada.org/conf/sigada2007/

KEYNOTE ADDRESS
Wanted: Software with Assurance Built-in

Joe Jarzombek, US Department of Homeland Security (DHS)
Director for Software Assurance, National Cyber Security Division

The DHS Software Assurance (SwA) Program is based on the National Strategy to Secure

Cyberspace that specifies: "DHS will facilitate a national public-private effort to promulgate best

practices and methodologies that promote integrity, security, and reliability in software code

development, including processes and procedures that diminish the possibilities of erroneous code,

malicious code, or trap doors that could be introduced during development." The SwA Program also

guides the SwA Forum and SwA Working Groups under auspices of the Critical Infrastructure

Partnership Advisory Council (CIPAC) providing venues for government and the private sector to

collaborate in addressing SwA issues associated with: Processes and Practices, Workforce Education

and Training, Acquisition and Outsourcing, Technology, Tools and Product Evaluation, Malware

Countermeasures, Measurement, and Business Case.

TWO-DAY (THURSDAY-FRIDAY) WORKSHOP
NIST Static Analysis Summit II
http://samate.nist.gov/index.php/SASII

Paul Black, National Institute of Standards and Technology (NIST)

Source code security analyzers to find weakness and potential problems are quite capable and

developing quickly. Yet, developers, auditors, and examiners could use far more. The problem is to

clearly define the biggest obstacles to these urgently needed capabilities and try to identify feasible

approaches to overcoming them, either engineering ("solved" problems) or research. Questions to be

considered include embedded systems, binaries, obfuscation, formal pattern languages, higher level

functions, and integration with other tools. This exciting and timely workshop is free to those who
register for at least one day of the conference.

SIGAda 2007

Annual International Conference on the Ada Programming Language
4 - 9 November 2007, Washington, DC, USA

http://www.sigada.org/conf/sigada2007/

Conference Highlights

Sunday and Monday Tutorials

Introducing the Best of Ada and Ada 2005

John G.P. Barnes, John Barnes Informatics

Languages for Safety-Critical Software: Issues and Assessment

Ben Brosgol, AdaCore

Exposing Ada Web Services Using a Service-Oriented Architecture (SOA)

Ricky E. Sward, The MITRE Corporation

Security by Construction

Rod Chapman, Praxis Critical Systems Ltd

Real-time and Parallel Processing in Ada

Eugene W.P. Bingue (Independent Consultant), David A. Cook (AEgis),
and Les Dupaix (U.S. Air Force Software Technology Support Center)

Real Time Scheduling Theory and Its Use with Ada

Frank Singhoff, University of Brest, France

Keynote Addresses

Tuesday: Wanted: Software with Assurance Built-in

Joe Jarzombek, National Cyber Security Division

Wednesday: Federal Aviation Administration (FAA) and Ada

Jeff O’Leary, US Federal Aviation Administration

Thursday: Correctness by Construction: Putting Engineering (back) into Software

Rod Chapman, Praxis High Integrity Systems Ltd

Wednesday Evening Workshop

Hibachi - the Eclipse Ada Development Toolset

Tom Grosman, Aonix

Hibachi is an open source (EPL), standard, extensible, vendor-neutral Eclipse Ada

development environment. Hibachi is currently in the project proposal phase (see

http://www.eclipse.org/projects/dev_process/development_process.php), which involves

gathering a viable developer/tester/user community around the project and IP rights to any

code contributions. When these pieces are in place, the project can be approved by the

Eclipse Management Organization (EMO) and begin producing high quality releases

available to end users, as well as third party integrators.Workshop discussions will cover

history and current status, and focus on future direction. The result of the future-direction

discussions will serve as input to the ongoing Hibachi project development and release plan.

Technical Sessions

Seven technical sessions filled with interesting, and informative, refereed

papers and sponsor presentations.

Note grants for educators and substantial discounts for students.

REGISTER NOW! WE'LL SEE YOU THERE!

Call for Papers

13th International Conference on
Reliable Software Technologies –

Ada-Europe 2008

16-20 June 2008, Venice, Italy

http://www.ada-europe.org/conference2008.html

Conference Chair

Tullio Vardanega
Università di Padova, Italy
tullio.vardanega@math.unipd.it

Program Co-Chairs

Tullio Vardanega
Università di Padova, Italy
tullio.vardanega@math.unipd.it

Fabrice Kordon
Université P. & M. Curie,
France
fabrice.kordon@lib6.fr

Tutorial Chair

Jorge Real
Universidad Politécnica de
Valencia, Spain
jorge@disca.upv.es

Exhibition Chair

Ahlan Marriott
White-Elephant GmbH,
Switzerland
ada@white-elephant.ch

Publicity Chair

Dirk Craeynest
Aubay Belgium &
K.U.Leuven, Belgium
dirk.craeynest@cs.kuleuven.be

Local Chair

Sabrina De Poli
Sistema Congressi srl, Italy
ae08@sistemacongressi.com

In cooperation with
SIGAda

(approval pending)

General Information

The 13th International Conference on Reliable Software Technologies – Ada-
Europe 2008 will take place in Venice, Italy. Following its traditional style, the
conference will span a full week, including a three-day technical program and
vendor exhibitions from Tuesday to Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

04
11 November 2007

(automatic one-week extension to FIRM deadline)
Submission of regular papers, tutorial and workshop proposals

13 January 2008 Submission of industrial presentation proposals
03 February 2008 Notification to all authors
02 March 2008 Camera-ready of regular papers required
11 May 2008 Industrial presentations, tutorial and workshop material

required
16-20 June 2008 Conference

Topics
The conference has successfully established itself as an international forum for
providers, practitioners and researchers into reliable software technologies.
The conference presentations will illustrate current work in the theory and
practice of the design, development and maintenance of long-lived, high-quality
software systems for a variety of application domains. The program will allow
ample time for keynotes, Q&A sessions, panel discussions and social events.
Participants will include practitioners and researchers in representation from
industry, academia and government organizations active in the promotion and
development of reliable software technologies.

Prospective contributions should address the topics of interest to the
conference, which include but are not limited to those listed below:

• Methods and Techniques for Software Development and
Maintenance: Requirements Engineering, Object-Oriented Technologies,
Model-driven Architecture and Engineering, Formal Methods, Re-
engineering and Reverse Engineering, Reuse, Software Management Issues.

• Software Architectures: Design Patterns, Frameworks, Architecture-
Centered Development, Component and Class Libraries, Component-based
Design

• Enabling Technology: Software Development Environments and Project
Browsers, Compilers, Debuggers, Run-time Systems, Middleware
Components.

• Software Quality: Quality Management and Assurance, Risk Analysis,
Program Analysis, Verification, Validation, Testing of Software Systems

• Theory and Practice of High-integrity Systems: Real-Time, Distribution,
Fault Tolerance, Security, Reliability, Trust and Safety

• Mainstream and Emerging Applications: Multimedia and
Communications, Manufacturing, Robotics, Avionics, Space, Health Care,
Transportation

• Ada Language and Technology: Programming Techniques, Object-
Orientation, Concurrent and Distributed Programming, Evaluation &
Comparative Assessments, Critical Review of Language Features and
Enhancements, Novel Support Technology, HW/SW Platforms

• Experience Reports: Case Studies and Comparative Assessments,
Management Approaches, Qualitative and Quantitative Metrics

• Ada and Education: Where does Ada stand in the software engineering
curriculum; how learning Ada serves the curriculum; what it takes to form a
fluent Ada user; lessons learned on Education and Training Activities with
bearing on any of the conference topics.

Program Committee

Abdennadher Nabil, University of
Applied Sciences, W. Switzerland

Alonso Alejandro, Universidad
Politécnica de Madrid, Spain

Blieberger Johann, Technische
Universität Wien, Austria

Boasson Maartin, University of
Amsterdam, The Netherlands

Burgstaller Bernd, Yonsei University,
Korea

Craeynest Dirk, Aubay Belgium &
K.U.Leuven, Belgium

Crespo Alfons, Universidad
Politécnica de Valencia, Spain

de la Puente Juan A., Universidad
Politécnica de Madrid, Spain

Devillers Raymond, Université Libre
de Bruxelles, Belgium

González Harbour Michael,
Universidad de Cantabria, Spain

Gutiérrez José Javier, Universidad de
Cantabria, Spain

Haddad Serge, Université Paris-
Dauphine, France

Hately Andrew, Eurocontrol CRDS,
Hungary

Hugues Jerôme, Telecom Paris,
France

Hommel Günter, Technischen
Univesität Berlin, Germany

Keller Hubert, Institut für
Angewandte Informatik, Germany

Kermarrec Yvon, ENST Bretagne,
France

Kordon Fabrice, Université Pierre &
Marie Curie, France

Llamosí Albert, Universitat de les
Illes Balears, Spain

Lundqvist Kristina, MIT, USA

Mazzanti Franco, ISTI-CNR Pisa,
Italy

McCormick John, University of
Northern Iowa, USA

Michell Stephen, Maurya Software,
Canada

Miranda Javier, Universidad Las
Palmas de Gran Canaria, Spain

Moldt Daniel, University of
Hamburg, Germany

Pautet Laurent, Telecom Paris,
France

Petrucci Laure, LIPN, Université
Paris 13, France

Pinho Luís Miguel, Polytechnic
Institute of Porto, Portugal

Plödereder Erhard, Universität
Stuttgart, Germany

Real Jorge, Universidad Politécnica
de Valencia, Spain

Romanovsky Alexander, University of
Newcastle upon Tyne, UK

Rosen Jean-Pierre, Adalog, France

Ruiz José, AdaCore, France

Seinturier Lionel, Université de Lille,
France

Shing Man-Tak, Naval Postgraduate
School, USA

Srivastava Alok, Northrop Grumman,
USA

Vardanega Tullio, Università di
Padova, Italy

Wellings Andy, University of York,
UK

Winkler Jürgen, Friedrich-Schiller-
Universität, Germany

Zaffalon Luigi, University of Applied
Sciences, W. Switzerland

Call for Regular Papers

Authors of regular papers which shall undergo peer review for acceptance are
invited to submit original contributions. Paper submissions shall be in English,
complete and not exceeding 14 LNCS-style pages in length. Authors should
submit their work via the Web submission system accessible from the
Conference Home page. The format for submission is solely PDF. Should you
have problems to comply with format and submission requirements, please
contact the Program Chairs.

Proceedings

The authors of accepted regular papers shall prepare camera-ready
submissions in full conformance with the LNCS style, not exceeding 14 pages
and strictly by 2 March 2008. For format and style guidelines authors should
refer to: http://www.springer.de/comp/lncs/authors.html. Failure to comply and
to register for the conference will prevent the paper from appearing in the
proceedings. The conference proceedings will be published in the Lecture
Notes in Computer Science (LNCS) series by Springer Verlag and will be
available at the start of the conference.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best
presentation.

Call for Industrial Presentations

The conference also seeks industrial presentations which may have value and
insight, but do not fit the selection process for regular papers. Authors of
industrial presentations are invited to submit a short overview (at least 1 page
in size) of the proposed presentation to the Conference Chair by 13 January
2008. The Industrial Program Committee (yet to be named) will review the
proposals and make the selection. The authors of selected presentations shall
prepare a final short abstract and submit it to the Conference Chair by 11 May
2008, aiming at a 20-minute talk. The authors of accepted presentations will
be invited to derive articles from them for publication in the Ada User Journal,
which will host the proceedings of the Industrial Program of the Conference.

Call for Tutorials

Tutorials that address subjects in the scope of the conference may be proposed
as either half- or a full-day events. Proposals should include a title, an abstract,
a description of the topic, a detailed outline of the presentation, a description
of the presenter's lecturing expertise in general and with the proposed topic in
particular, the proposed duration (half day or full day), the intended level of the
tutorial (introductory, intermediate, or advanced), the recommended audience
experience and background, and a statement of the reasons for attending.
Proposals should be submitted to the Tutorial Chair. The providers of full-day
tutorials will receive a complimentary conference registration as well as a fee
for every paying participant in excess of 5; for half-day tutorials, these benefits
will be accordingly halved. The Ada User Journal will offer space for the
publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes in scope of the conference may be proposed. Proposals
may be submitted for half- or full-day events, to be scheduled on either ends of
the conference week. Workshop proposals should be submitted to the
Conference Chair. The workshop organizer shall also commit to preparing
proceedings for timely publication in the Ada User Journal.

Call for Exhibitions

Commercial exhibitions will span the three days of the main conference.
Vendors and providers of software products and services should contact the
Exhibition Chair for information and for allowing suitable planning of the
exhibition space and time.

Discounts for Students

A limited number of grants are available for students who will co-author papers
accepted at the conference. The grant will entail a reduction of 25% in the
conference fee. Contact the Conference Chair for details.

178

Towards Certification of Object-Oriented Code with
the GNAT Compiler
Javier Miranda
Instituto Universitario de Microelectrónica Aplicada. Universidad de Las Palmas de Gran Canaria, Canary
Islands, Spain; email: jmiranda@iuma.ulpgc.es

Courant Institute: Computer Science Department. New York University. 251 Mercer Street, NY 10012.

AdaCore. 104 Fifh Avenue, 15th floor. New York, NY 10011.

Abstract
Dynamic binding, the ability to link at runtime a
method call with a subprogram that depends on the
class of the object, is strongly discouraged by current
standards for avionics airborne systems. This is partly
due to dynamic dispatching, the technique commonly
used by most OO compilers to implement dynamic
binding. In this paper we present some enhancements
to the GNAT technology that will help the avionic
industry take advantage of the full benefits of the OO
techniques with Ada without the inconveniences
associated with dynamic dispatching.
Keywords: Dynamic dispatching, Airborne Systems,
High-Integrity, Ada 2005, Tagged Types, Abstract
Interface Types, GNAT.

1 Introduction
Reliable software construction has evolved considerably in
the last two decades. There is currently a trend towards the
use of Object Oriented Techniques (OOT) in the
construction of High-Integrity Software Systems, such as
avionics airborne systems. In this domain, one of the
objectives of the forthcoming revision of the DO-178B
standard [9] is to address the use of OOT and their
associated development processes in the avionics industry.
A preliminary document of the future DO-178C [3]
provides a comprehensive analysis on the safety concerns
associated with OO techniques in the context of DO-178B.

Since the emergence of the DO-178B standard, Ada [11]
has been one of the few languages of choice for the
construction of airborne systems, thanks to its clear
semantic definition and strong typing model. It has been
used successfully in many major aeronautics projects
(Boeing 777, A340, and more recently Boeing 787, A380
and A400M). In recent years Ada has evolved to fulfill the
requirements of modern software industry incorporating
object-oriented features into its original type model. The
Ada 95 standard added to Ada tagged types, single
inheritance, polymorphism, and dynamic dispatching. The
latest revision of the language, known as Ada 2005, adds
multiple inheritance of abstract interface types and
numerous other object-oriented programming idioms.

A crucial element of Object Oriented Programming (OOP)
is dynamic binding, that is the ability to link at runtime a
method call with a subprogram based on the class of the
object on which the method is invoked. In their current
form, DO-178B is wary of dynamic binding: its use is not
formally banned, but it is strongly discouraged by DO-
248B [10, FAQ 34]. This is partly due to dynamic
dispatching, the technique used to implement dynamic
binding in most compiled OO languages. Although
solutions to these issues are emerging, they are not yet fully
established.

In this paper we present several ongoing research projects
whose main purpose is to facilitate the certification of OO
code written in Ada with the GNAT compiler. In Section 2
we summarize inheritance and polymorphism concepts and
their common implementation by means of dispatching
tables. In Section 3 we describe the main problems of
dynamic dispatching in the context of safety and security
systems. In Section 4 we present four enhancement
projects of the GNAT technology that will help to certify
OO Ada code for High-Integrity systems. We close with
some conclusions and the bibliography.

2 Inheritance and Polymorphism in Ada
Inheritance was originally viewed as a mechanism for
sharing code and data definitions. Multiple inheritance was
viewed as a mechanism for constructing a subclass
implementation from multiple superclass implementations.
As understanding of OO modeling has matured, however,
the focus has increasingly been on the specification of
interfaces and the specification of interfaces as contracts
between clients and implementers. Multiple inheritance is
currently used primarily as a means of classifying entities
that logically belong to more than a single category. As a
result, languages such as Java [5] and Ada 2005 [11] only
support multiple inheritance of interfaces and rely on
delegation to achieve the effects of multiple
implementation inheritance.

In the context of High-Integrity Systems, the general OO
avionics guidance [3, Section 3.4] makes a strong
distinction between multiple inheritance of specifications
and multiple inheritance of implementations as provided by
C++, and recommends use of multiple implementation
inheritance only for level D software. (The DO-178B

Volume 28, Number 3, September 2007 Ada User Journal

mailto:jmiranda@iuma.ulpgc.es

J. Miranda 179

standard defines five levels of safety-criticality, ranging
from Level A at the most critical, to Level E at the least
critical; the top three safety levels are of particular interest
to Ada developers.)

Polymorphism permits instances of a subclass to be
assigned to variables of a superclass, and it is used to
specify generic algorithms that are common to a given
hierarchy of classes. In this context, dynamic binding
ensures that the method executed by a call to a polymorphic
object is that associated with the object's run time type.
Conceptually, at run-time there is a single dispatch routine
containing a pair of nested case statements [3, Section
3.3.2]:

case <Object'Run-Time-Type> is
 ...
 when <Class-N> =>
 case <Method'Signature> is
 ...
 when <Method-N> =>
 call <Method-N> defined by <Class-N>
 end case
end case

In practice, dynamic binding is typically implemented
using Dispatch Tables, which introduce a small and fixed
overhead (cf. Figure 1). Each object instance has a hidden
component (the Vtable pointer in C++ and Java, or the Tag
in Ada) that references a dispatch table with the run-time
type's method signatures. (For efficiency reasons the
method signature is generally the address of the target
method.) At the point of a dispatching call the compiler
generates code that uses this hidden component to (1) get
the dispatch table associated with the object, (2) index it by
a number associated with the method signature (a constant
known at compile time), and (3) make an indirect
invocation of the target method.

Figure 1 Object Layout

In Ada, subprograms declared together with a tagged type
in the same package and having at least one parameter (or
result) of the tagged type are called primitive operations of
the type. A call to such an operation is not necessarily
dispatching however. The call will only dispatch when
invoked with an actual parameter whose type is the class-
wide type of the associated type class (T'Class denotes the
entire set of types in the class of T). This flexibility can be
used to limit the number of dispatching calls, thereby
limiting their associated certification cost. Prevention of
dispatching can be also enforced by the use of pragma
Restrictions (No_Dispatch).

This flexibility is not available in Java where all operation
invocations are dispatching (unless a routine is declared as

final, which allows the compiler to perform various
optimizations knowing the primitive cannot be overridden).
It is available in C++, but at the cost of forcing the
programmer to indicate whether an operation itself (not a
specific call) is virtual. A virtual operation will potentially
always dispatch while a non-virtual one will never
dispatch. C++ compilers are allowed to optimize
dispatching calls into regular calls when the context
permits, but this is not under the control of the developer.

3 Problems with Dynamic Dispatching in
High-Integrity Systems
Dynamic dispatching has several safety and security
problems, namely:

• Initialization: how can we prove that dispatch
tables and Tag fields are initialized correctly?

• Modification: how can we prove that dispatch
table and Tag values are not updated maliciously
or unintentionally during the execution of a
program?

• Tools: being dynamic dispatching invisible at the
source level, how can we use source-based tools in
the presence of dynamic dispatching for code
coverage?

Demonstrating correct dispatch-table initialization at
object-level is akin to the problem of showing that the
linker produces a correct executable from the object files it
links. This problem is part of the control coupling
objective in DO-178B parlance and is addressed by either
verifying the correctness of the final result by hand of by
employing a qualified tool that performs such verification
[12].

If one can ROM dispatch tables or place them in OS-
guarded read-only memory the need to verify that dispatch
tables are unchanged during a program's execution
disappears. Unfortunately, an object's Tag field cannot
typically be placed into read-only memory and the costs of
demonstrating at object-code level that these fields are
unchanged during a program's execution remain. Such
modifications could occur because of a rogue pointer or
buffer overflow in assembly or C/C++ code that may be
part of the application or by other accidental or malicious
means.

In the following section we present several enhancements
that will help to workaround these problems with the
GNAT technology.

4 Towards certification of dispatching calls
with the GNAT compiler
In order to certify dispatching calls in High-Integrity
Software the following concerns of the general OO
avionics guidance must be answered by the compiler [3]:

• Stack Analysis: ``Stack overflow errors are listed
in section 6.4.3f of DO-178B as errors that are
typically found in requirements-based hardware-
software integration testing. Timing and stack

Ada User Journal Volume 28, Number 3, September 2007

180 Towards Cert i f icat ion of Object-Or iented Code wi th the GNAT Compiler

analysis are complicated by certain implementa-
tions of dynamic dispatch. If polymorphism and
dynamic binding are implemented, stack size can
grow, making analysis of the optimal stack size
difficult'' [3, Section 2.3.3.1.3].

• Object Code Traceability: ``Everywhere
concerns about source code to object code
traceability and timing analysis dictate, the
compiler vendor may be asked to provide
evidence of deterministic, bounded mapping of the
dispatched call. If the evidence is not available
from the compiler vendor, it may be necessary to
examine the structure of the compiler-generated
code and data structures (e.g., method tables) at
the point of call'' [3, Section 3.3.4.3].

• Structural Coverage: ``Many current Structural
Coverage Analysis tools do not ``understand''
dynamic dispatch, i.e. do not treat it as equivalent
to a call to a dispatch routine containing a case
statement that selects between alternative methods
based on the run-time type of the object. (IL 55)''
[3, Section 2.3.3.1.2].

In this section we present several ongoing enhancements to
the GNAT technology that will help to solve these
problems. The concern of stack-analysis has been already
addressed by GNAT with the gnatstack tool (work
described in a separate paper [1]). In the following sections
we present three additional enhancement projects: in
Section 4.1 we present the visualization of the dispatch
tables at the source level; in Section 4.2 we present the
static allocation of dispatch tables. These projects are
currently at their final stage. Finally in Section 4.3 we
present a new project that expands dispatching calls into
case statements.

4.1 Dispatch Table Visualization
The first enhancement of the GNAT technology addresses
the correct initialization of the dispatch table. The compiler
has being improved to leave the initialization of the
dispatch tables visible at source level and hence to support
the DO-178B traceability requirement. Using a switch the
compiler currently generates Ada-like code that allows to
see the expansion performed by the frontend. As part of
this project, the output associated with the construction of
dispatch tables has been improved to facilitate the use of
source-based tools based on static control flow to verify
their correct initialization. Such Ada-like code can be also
visualized during debugging using another compiler switch.
Let us consider the following Ada 2005 example to present
this new output:

package Iface is
 type Writable is interface;
 procedure Read
 (Obj : Writable; Data : out Integer) is abstract;
 procedure Write

(Obj : Writable; Data : in Integer) is abstract;
end Iface;

Package Iface contains the declaration of the abstract
interface type Writable that has two abstract primitives:
Read and Write.

with Iface; use Iface;
package Pkg is
 type Root is tagged ... ;
 function Is_Empty (Obj : Root) return Boolean;

 type Derived is new Root and Writable with ...;
 procedure Read (Obj : Derived; Data : out Integer);
 procedure Write (Obj : Derived; Data : in Integer);
end Pkg;

Package Pkg defines the root of derivation of a tagged type
in which all descendants have the primitive operation
Is_Empty. The package also has a derivation of Root that
acquires the obligation of implementing all the primitives
of interface Writable. Figure 2 presents the layout of an
object of type Derived and its GNAT run-time structure.

Figure 2 GNAT Object Layout

Each tagged type has one primary dispatch table, associated
with its main root of derivation, plus one secondary
dispatch table associated with each progenitor (a progenitor
is one of the types given in the definition of a derived type
other than the parent type ---AARM Annex N). In our
example, each object of type Derived has one primary
dispatch table plus one secondary dispatch table associated
with the interface type Writable. Each dispatch table has a
header containing the offset to the top and the pointer to the
Run-Time Type Specific Data record (TSD). For a primary
dispatch table, the Offset_To_Top component is always
set to 0; for secondary dispatch tables the Offset_To_Top
component holds the displacement to the top of the object
from the object component containing the interface tag (in
the figure the value of this offset is m). After the TSD
component the dispatch tables have the table of pointers to
primitive operations. In secondary dispatch tables, rather
than containing direct pointers to the primitives associated
with the interfaces, the dispatch table contain pointers to
small fragments of code called thunks. These thunks are
used to adjust the pointer to the base of the object during
interface type conversions. For further information on the
object layout and the GNAT run-time structures associated
with interface types read [6, 7, 8]).

Volume 28, Number 3, September 2007 Ada User Journal

J. Miranda 181

In order to present the new output associated with the
construction of the dispatch table of type Derived let us
compile the above Ada example using switch –gnatD:

 Derived__ID : -1-
 aliased constant string := "PKG.DERIVED";

 Derived__Ifaces : -2-
 aliased constant Interface_Data (1) :=
 (Num_Ifaces => 1,
 Ifaces_Tables => (Derived__Writable_Tag));

 Derived__TSD : -3-
 aliased constant Type_Specific_Data (Idepth => 1) :=
 (Idepth => 1,
 Access_Level => 0,
 Expanded_Name => Derived__ID'Address,
 External_Tag => Derived__ID'Address,
 HT_Link => null,
 Transportable => False,
 RC_Offset => 0,
 Interfaces_Table => Derived_Ifaces'Address,
 SSD => null,
 Tags_Table => (Derived_Tag, Root_Tag));

 Derived__Predef_Prims : -4-
 aliased constant Address_Array (1 .. 10) :=
 (1 => Derived__Size'Address,
 ...
 10 => Root__DF'Address);

 Derived__DT : -5-
 aliased constant Dispatch_Table (Num_Prims => 3) :=
 (Num_prims => 3,
 Signature => Primary_DT,
 Tag_kind => TK_tagged,
 Predef_prims => Derived__Predef_Prims'Address,
 Offset_to_top => 0,
 TSD => Derived__TSD'Address,
 Prims_Ptr => (
 1 => Is_Empty'Address,
 2 => Read'Address,
 3 => Write'Address));

Derived__Tag : -6-
 constant Tag := Derived__DT.Prims_Ptr'Address;

Register_Tag (Derived__Tag); -7-

At -1- we see the declaration of an object containing the
external tag of Derived; at -2- we find the declaration and
initialization of a table containing the tags of all the
interfaces covered by Derived (in this example, just one); at
-3- we have the Run-Time Type Specific Data record of
Derived; at -4- we see the dispatch table of its predefined
primitives; at -5- we see the primary dispatch table
associated with Derived; at -6- we find the declaration of
the Tag associated with this primary dispatch table (a copy
of this tag will be saved in the _Tag component of objects
of type Derived during their initialization); finally at -7- we

find the code that registers the tags in the run-time
(required to support the Internal_Tag service of standard
Ada package Ada.Tags). For further information on the
contents of each component see the documentation
available in the source of a-tags.ads.

The expansion of dispatching calls makes use of the tag of
the object and the compile-time known position of the
target primitive to index the Prims_Ptr element containing
the pointer to the target primitive. That is, considering the
following example, in the commented line we see the
expansion of the dispatching call to Is_Empty.

 function Dispatch_Test (Obj : Root'Class)
 return Boolean is
 begin
 return Obj.Is_Empty;
 -- Expanded into: return obj._Tag (1).all (obj);
 end Dispatch_Test;

Source-based tools can use this new output to verify the
correct construction of the dispatch table; they should
check the subprograms referenced in the aggregates that
initialize the dispatch table associated with predefined
primitives (Predef_Prims) and the dispatch table containing
the user-defined primitives (Prims_Ptr). For this purpose
the compiler generates unique names for all subprograms
found in the sources (including overloaded subprograms).

4.2 Static Allocation of Dispatch Tables
Another enhancement of the GNAT compiler is the
improvement of its code generation to statically allocate
dispatch tables associated with tagged types defined at the
library level. In order to present it let us see the assembly
code generated by GNAT when compiling the previous
example for i86 architectures. For this purpose we compile
our example using two additional switches (-fverbose-asm
and -save-temps). The following fragment of assembly
code corresponds to the declaration and initialization of the
dispatch table containing the predefined primitives (object
declaration found at -4- of previous Section):

 pkg__derived_dt:
 .long pkg___size__2
 .long pkg___alignment__2
 .long pkg__derivedSR
 .long pkg__derivedSW
 .long pkg__derivedSI
 .long pkg__derivedSO
 .long pkg__Oeq__2
 .long pkg___assign__2
 .long pkg__rootDA
 .long pkg__rootDF

As the reader can see, the compiler generates external
symbols for the table entries, rather than relying on the
generation of run-time code to initialize table entries with
addresses of code. For certification purposes, this is a major
improvement in the code generation; previous versions of
the compiler declare dispatch tables as un-initialized
objects that are initialized during the elaboration of the
package by means of additional assignments generated by

Ada User Journal Volume 28, Number 3, September 2007

182 Towards Cert i f icat ion of Object-Or iented Code wi th the GNAT Compiler

the compiler. Combined with GNAT specific pragmas this
new feature allows placement of dispatch tables in ROM or
in OS-guarded read-only memory.

4.3 Transformation of dynamic dispatching call
into case-statement
Another concern for certifying OO code in HI software is
the compiler support for Structural Coverage Analysis
tools. The DO-178B stablishes three kinds of coverage
requirements: Level C specifies Statement Coverage, which
requires every statement in the program to have been
invoked at least once. Level B specifies Decision
Coverage, which requires every point of entry and exit in
the program has been invoked at least once and every
decision in the program has taken on all possible outcomes
at least once. Finally, level A requires Modified
Condition/Decision Condition (MCDC) testing, which
involves testing all the permutations of conditions
involving several logic operators. Dynamic dispatch
complicates flow analysis of coverage requirements
because reading the sources is it unclear which method in
the inheritance hierarchy will be called [3, Section
2.2.3.1.1].

In order to help certifying Level A software with Ada, we
are enhancing GNAT to expand dispatching calls into the
equivalent case statements [2, 4]. The key point of this
project is the following observation: although during the
writing of any particular component of the program the
final set of possible destinations of a dispatching call is
unknown, this set is well known at link-time (we assume
that a static linking step produces the executable for a given
program). Therefore, instead of generating the usual
transformation for a dispatching call, at the point of the call
the GNAT compiler will generate the following code:

 R := Obj.Is_Empty;
 -- Expanded into: R := Find_Method (Obj, Obj’Tag);

The post-processing part of the code transformation is
performed at bind-time. This involves generating the body
for routine Find_Method which implements dynamic
binding with an explicit case statement as shown bellow:

 function Find_Method
 (Obj : Root'Class; The_Tag : Positive) return Boolean is
 begin
 case The_Tag is
 when Root'Tag =>
 return Root (Object).Is_Empty;
 when Derived'Tag =>
 return Derived (Object).Is_Empty;
 ...
 end case;
 end Find_Method;

Here the calls are not dispatching since the Object is
converted to its actual subtype. The set of possible cases is
complete since such transformation is done over the entire
program.

The following implementation model is underway: a
compiler option prevents the dispatching expansion
described earlier, and a separate switch forces the binder to
generate the source code for the case statements. This is
legal Ada source code, which is therefore fully processable
by standard tools, including the debugger and certification
tools.

5 Conclusions
Ada is clearly a safe and efficient vehicle to create
certifiable systems. It has been used successfully in many
major aeronautics projects (Boeing 777, A340, and more
recently Boeing 787, A380 and A400M). In the recent
years Ada has evolved to fulfill the requirements of modern
software industry incorporating object-oriented features
into its original type model. The Ada 95 standard added to
Ada tagged types, single inheritance, polymorphism, and
dynamic dispatching. The latest revision of the language,
informally known as Ada 2005 [11], adds multiple
inheritance of abstract interface types and numerous other
object-oriented programming idioms.

A preliminary version of the incoming DO-178C standard
for avionics provides a comprehensive analysis on safety
concerns associated with OO techniques in the context of
DO-178B. Such document states that dispatching calls (the
technique commonly used by most compilers for OO
languages) is clearly unacceptable in this context. In this
paper we have presented some enhancement projects of the
GNAT technology that will help the industry to take
advangage of the full benefits of the OO techniques with
Ada without the inconveniences associated with dynamic
dispatching, namely:

• Dispatch table visualization. Enhancement that
modifies the compiler to make the initialization of
the dispatch tables visible at the source level. In
addition, the code generated by the compiler will
be also visualized during debugging using another
compiler switch. This project gives support to DO-
178B traceability requirements.

• Static allocation of dispatch tables.
Enhancement that improves the code generation of
the compiler to allow the static allocation of
dispatch tables associated with tagged types
defined at the library level. This project will allow
the placement of the dispatch tables in ROM or in
OS-guarded read-only memory.

• Translation of dispatching call into case-
statement. Enhancement that modifies the
compiler to expand dispatching calls into the
equivalent case statements. This project gives
support to the structural coverage analysis and
verification for level A systems as dictated by DO-
178B.

• Stack analysis tool. This enhancement is already
finished, and the gnatstack tool is currently part
of the GNAT Pro toolset [1].

Volume 28, Number 3, September 2007 Ada User Journal

J. Miranda 183

Since the emergence of the DO-178B standard, Ada has
been one of the few languages of choice for the
construction of HI systems. We expect that these
enhancement projects to the GNAT technology will help
Ada to keep this leadership.

Acknowledgements
Most of this work was done during a six-month visit to the
NYU Courant Institute funded by the Spanish Minister of
Education and Science under project PR2006-0356.

I give special thanks to professor Edmond Schonberg for
his continuous help and support, and Professor Robert
Dewar not only for the technical discussions but also for his
hospitality. I also acknowledge the contributions of Cyrille
Comar, Franco Gasperoni, Richard Kenner, and Eric
Botcazou that helped me to go ahead with this work.

References
[1] E. Botcazou, C. Comar, and O. Hainque (2005),

Compile-time stack requirements analysis with GCC,
June, 2005. Available at:
http://www.adacore.com/2005/06/01/compile-time-stack-
requirements-analysis-with-gcc/

[2] C. Comar, R. Dewar, and G. Dismukes (2006),
Certification & Ob ject Orientation: The New Ada
Answer, March, 2006. Available at:
http://www.adacore.com/2006/03/08/certification-object-
orientation-the-new-ada-answer/

[3] FAA (2004), Handbook for Object-Oriented
Technology in Aviation (OOTiA), October 26, 2004.
Available at:
http://www.faa.gov/aircraft/air_cert/design_approvals/air_sof
tware/oot/

[4] F. Gasperoni (2006), Safety, Security, and Object-
Oriented Programming, March, 2006. Available at:
http://www.adacore.com/2006/03/30/safety-security-and-
object-oriented-programming/

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha (2000), The
Java Language Specification, 2nd edition, Addison-
Wesley.

[6] J. Miranda, E. Schonberg, and G. Dismukes (2005),
The Implementation of Ada 2005 Interface Types in the
GNAT Compiler, 10th International Conference on
Reliable Software Technologies, Ada-Europe 2005, LNCS
3555, pp. 208–219, Springer-Verlag.

[7] J. Miranda, Schonberg E., and G. Dismukes (2006),
Abstract Interface Types in GNAT: Conversions,
Discriminants, and C++, 11th International
Conference on Reliable Software Technologies, Ada-
Europe 2006, LNCS 4006, pp. 179–190, Springer-Verlag.

[8] J. Miranda, Schonberg E., and H. Kirtchev (2005), The
Implementation of Ada 2005 Synchronized Interfaces
in the GNAT Compiler, Proceedings of the 2005
annual ACM SIGAda International Conference on Ada, pp.
41–48.

[9] RTCA (1992), Software Consideration in Airborne
Systems and Equipment Certification, RTCA/DO-178B,
December, 1992.

[10] RTCA (2001), Final report for clarification of DO-
178B: Software Consideration in Airborne Systems and
Equipment Certification, RTCA/DO-248B, October, 2001.

[11] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Plödereder, P.
Leroy (eds) (2007), Ada 2005 Reference Manual:
Language and Standard Libraries International
Standard ISO/IEC 8652:1995(E) with Technical
Corrigendum 1 and Ammendment 1, LNCS 4348,
Springer-Verlag. ISBN: 3-540-69335-1.

[12] VEROCEL (2006), VerOLink: Verify Object Linking,
http://www.verocel.com/verolink.htm.

Ada User Journal Volume 28, Number 3, September 2007

http://www.adacore.com/2005/06/01/compile-time-stack-requirements-analysis-with-gcc/
http://www.adacore.com/2006/03/08/certification-object-orientation-the-new-ada-answer/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/
http://www.adacore.com/2006/03/30/safety-security-and-object-oriented-programming/

184

Volume 28, Number 3, September 2007 Ada User Journal

SAMATE and Evaluating Static Analysis Tools
Paul E. Black
National Institute of Standards and Technology, 100 Bureau Drive Stop 8970, Gaithersburg, MD 20899; email:
paul.black@nist.gov

Abstract
We give some background on the Software Assurance
Metrics And Tool Evaluation (SAMATE) project and
our decision to work on static source code security
analyzers. We give our experience bringing
government, vendors, and users together to develop a
specification and tests to evaluate such analyzers. We
also present preliminary results of our study on
whether such tools reduce vulnerabilities in practice.
Keywords: software assurance, source code, static
analysis, tool testing.

1 Introduction
The Software Assurance Metrics And Tool Evaluation, or
SAMATE, project [11] at the US National Institute of
Standards and Technology (NIST) focuses on one aspect of
reliable software: software assurance, particularly security
assurance. That is, how can we gain assurance that software
is secure enough for its intended use? The SAMATE
project seeks to help develop standard evaluation measures
and methods for software assurance.

High levels of quality and security cannot be "tested into"
software. Such attributes must be built into software from
the beginning, starting with requirements and choice of
environment. Preventing flaws is far more cost-effective
and dependable than trying to remove them. But what if the
system being designed includes commercial, off-the-shelf
(COTS) packages? How can a contractor thoroughly audit
or check large packages from subcontractors? Legacy code
may need reviews before being used in a new environment
or for newly discovered threats. Also for quality assurance,
one needs to know what kinds of flaws a current
development process might leave or whether a new method
yields better quality software. In all these cases, one must
work with the code that is available.

Although SAMATE will eventually consider the impact of
using better programming languages, such as Ada1 or
Eiffel, advanced software development approaches, and
correct-by-construction techniques, we started with
software metrics and understanding tools for checking
software.

In the software realm, what can we do to increase software
assurance? We can enable tool improvement and encourage

1 Any commercial product mentioned is for information only. It does not
imply recommendation or endorsement by NIST nor does it imply that the
products mentioned are necessarily the best available for the purpose.

wider use of tools. We will simultaneously urge use of
better environments, practices, and languages.

Some questions quickly spring to mind. If a tool gives no
outstanding alarms for a system, how secure is the system,
really? Is the new version of a tool better (pick your own
definition) than the preceding version? How much better?
Which tools find what flaws? To answer these questions,
we must back up and try to make a comprehensive list of
flaws that might occur and have a taxonomy of software
security assurance tools and techniques which might be
investigated.

Both tasks have proved far harder than first thought. The
effort to list flaws led to Mitre's Common Weakness
Enumeration (CWE) [5] effort. Although not complete, the
SAMATE web site has the latest version of the taxonomy
of software security assurance tools and techniques [14].

For clarity we quote some definitions from our Source
Code Security Analysis Tool Functional Specification
Version 1.0 [13]. It defines a vulnerability as "a property of
system security requirements, design, implementation, or
operation that could be accidentally triggered or
intentionally exploited and result in a security failure. … If
there was a security failure, there must have been a
vulnerability." It continues, "a vulnerability is the result of
one or more weaknesses in requirements, design,
implementation, or operation." We use the term "weakness"
to emphasize that without the entire context, one cannot
truly conclude that a problem may occur. Some other code
or part of the system may prevent the weakness from being
exploited.

Why we started with static source code analyzers
Higher level representations, such as requirements or use
cases, are better places to prevent flaws. But we did not
find any area mature enough for standardization. Also
roughly half of all security weaknesses are introduced
during coding [7], so improvement after high level design
may be helpful. Unlike binary or byte code, source code is
largely human-readable. Also there are many tools that
work with source code. For these reasons, source code
seems a good place to begin.

Testing and static analysis complement each other. Static
analysis is less feasible without source code. It may be
impossible, say, in testing embedded systems or remote
testing of Internet services. On the other hand, one cannot
test an incomplete program, while static analysis might be
feasible. More importantly, testing is unlikely to uncover
very special cases, for instance, granting access when the
user name is "matahari".

mailto:paul.black@nist.gov

P. E. Black 185

We started with static source code security analysis tools
since they have a potential of higher assurance. Chess and
McGraw [3] give an excellent short introduction to the use
of static analysis for software assurance. Note that when we
use the term "tool", we are actually referring to a set of
functionalities. That is, any program that can statically
analyze source code is in the class. It need not be a stand-
alone tool that analyzes source code and does nothing else.

Our first funding, from the US Department of Homeland
Security, was to develop tests for tools. After talking with
vendors, we decided we could increase adoption by
developing basic tests.

One reason software developers do not adopt a tool is they
are not sure whether any tool of the sort is really helpful
and whether a particular tool is actually broadly useful.
Some demonstrations are set up to give the appearance of
great performance, when the breadth or depth or power is
disappointing in practice. A standard developed by NIST
would help assure software developers that source code
security analyzers are useful. In addition, when a tool
satisfies the standard, the user has some assurance that it
has adequate coverage. Speeding the adoption of these
tools can increase vendors' sales: the market for source
code analyzers can grow a lot before it is saturated.

2 A specification for static source code
security analyzers
NIST is a non-regulatory agency. This means we cannot
mandate the use of our standards or tests. We must "sell"
our results. One step to acceptable tests is a widely
accepted specification of what such a tool should do.

We need the cooperation of vendors and developers of
source code security analyzers to efficiently succeed. They
have experience with what users, or at least their
customers, need and want from such analyzers. They also
have experience with what is practical, having written
production analyzers. Some of the best researchers in the
field have been the primary agents in developing these
commercial tools. Finally we want our standard to be an
endorsement that vendors will seek, rather than something
to be forced on them. How can we position this effort to
help vendors and consumers?

We looked for available source code security analyzers on
the web, in published articles, and by personal contact. We
the updated collection of tools is on-line at [12]. We
organized several workshops and conference sessions on
source code security analyzers. Vendors were willing to
attend, and we discussed possible approaches and goals
with them. To build a consensus, we established a mailing
list, where we discussed facets, and made drafts of the
specification available for public review and comment.

Informally a static source code security analyzer (1)
examines source to (2) detect and report weaknesses that
can lead to security vulnerabilities [13]. Tools that examine
other artifacts, like requirements, byte code or binary, and
tools that dynamically execute code are not included.

Again, when we use the term "tool", we mean a set of
capabilities of a tool.

Before continuing, we must decide the purpose of the
specification and tests. It would be nice if they could serve
as a metric to completely characterize the capabilities of a
tool, but that is not possible, even in theory. A bit more
practical specification could establish a lofty goal whose
satisfaction ensures the user got the level of security
checking needed. But since different users have different
security needs, this is complicated. A specification could
settle for a recommended standard, like due diligence. Even
here, we have little objective evidence to establish such a
level.

We chose to work for a minimum standard to begin with. A
minimum standard would reduce argument about how high
a level is right and exactly what should be required.
Although insufficient for, say, setting recommended
practices, a minimum standard opens the way for a higher
standard.

What exactly should a source code analyzer do?
In more detail, such an analyzer should find weaknesses
and report their class and location. The weakness class
corresponds to CWE entries. Many tools also report
conditions that may expose the weakness, data or control
flow related to it, more information about that class of
weakness including examples of how to fix it, the certainty
that the weakness is a vulnerability (not a false alarm), or
some rating of the severity or ease of exploit.

Optionally a tool should produce a report that could be used
by other tools. For practical use in repeated runs, there must
be some mechanism to suppress reports of weaknesses
judged to be false alarms or otherwise to be subsequently
ignored.

False positives are a critical factor. Conceptually, static
analysis tools compute a model of a program. They then
analyze the model for certain properties. Since static
analysis problems are undecidable in general, either the
computed model is approximate or the analysis is
approximate. Due to these approximations, tools may miss
weaknesses (false negatives) or report correct code as
having a weakness (false positives). To be adopted a tool
must "have an acceptably low false positive rate" [13].

Nowhere in the specification is a rate given. One reason is
that a rate that is acceptable for one application or
development situation may not be acceptable for another.
Why then bother having the requirement? It is a NIST
practice to only test items in the specification. It would be
"poor sportsmanship" to test for a false positive rate
without a written requirement. With more research we hope
to be able to give acceptable rates, at least for some
situations.

Other issues for a specification
The expressive power of programming languages makes
analysis even harder. Analysis routines must be explicitly
developed to handle coding complexities, such as loops,
conditional control flow, arrays, different variable types,

Ada User Journal Volume 28, Number 3, September 2007

186 SAMATE and Evaluat ing Stat ic Analys is Tools

interprocedural function calls, and aliasing. In practice no
tool handles all possible code constructs. To assure the user
that a tool handles some, the specification also requires that
weaknesses be found in the presence of a set of coding
complexities.

No tool checks for all weaknesses in the CWE. Some are
hard to define, like leftover debug code (CWE ID 489).
With over 500 weaknesses tool developers concentrate on a
relatively small set of frequent or severe weaknesses and
put effort saved into improving analysis and user aids.

We chose a "minimum" set of weaknesses: those that are
most common or occur most often, most easily exploited,
and are caught by existing tools.

To be as flexible as possible the specification should
explicitly refer to the subset of weaknesses that a tool
purports to catch. However this causes severe problems in
developing test material that also covers coding
complexities.

We need to check that all weaknesses (in our "minimum"
set) are caught in the presence of all coding complexities.
The naive test suite would have every weakness in the
presence of every coding complexity. This would be
thousands of tests, complicating the creation and running of
the test suite. Since we expect the same analysis modules to
handle coding complexities for all weaknesses, we believe
having each weakness in the presence of a few coding
complexities, where every coding complexity occurs at
least once, has substantially the same testing power. This
test suite has less than 100 test cases.

Allowing for a subset of weaknesses presents challenges. In
the extreme, what if a tool only purports to catch one
weakness? The three or four test cases from the test suite
will not exercise all coding complexities. We see a number
of possibilities.

We could go back to having thousands of cases, so any
weakness also exercises all coding complexities, but it
would be unwieldy. One option is to develop a generator to
create a custom test suite with the coding complexities
distributed throughout as many or as few weaknesses as
desired. Another possibility is to prepare adequate test
suites as needed, in hopes that a limited amount of work
would address real needs. Trusting that most tools cover a
minimum set, we discarded the allowance for subsets from
the specification. But we now find that unrealistic.

As part of the result of a study of tools Britton [2] reported,
"84 percent of the vulnerabilities found were identified by
one tool and one tool alone". Rutar, Almazan, and Foster
[9] concluded that tools for finding bugs in Java do not
overlap much in what they catch. In consolidating
weakness classes found by five tools Martin [6] reported
little overlap: few weaknesses were even caught by two
tools. Currently the best approach, that is lowest false
positive and highest identification rates over many
weaknesses, is to use two or more tools as a combined
metatool.

What are the attributes of test cases? Small cases separate
the question of "can this be detected" from "how scalable is
the tool". On the other hand, large programs allow
examination of speed and maximum size and exercise a
tool in a more realistic situation. Having one weakness in
each test case makes analysis of the result easier, but
having multiple weaknesses in one program should be more
challenging. It is straightforward to write code with known
weaknesses, whereas extracting examples from production
code disarms the objection that it is unrealistic. Trying to
find an instance of a weakness and extracting a slice of
code could take excessive amounts of time. Even with the
slice, we would have to secure permission to make it
publicly available.

Currently our test cases are very small, purpose written
code with one weakness per case. For measuring the false
positive rate we also have cases without weaknesses or in
which weaknesses have been fixed.

Sharing example code
While researching source code security analyzers, we found
it difficult to get a corpus of code with known weaknesses.
Although academicians develop them for research,
companies have some for testing, and evaluators assemble
them, few were available. We felt a single repository of
such could be helpful to the entire community. Not only
would it provide a place for us to keep and publish our test
cases, it would allow people to share the work they've
done.

The SAMATE Reference Dataset (SRD) [10] is an on-line,
publicly available repository of thousands of samples of
flawed software. Each test case consists of one or more
files. Test cases may consist of source code, byte code,
binaries, requirements, or other artifacts.

Each test case may have explanatory information
associated with it, for instance, the author or contributor,
the date submitted, language, which flaw(s) it exhibits, and
a description. In addition, test cases may have directions on
how to compile and link source code, input that triggers the
flaw, or expected output. Registered users can submit test
cases and add comments to any test case.

For historical stability, the content of test cases will never
be updated. If the code in a test case needs to be fixed or
improved, a new test case will be added, and the status of
the existing test case will be changed to "deprecated".
Deprecated status advises against using the case for new
work. This way, a test report referring to a certain test suite
can be rerun exactly, even years later.

Methods to minimize test evasion
A fixed, public test set allows for various abuses. A tool
developer may write special-purpose code to get the right
result for a very special case. This diverts effort from
general improvements and incorrectly raises ratings. More
simply a developer may add code to recognize the case,
perhaps the name and size of the file, and hard-code the
right result.

Volume 28, Number 3, September 2007 Ada User Journal

P. E. Black 187

We see several ways to minimize such distractions. Easiest
is to keep the test set secret. The test set would only be
shared with parties trusted to keep it private. Practically a
public version would be needed to allow others to examine
and critique the tests and to allow vendors to practice. Even
with a public version, it might be difficult to convince tool
developers that the private tests are fair and reasonable.

Another possibility is to develop a test generator that
creates unique test sets on demand. The challenge with this
approach is to ensure that every test set generated is similar
in its testing power. Adding code from production
applications or getting large pieces of code would be hard.

We are writing an obfuscator to discourage developers
from having their program recognize tests and return pre-
determined answers. At a minimum the obfuscator must
change source code file names. The next level is to change
comments and names in the source code, such as variable
and function names. Although very hard in general, the
obfuscator only needs to work on the test suite.

Since most source code analyzers already have powerful
abstraction capabilities, they could store signatures of
abstract syntax trees and return prepared responses when
one is recognized. To foil this, the obfuscator could insert
benign code or rearrange existing code. Rather than
requiring full code rewriting capabilities in the obfuscator,
test cases could be in some preprocessed form or have
"hints" stored. In this case, a macro processor could
generate many different versions of the test set. Developers
still might be tempted to add special case algorithms to
improve results.

3 Do tools really help?
One can think of several potential problems with the use of
such tools in practice. A tool may report many weaknesses,
but miss the small number of serious weaknesses that really
affect security. If a user takes a mechanical approach to
fixing weaknesses reported by tools, programmers may not
think as much about the program logic and miss more
serious vulnerabilities. Also, the developer may spend time
correcting unimportant weaknesses reported, making other
mistakes in the process and not having as much time for
harder security challenges. Recognizing such problems,
Dawson Engler [4] articulated the question: "Do static
source code analysis tools really help?"

Funded by the US Department of Homeland Security,
Coverity, in collaboration with Stanford University, has
analyzed over 50 open-source projects since March 2006
[1]. As an example, they reported over 600 defects in
Firefox and 98 defects in Python. At least one security
vulnerability was detected: CVE-2006-0745. Others have
similar, although smaller, scans. Maintainers may use these
reports to fix previously unknown vulnerabilities. By
studying these, we may be able to support or refute Engler's
question.

We are examining the history of reported vulnerabilities for
the projects scanned by Coverity. We use reported
vulnerabilities as a surrogate measure for actual

vulnerabilities. The null hypothesis is that there is no
change in the number of reported vulnerabilities after the
start of scanning. We give preliminary results we have for
one project, MySQL.

Coverity scanned MySQL version 4.1.8 in early 2005.
Version 4.1.10, released 15 February 2005, contained fixes
based on Coverity reports. Figure 1 compares vulnera-
bilities discovered in version 4.1.10 or later versions with
vulnerabilities discovered before the 15 February release.
"Discovery" means it was reported in the National
Vulnerability Database (NVD) [8].

Red bars, on the right, are vulnerabilities discovered in
version 4.1.10 or later. They are grouped by discovery date.
As the discovery date, we used the earlier of the discovery
date in the NVD and in the SecurityFocus database [15].
Our data covers 21 months after the release of version
4.1.10. The light blue bars, on the left, are vulnerabilities
discovered before the release. We began 21 months before
the release, that is May 2003. Vulnerabilities discovered
after 15 February 2005 that were only present in versions
before 4.1.10 were not used.

0

1

2

3

4

5

6

0-3 3-6 6-9 9-12 12-15 15-18 18-21

Months

Before 4.1.10 After 4.1.10 .

Figure 1 MySQL vulnerabilities before and after 4.1.10

The data is insufficient to draw any conclusions. We are
trying to take confounding factors into account, and we are
analyzing similar data from other projects to accumulate a
statistically meaningful set.

4 Future directions
We are planning several studies to answer questions such
as the following. How does one tool's assessment correlate
with another tool's assessment? What is the subject of a
metric, that is, does it apply to the algorithm, an
implementation, or an execution trace?

We are currently working on specifications and tests for
web application scanners. The next class of tool we will
work on is binary analyzer. We are also guiding efforts to
formalize descriptions of weaknesses. Although formal
description will have many uses in the long term, our
immediate application is a test case generator. The
generator uses the descriptions to produce example code.

We are looking for collaborations. In particular, we need a
few more people to serve on our technical advisory panel,
which meets once or twice a year to suggest where we
might be of most help in the future. We also seek

Ada User Journal Volume 28, Number 3, September 2007

188 SAMATE and Evaluat ing Stat ic Analys is Tools

participants in focus groups to review specifications and
test plans for classes of tools.

In the long term we plan to go beyond tools, especially
checking tools. Society must move beyond a catch-and-
patch approach. We will help develop metrics to gauge
more secure languages, good processes, environments, etc.
We want to help demonstrate what really improves
software security.

References
[1] Accelerating Open Source Quality,

http://scan.coverity.com/ (Accessed 21 May 2007).

[2] Peter A. Buxbaum (2007), All for one, but not one for
all, Government Computer News, 26(6), 19 March.
Available at http://www.gcn.com/print/26_06/43320-1.html
(Accessed 22 May 2007).

[3] Brian Chess and Gary McGraw (2004), Static Analysis
for Security, Security and Privacy Magazine, IEEE,
2(6), pp 76-79.

[4] Andy Chou, Ben Chelf, Seth Hallem, Charles Henri-
Gros, Bryan Fulton, Ted Unangst, Chris Zak, Dawson
Engler, Weird things that surprise academics trying to
commercialize a static checking tool,
http://www.stanford.edu/~engler/spin05-coverity.pdf
(Accessed 21 May 2007).

[5] Common Weakness Enumeration, The MITRE
Corporation, http://cwe.mitre.org/ (Accessed 21 May
2007).

[6] Robert A. Martin (2007), Making Security Measurable,
Providing Assurance in the Software Lifecycle DHS-
DoD Software Assurance Forum, Fair Lakes, Virginia.

[7] Gary McGraw (2006), Software Security, Addison-
Wesley.

[8] National Vulnerability Database, National Institute of
Standards and Technology, http://nvd.nist.gov/
(Accessed 21 May 2007).

[9] Nick Rutar, Christian B. Almazan, and Jeffrey S.
Foster (2004), A Comparison of Bug Finding Tools for
Java, 15th IEEE International Symposium on Software
Reliability Engineering, IEEE Computer Society, pp
245-256. Available at http://www.cs.umd.edu/
~jfoster/papers/issre04.pdf (Accessed 21 May 2007).

[10] SAMATE Reference Dataset, National Institute of
Standards and Technology, http://samate.nist.gov/ SRD/
(Accessed 20 May 2007).

[11] Software Assurance Metrics And Tool Evaluation
(SAMATE) project, National Institute of Standards and
Technology, http://samate.nist.gov/ (Accessed 20 May
2007).

[12] Source Code Security Analysis, National Institute of
Standards and Technology, http://samate.nist.gov/
index.php/Source_Code_Security_Analysis (Accessed 24
May 2007).

[13] Source Code Security Analysis Tool Functional
Specification Version 1.0, National Institute of
Standards and Technology, Special Publication 500-
268, May 2007. Available at http://samate.nist.gov/
docs/source_code_security_analysis_spec_SP500-268.pdf
(Accessed 24 May 2007).

[14] Tool Taxonomy, National Institute of Standards and
Technology, http://samate.nist.gov/index.php/
Tool_Taxonomy (Accessed 25 May 2007).

[15] Vulnerabilities, SecurityFocus, http://www.security
focus.com/vulnerabilities (Accessed 25 May 2007).

Volume 28, Number 3, September 2007 Ada User Journal

http://scan.coverity.com/
http://www.gcn.com/print/26_06/43320-1.html
http://www.stanford.edu/%7Eengler/spin05-coverity.pdf
http://cwe.mitre.org/
http://nvd.nist.gov/
http://www.cs.umd.edu/%7Ejfoster/papers/issre04.pdf
http://www.cs.umd.edu/%7Ejfoster/papers/issre04.pdf
http://samate.nist.gov/SRD/
http://samate.nist.gov/
http://samate.nist.gov/%20index.php/Source_Code_Security_Analysis
http://samate.nist.gov/%20index.php/Source_Code_Security_Analysis
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268.pdf
http://samate.nist.gov/index.php/%20Tool_Taxonomy
http://samate.nist.gov/index.php/%20Tool_Taxonomy
http://www.security%20focus.com/vulnerabilities
http://www.security%20focus.com/vulnerabilities

 189

Ada User Journal Volume 28, Number 3, September 2007

Identifying Opportunities for Worst-Case Execution
Time Reduction in an Avionics System
Guillem Bernat, Robert Davis, Nick Merriam, John Tuffen
Rapita Systems Ltd. IT Centre, York Science Park. YO10 5DG UK.
Tel: +44 1904 567747; Email: bernat@rapitasystems.com

Andrew Gardner, Michael Bennett, Dean Armstrong
Hawk Mission Systems, BAE Systems. Brough. HU15 1EQ.

Abstract
This paper describes the results of a study that
identified opportunities for worst-case execution time
reduction in the Operational Flight Program (OFP)
software of BAE Systems’ Hawk Mission Computer.
The RapiTime toolset was used to provide the
execution time analysis information required to target
optimizations where they would be most effective.
Potential optimizations were identified for worst-case
hotspots at three levels: design level, sub-program
level and low-level. These hotspots accounted for only
1.2% of the lines of code but contributed 29% of the
overall execution time. Focused optimizations on
these hotspots resulted in a 23% reduction of the
overall execution time for the analysed code.
Keywords: Worst-case execution time analysis,
WCET, real-time, Ada, Avionics, performance
measurement.

1 Introduction
In a real-time system, it is important to guarantee both
functional and non-functional requirements, in particular
timing correctness. Functional verification is a well
understood process that includes requirements capture,
design, implementation, review and testing. However, the
process for timing verification is less well understood.
Current trends towards more complex software and more
advanced hardware have resulted in the need to spend
significant time and effort in understanding, verifying and
improving the timing behaviour of systems.

One such complex system is the Operational Flight
Program for the BAE Systems’ Hawk Mission Computer1.
The Operational Flight Program software is written in Ada
and consists of hundreds of thousands of lines of code
divided into 25 partitions, themselves divided into tasks,
executed in a cyclic schedule. In 2006, the current system
was running close to capacity, in terms of available
execution time. In order to provide capacity for new
functionality, an internal activity was commenced to

1 Hawk is a fast jet trainer, famously flown by the Red Arrows display
team [1].

identify optimization opportunities that would reduce the
worst-case execution time of the system by at least 10%;
thus avoiding the need for an expensive hardware upgrade.

Figure 1 Hawk fast jet trainer

Manual identification of optimization opportunities in such
a large system is a daunting task. In this case, the system
was developed over a number of years by a large team of
engineers. Its sheer size and complexity makes it difficult if
not impossible for a single engineer to gain an in depth
understanding of the entire system. Further, there was no
clear information on which components actually
contributed to the overall worst-case execution time.

Initial efforts at understanding the timing behaviour of the
system were based on determining the execution time of
each partition via high water marks measured on the target
microprocessor.

A typical situation was that painstaking optimization of a
sub-program would result in unit tests showing a significant
reduction in execution time whilst making little or no
impact on the overall high water mark. In contrast, simpler
more minor optimizations could sometimes have a
significant impact, reducing the high water mark readings.
This occurred when, in the first case, the code was not
actually on the worst-case path, and in the second case,
when the sub-program was both on the worst-case path and
called a large number of times on that path.

Initially, there were no mechanisms in place to identify
which sections of code were on the worst-case path, thus
the selection of which sub-programs to optimize was
effectively an educated guess.

190 Ident i fy ing Opportuni t ies for Worst-Case Execution Time Reduct ion

Note that conventional profiling mechanisms are not
particularly useful in the solution of this problem as they
identify code that contributes most to the average execution
time, which may be completely different from the code that
is on the worst-case path and contributes most to the worst-
case execution time.

Rapita Systems, together with the Hawk Integration Team,
investigated how the problem of identifying the correct
targets for optimization could be solved using the
RapiTime worst-case execution time and performance
analysis toolset. The study also aimed at evaluating the
capabilities of the RapiTime toolset to cope with very large
Ada programs, and its ability to summarise execution time
data so that optimization opportunities could be easily
identified and prioritised.

Using RapiTime, the joint project team made up of Hawk
Integration Team and Rapita Systems engineers was able to
successfully analyse the selected subset of the system.
RapiTime was used to identify the small number of sub-
programs that contributed heavily to the worst-case
execution time. This code was inspected and, using the
worst-case hotspot information provided by RapiTime, key
code constructs targeted for optimization. These
optimizations were classified as: low-level, sub-program
level and design level. The best candidates for optimization
were prototyped and the new system analysed to verify the
effectiveness of the changes. The results of these
optimizations are reported in Section 5.

The remainder of the paper is organised as follows: Section
2 describes in more detail the system under study; the
Operational Flight Program of the Hawk Mission
Computer. Section 3 provides a brief overview of the
RapiTime toolset. Section 4 gives a classification of
optimization opportunities, with examples of constructs
found at each level. Section 5 reports the main results of the
study and finally, Section 6 provides a summary and
conclusions.

2 Hawk Operational Flight Program
The system under analysis is a subset of the Mission
Computer of the HAWK aircraft. The Mission Computer
provides the graphics for all six cockpit display panels and
head-up displays amongst other functionality.

2.1 Architecture
The software for the Operational Flight Program (OFP) is
written in Spark Ada and comprises several hundred
thousand lines of source code. The OFP is divided up into
25 partitions executed as part of a cyclic schedule.

The system runs on a microprocessor board based on the
PowerPC MPC7410 running at 500 MHz. This processor
has a significant number of complex hardware features. It
includes a two level cache: separate data and instruction
level-1 caches of 32 Kbytes each, with pseudo random
replacement policy, and a 2 Mbytes integrated level-2
cache. It also has a branch prediction unit, a 9-stage
pipeline, multiple instruction fetches per cycle, a floating-

point unit, two integer units and a performance counter
unit. The board has 512 Mbytes of RAM.

2.2 Previous approach to timing analysis
Prior to the study, the method used to obtain timing
information about the Hawk OFP software involved taking
average and ‘high water mark’ measurements of the time
each partition or task took to execute during testing or
normal operation. High water marking was implemented by
simply recording the time at the start and end of the
partition (or any arbitrary section of code) on each
execution and subtracting these two values to determine the
execution time. This value was then compared to the largest
value found so far and if greater, the new value was kept.
At the end of execution these high water mark values could
be examined.

With this process, no on-target code coverage information
was available, so it was not possible to determine how
much of the code was actually exercised by the tests. One
potential risk was that the real worst-case execution time
could be much longer than the high water mark value due
to code that had not been exercised.

The high water mark approach had the further disadvantage
that the large number of software components involved
were unlikely to take their worst-case execution times
together. Hence the high water mark times ran a significant
risk of being optimistic i.e. less than the real worst-case
time, even for the set of sub-programs that were fully
exercised by the tests.

Unfortunately, often the first indication of a problem with
the timing behaviour of the system was when it overran its
timing budget during the latter stages of testing. At this
point, manual intervention to discover which components
were the main contributors to the overrun required
additional effort and resources, resulting in potentially
expensive and time-consuming delays.

The RapiTime toolset enabled a systematic, efficient and
effective approach to be taken in investigating the timing
behaviour of the system and identifying the worst-case hot-
spots that were the major contributors to the overall
execution time. The process of analysing the system using
RapiTime is described in the next section, follow a brief
overview of the RapiTime toolset.

3 RapiTime
Obtaining accurate information about the longest time a
piece of software can take to run, termed the worst-case
execution time, is key to ensuring that time constraints are
met and that a real-time system operates correctly.

RapiTime [3] is an analysis toolset that provides a unique
solution to the problem of determining worst-case
execution times for complex software running on advanced
microprocessors.

RapiTime uses an innovative combination of three
techniques:

Volume 28, Number 3, September 2007 Ada User Journal

G. Bernat, R. Davis, N. Merr iam, J. Tuffen, A. Gardner, M. Bennett , D. Armstrong 191

1. The best possible model of an advanced
microprocessor is the microprocessor itself.
RapiTime therefore uses online testing to measure
the execution time of sub-paths between decision
points in the code.

2. By contrast, offline static analysis is the best way
to determine the overall structure of the code and
the paths through it. RapiTime therefore uses path
analysis techniques to build up a precise model of
the overall code structure and determine which
combinations of sub-paths form complete and
feasible paths through the code.

3. Finally RapiTime combines the measurement and
path analysis information in a way that accurately
captures the execution time variation on individual
paths due to hardware effects.

The RapiTime toolset can be used to:

• Determine worst-case execution times for each
software component, from complex programs
down to basic blocks of code.

• Identify code that is on the worst-case path.

• Provide detailed analysis of worst-case hotspots
and their contribution to the overall worst-case
execution time.

• Provide code-coverage metrics ensuring
confidence in the analysis results.

• Generate Execution Time Profiles illustrating the
variability in execution times due to hardware
effects.

RapiTime not only computes maximum values of execution
times, but also their full distribution (in a statistical sense),
thus capturing the variability of execution times due to
hardware effects. This analysis is based on state-of-the-art
statistical methods for modelling statistical dependencies
known as the theory of Copulas [2].

3.1 RapiTime analysis process
The RapiTime toolset integrates into the standard software
build process. As part of the study, makefile scripts were
modified to include the following extra steps required for
RapiTime to analyse the system:

1. Build executables for analysis. A special build was
produced that had the subsystem under analysis
automatically instrumented as well as including a
lightweight tracing library for the MPC7410.

2. Structural analysis. The make process was
modified to include an extra step, allowing the
RapiTime tools to extract the structure of the code.
The structure was derived from analysis of the
disassembled executable, capturing the
transformations that the compiler introduced into
the code.

3. Testing and trace generation. This stage involved
running the application on the target

microprocessor under a set of test scenarios,
collecting the trace data and downloading it from
the target. Several options exist to extract the
timing data from the target. In this case, the
standard debugger was used to download a
memory dump of the area in memory where the
trace data was stored.

4. Trace processing. RapiTime trace manipulation
tools were used to extract timing traces from the
memory dump, to filter out events of no interest,
to compress the data, to fix timer wraparounds,
and finally, to derive a set of measured execution
time profiles for each sub-program, loop and basic
block.

5. Worst-case execution time calculation and report
generation. The final stage was the WCET
calculation using the measured data from
individual sub-paths and structural information
about the code. Additional annotations were used
at this stage to guide the calculation process. The
results were formatted as a set of easy to navigate
reports.

The information in the RapiTime reports was used to
identify those sub-programs that contributed most to the
worst-case execution time and thus select the most
promising opportunities for optimization. Opportunities for
optimization were considered at three levels: design-level,
sub-program level and low-level. These three categories are
described in more detail in the next section.

4 WCET optimizations
Optimization is a compromise of several factors, in
particular: time, space, readability, maintainability and
effort. For example, some optimizations may lead to code
structures that are very hard to maintain but result in a
significant reduction in execution time. The key to any
optimization strategy is to prioritise those optimizations
where the minimum effort (and the minimum amount of
compromise in other factors) is required to gain the
maximum benefit in execution time reduction.

Profiling is not worst-case. Unlike conventional code
profiling techniques, RapiTime identifies the worst-case
hotspots in a program from the point of view of execution
time. That is the lines of code that contribute the most to
the worst-case execution time. Conventional profiling
techniques identify the lines of code that execute the most
on average, which is very different. For example, in the
following code:

if rare_condition_of_error then
 long_computation_to_fix_the_error;
else
 short_normal_operations;
end if;

A profiler would indicate that most of the time is spent
performing the short_normal_operation, missing the fact
that in the worst-case, the path to follow is through
long_computation_to_fix_the_error. Any optimization

Ada User Journal Volume 28, Number 3, September 2007

192 Ident i fy ing Opportuni t ies for Worst-Case Execution Time Reduct ion

performed on the else branch would have no impact at all
on the overall worst-case execution time.

For example, the following code is optimized for the
average case:

if most_of_the_time then
 short_execution_time;
elsif less_regularly then
 medium_execution_time;
elsif very_infrequently then
 long_execution_time;
end if;

However, in the worst case the code needs to do the three
tests, an optimization for the worst-case would instead be:

if very_infrequently then
 long_execution_time;
elsif most_of_the_time then
 short_execution_time;
elseif less_regularly then
 medium_execution_time;
end if;

In this case, only one test is done on the worst-case path.

On a similar note, deciding with bit of code to lock in the
cache may also be different for worst-case optimization
than for average case optimization. For example in the
previous example if long_execution_time took a very long
time but actually used few cache lines, it would be a good
candidate to be locked in cache.

4.1 Level of focus
A key focus of the optimization process is to identify the
level at which to perform the optimization. Optimizations
can be classified at three levels: design-level, sub-program-
level and low-level.

Design-level optimizations
Optimizations at the design-level, as the name suggests,
refer to changes in the overall design of the system. These
optimizations may involve changes in the way in which
software components communicate, changes in APIs, and
changes in how components are structured and subdivided.
For example, use of Ada generics may lead to longer
execution times as some compilers fully inline the code,
therefore missing significant benefits of instruction cache.
Changing the architecture of the program to use less
generic components and re-usable APIs has other
consequences related to ability of the compiler to do
constraint checking.

Analysis at this level is usually difficult and expensive as it
may require changes to the overall system design, which
can have significant impact on implementation and testing.
However, very significant improvements in execution time
can be achieved by changes at the design-level.

Sub-program-level optimizations
Optimizations at the sub-program level focus on changes
within a single sub-program (or a set of tightly coupled
sub-programs) without changing the specification of those
components. Examples of these optimizations are changing

the complexity of an algorithm, for example from an O(n2)
to an O(n Log n) sort routine, changing an iterative process
to one using lookup tables, loop unrolling, and avoiding
making extra copies of data, therefore reducing memory
footprint and the potential for cache misses.

Low-level optimizations
Low-level optimizations focus on the generated machine
code. These optimizations aim to use the most efficient
available machine instructions for performing particular
tasks. For example, in some DSP processors, specific
machine instructions exist to find the first-set bit or count
the number of set bits in a word. These instructions are
significantly faster than typical software implementations
of the same functionality. Another example of machine
dependencies is using non-native word sizes. This may
result in significantly larger and slower code. A
programmer who is not aware of this fact may miss an
important opportunity for optimization.

Another important aspect is the nature of the generated
code, especially relevant for Ada is the fact that a few lines
of code can result in a very long execution time. For
example:

type T is new integer;
type U is array (0 .. 10000) of Big_Record;
 …
 a,b : T;
 c,d : U;
 …
 a:=b; -- single copy of integer
 c:=d; -- can take a very long time to run!

The two last statements, although very similar at the source
code level result in very different object code.

A particular aspect of importance at this level is the
identification of the impact that compiler optimizations
have on the code. For example, on modern processors with
large caches and small memories, using compiler
optimization for size can, counter-intuitively, result in
better execution time performance than using compiler
optimization for speed. This occurs when the bottleneck is
actually fetching code from main memory, rather than the
actual processing of those instructions.

4.2 RapiTime optimization process
RapiTime provides information on the percentage
contribution of each sub-program to the overall execution
time. This information is used to identify candidate sub-
programs for optimization. The best candidates for
optimization are then inspected. This involves studying
both the Ada source code and in some cases the object code
generated by the compiler.

Next, RapiTime is used to answer what-if questions about
the effects of potential reductions in the execution time of
these sub-programs. This shows that optimizing some
candidate sub-programs would result in a commensurate
reduction in the overall worst-case execution time; whilst
for other sub-programs, optimization would bring little
benefit as the worst-case path shifted to other code.

Volume 28, Number 3, September 2007 Ada User Journal

G. Bernat, R. Davis, N. Merr iam, J. Tuffen, A. Gardner, M. Bennett , D. Armstrong 193

Ada User Journal Volume 28, Number 3, September 2007

Of particular importance is the fact that even though a sub-
program can be a worst-case hot-spot, its optimization may
not necessarily lead to a significant reduction in the overall
worst-case execution time if by optimizing that code, the
worst case path switches to another path. For example

 If some_condition then
 A; -- on worst-case path. Takes 10 ms
 else
 B; -- not on worst-case path. Takes 9ms
 end if;

In this example, reducing A by more than 1 ms, switches
the worst-case path to the branch B, therefore both A and B
need to be optimized together to reduce the worst-case
execution time.

Quantification of the improvement
An important aspect of the optimization process is a final
review examining the impact and consequences of the
optimization process. This review quantifies the reduction
in execution time, and also assesses the impact of code
changes on portability, maintainability, code size, etc.
Some optimizations may be rejected at this stage if they do
not bring sufficient benefits to warrant for example non-
portable or difficult to maintain code.

5 Main results of the study
This section describes the main results of the study. The
target for phase 1 of the study (reported here) was to
deliver a saving in the overall schedule, corresponding to
100 execution time units (ETUs)2. Achieving this reduction
would put the project well on track to achieve the overall
reduction required to accommodate additional
functionality.

In all, 5 out of 25 software partitions were analysed. These
5 partitions are referred to below as Partitions A to E. The
software for these partitions amounted to over 100,000
lines of Ada code. Three of the partitions, A, B and C were
comprehensively analysed, with improvements and targets
for optimization selected on the basis of the information
provided by RapiTime. Optimizations were prototyped for
these partitions and the RapiTime performance analysis re-
run to quantify the improvements obtained. For the final
two partitions, D and E, several optimizations were
identified, however prototyping and further analysis awaits
the next phase of the study.

The analysis process sought to achieve savings in the
overall execution time schedule, in the following
categories:

1. Budget reductions: reductions in execution time
budgets and hence schedule slots made possible
by more accurate analysis of partition worst-case
execution times.

2. Optimizations at design level, sub-program level
and low-level.

2 ETUs are an arbitrary execution time unit used in this paper. The actual
values are ‘commercial in confidence’ and are therefore not reported here.

Major savings in each of these categories are discussed in
the following sections.

5.1 Budget reductions
During initial investigation of Partition A, it was found that
the schedule slot (execution time budget) was significantly
greater than actually required in the context of its use in the
Operational Flight Program. The schedule slot had
previously been increased to accommodate use of the
partition in different context where it had a much longer
execution time. Accurate context dependent analysis of the
execution time allowed the budget to be safely reduced by
58 ETUs.

5.2 Design level optimization
Detailed analysis of Partition A revealed that over 80% of
its execution time was spent copying data to a large
intermediate buffer. Further investigation showed that in
the context of how the software was used in the Operational
Flight Program, only one response at a time was possible
from any given client and thus the intermediate buffer copy
was unnecessary. Removing this copy reduced the
execution time of Partition A by over 62%, an overall
saving of 17 ETUs.

This optimization opportunity is representative of the value
of prioritising optimization opportunities. Determining that
the usage of this component did not need an intermediate
buffer was not obvious and required detailed discussion
with various engineers responsible for the overall design of
the system. This investigation would have not been
performed if there had not been strong evidence of
potentially large savings in execution time.

5.3 Sub-program optimization
Analysis of Partition C revealed that over 25% of the
execution time of the partition was spent copying data in a
loop that iterated over 2000 times. Close inspection of the
code that performed this copy showed numerous redundant
constraint checks. This code was replaced by a call to
memcpy enabling the compiler to use more efficient code
for the copy, without the large number of constraint checks.
This reduced the execution time of the sub-program by
over 80%, resulting in an overall reduction in the execution
time of the partition of 23%, corresponding to a saving of
48 ETUs.

This optimization shows the trade-off between
maintainability and code readability versus execution time.
Widespread use of memcpy routines for copying data is not
recommended as it makes the program less readable and
less maintainable; however, in this context the change was
more than justified by the significant gain in performance.

5.4 Low-level optimizations
In Partition B, RapiTime showed that a small bit-unpacking
sub-program was called over 700 times on the worst-case
path. Further investigation showed that the compiler
generated code was not particularly efficient. Writing the
Ada code in a different way allowed the compiler to
produce more efficient code, reducing the execution time of
the sub-program by 57%, corresponding to an overall

194 Ident i fy ing Opportuni t ies for Worst-Case Execution Time Reduct ion

reduction in the execution time of Partition B of 7%, and a
saving of 11 ETUs.

In general, it is not practical to do object code investigation
on even a medium size program. However, using
RapiTime, it is possible to identify code fragments that
contribute significantly to the overall worst-case execution
time. Blocks of code that are called very frequently on the
worst-case path (over 700 times in this case) are often a
good target for low-level optimization, as proved to be the
case here.

5.4 Summary of the results
Overall, the following savings in the schedule were
achieved:

� 76 ETUs due to prototyped optimizations, including: Figure 2 Reduction in worst-case execution times achieved
using RapiTime o 17 ETUs from design level changes.

6 Summary and conclusions o 48 ETUs from sub-program modifications.

o 11 ETUs from low-level optimizations. During the study described in this paper, the process of
using RapiTime for the Hawk AJT project was refined. A
number of partitions within the Operational Flight Program
of the Hawk Mission Computer were successfully analysed
and significant reductions in execution time made. Overall,
the improvements made put the project on track to provide
the headroom necessary to incorporate additional
functionality without recourse to an expensive hardware
upgrade.

� 58 ETUs due to identifying a reduced execution time
budget for Partition A.

Total reduction in execution time 134 ETUs, exceeding
the targeted reduction of 100 ETUs.

Using RapiTime to identify candidates for optimization, it
was possible to achieve reductions, amounting to 23.6% of
the execution time of the analysed partitions, whilst
needing to manually examine just 1.2% of the total lines of
source code in these partitions. These 1250 lines of code
were initially responsible for 29% of the overall execution
time of the partitions. Design-level, sub-program-level and
low-level optimizations reduced this contribution by a
factor of almost 5, creating headroom for new functionality
to be added without the need for expensive hardware
upgrades.

 Execution Time Improvement

As part of the study, RapiTime identified that only 1.2% of
the code contributed more than 29% of the overall worst-
case execution time. These blocks of code were obvious
targets for optimization. A detailed study of some 1250
lines of code identified specific targets for optimization and
hence opportunities for execution time reduction. These
optimizations were classified as: low-level, sub-program-
level and design-level. The best candidates were prototyped
and implemented and the new system analysed to verify the
effectiveness of the changes. The optimized partitions had
an execution time that was 23% smaller than before. Partition Before After %

Partition A 28.2 10.6 62.4% References
Partition B 140 129 7.9% [1] BAE Systems. Hawk Jet Trainer.

http://en.wikipedia.org/wiki/BAE_Hawk Partition C (1) 95.5 72.9 23.7%
[2] G. Bernat, A. Burns and M. Newby (2005),

Probabilistic Timing Analysis. An approach using
Copulas, Journal of Embedded Computing, Vol 1 no 2,
pp 179-194

Partition C (2) 58.1 33.2 42.9%

Total 321.8 245.7 23.6%

Table 1 Reduction in worst-case execution times achieved
using RapiTime [3] Rapita Systems Ltd. RapiTime White Paper. (2005.)

http://www.rapitasystems.com
The reductions in partition execution times achieved are
summarised in Table 1 and illustrated in Figure 2. Partition
C appears twice as it is executed twice within the major
cycle of the schedule. The contexts of these two executions
are however different and consequently two different
context dependent execution times were derived for
Partition C.

Volume 28, Number 3, September 2007 Ada User Journal

196

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
c/o Parasoft Deutschland GmbH
Bayerstraße 24
D-80335 München
Germany
Phone: +49-89 4613323-15
Fax: +49-89 4613323-23
Email: dencker@parasoft.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21
Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.org

Volume 28, Number 3, September 2007 Ada User Journal

http://www.ada-france.org/
http://www.adaspain.org/

	Contents
	Editorial
	News
	Conference Calendar
	Towards Certification of Object-Oriented Code with the GNAT Compiler
	SAMATE and Evaluating Static Analysis Tools
	Identifying Opportunities for Worst-Case Execution Time Reduction in an Avionics System

