

Ada User Journal Volume 29, Number 1, March 2008

ADA
USER
JOURNAL

Volume 29
Number 1

March 2008

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

News 5

Conference Calendar 26

Forthcoming Events 33

Articles

 D. Kleidermacher
“Practical Application of Static Analysis for Embedded Systems” 38

Proceedings of the 13th International Real-Time Ada Workshop

 M. González-Harbour, J. J. Gutiérrez
“Session: Programming Patterns and Libraries” 44

 A. J. Wellings, A. Burns
“A Framework for Real-Time Utilities for Ada 2005” 47

 A. Burns, A. J. Wellings
“Programming Execution-Time Servers in Ada 2005” 54

 J. A. Pulido, J. A. de la Puente, J. Hugues, M. Bordin, T. Vardanega
“Ada 2005 Code Patterns for Metamodel-Based Code Generation” 59

Ada Gems 66

Ada-Europe Associate Members (National Ada Organizations) 72

Ada-Europe 2007 Sponsors Inside Back Cover

2

Volume 29, Number 1, March 2008 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 29, Number 1, March 2008

Editorial
In this first editorial of 2008, I would like to take a brief moment to comment on some highlights the Ada Europe community
can expect this year. First, I am pleased that before long Ada-Europe members will receive another package, containing the
Rationale for Ada 2005, written by John Barnes, as a volume of the Springer LNCS series. This book, produced by Ada-
Europe, provides a good opportunity for all of us to (re)visit the changes and additions Ada 2005 brings us.

The year will also witness another edition of our Ada-Europe conference, which takes place in the 3rd week of June in the
beautiful scenery of Venice, Italy. You will find more information concerning this worthwhile event in the Forthcoming
Events section of the Journal, together with the call for contributions for the SIGAda conference next October in Portland,
USA.

Continuing with the contents of this issue, the first paper is a contribution of David Kleidermacher of Green Hills Software,
USA, discussing the practical use of static analysis in embedded systems. This is the final paper coming from the Industrial
Track of the Ada-Europe 2007 conference, a forum that has, and I believe will continue to, provided valuable content to the
Journal. I am looking forward for the papers from the Industrial Track of Ada-Europe 2008, as well as from the conference’s
“Ada and Education” session, which the Journal will also host.

The issue also continues with the Proceedings of the 13th International Real-Time Ada Workshop (IRTAW-13), providing the
contents of the second session of the workshop: Programming Languages and Patterns. As usual, the first paper provides the
session report. The first two technical papers of the session come from the University of York, UK. In the first, the authors
argue in favour of a standardised library of real-time utilities for Ada 2005, whilst in the second the authors elaborate on
specific utilities for implementing execution-time servers. The session closes with a paper from a group of authors coming
from the Technical University of Madrid, Spain, Télécom Paris, France and University of Padua, Italy, presenting a set of
coding patterns to support automated code generation of meta-models for high-integrity systems.

Continuing with the contributions from the Gem of the Week series, this issue provides Matthew Heaney’s Gems on the topic
of Containers. And, as usual, you will find the valuable information of the News and Calendar sections, contributed by
Santiago Urueña and Dirk Craeynest, their respective editors.

Luís Miguel Pinho
Porto

March 2008
Email: lmp@isep.ipp.pt

 5

Ada User Journal Volume 29, Number 1, March 2008

News
Santiago Urueña
Technical University of Madrid (UPM). Email: Santiago.Uruena@upm.es

Contents

Ada-related Organizations 5
Ada-related Events 5
Ada and Education 7
Ada-related Resources 7
Ada-related Tools 8
Ada-related Products 10
Ada and GNU/Linux 16
References to Publications 17
Ada Inside 18
Ada in Context 20

Ada-related
Organizations
ARA — Ada 2005 Rationale
update
From: Ada Resource Association
Date: January 4, 2008
Subject: Ada 2005 Rationale
URL: http://adaic.com/whatsnew.html
The Ada 2005 Rationale has been
updated, fixing a number of errors,
enhancing the index, and adding a new
Postscript.
[See also “ARA — Ada 2005 Rationale
Available” in AUJ 27-1 (Mar 2006) —su]

ARA — ACATS 3.0
From: Ada Resource Association
Date: January 25, 2008
Subject: Ada Conformity Assessment Test

Suite
URL: http://adaic.com/whatsnew.html
The first Ada 2005 Ada Conformity
Assessment Test Suite, ACATS 3.0, has
been posted, along with an associated
ACATS Modification List 3.0A.
Update: ACATS Modification List 3.0B
and the associated test files have been
posted.
[See also “ARA — Development
snapshot for ACATS 3.0” in AUJ 28-2
(Jun 2007) —su]

Ada-related Events

[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a

small report for the Ada User Journal.
—su]

Ada UK videos online
From: AdaCore Developer Center
Date: Wednesday February 13, 2008
Subject: Ada UK videos online
RSS: http://www.adacore.com/2008/02/13/

ada-uk-videos-online/
The videos of the presentations given at
the recent Ada event in the UK can now
be viewed here:
http://www.adacore.com/home/
ada_answers/lectures/ada_uk07
Topics include:
- Sufficient Evidence?
- Porting to Ada 2005
- Can Ada be used with Multiple
Independent Levels of Security?
- The Marte run-time and the advantages
Ada has for real-time programmers
- Correctness by Construction: Putting
Engineering into Software
- The automatic extraction of semantic
information using advanced static analysis
- The DO-178C standardization process
and implications for language
- Using Ada for software development
tools
- The future of programming languages

Dec 6 — Ada-France 2007
From: Ada-France
Subject: Présentations faites lors de la

journée Ada 6 décembre 2007
Date: Monday December 10, 2007
URL: http://www.ada-france.org/

article138.html
[Translated from French. —su]
Ada-France has organised December 6,
2007, a technical seminar about
embedded systems at Telecom Bretagne.
This seminar brought together about thirty
participants.
The presentations were:
- Premiers retours d’un chercheur sur
l’utilisation de l’IDM pour le temps réel.
Jérôme Delatour, ESEO (Angers).
- AADL: état et perspectives. Pierre
Dissaux, Ellidiss Technologies (Brest) .
- Validation de systèmes temps-réel et
embarqué à partir d’un modèle MARTE :
expérimentation. Eric Maes, Thales
Research and Technology (Palaiseau) .
- AUTOSAR: Streamlining automotive
systems and processes. Francois Dupont,
Geensys (Brest) .
- Expérimentation d’unités de preuve
pour la validation formelle de logiciels

embarqués critiques. Philippe Dhaussy*,
Pierre Yves Pilain*, Dominique Kerjean*,
Stéphane de Belloy**, Arnaud Monégier
du Sorbier**, Hugues Bonnin +, Frédéric
Boniol***. * Laboratoire DTN, NSIETA
(Brest), ** Thales AIR SYSTEMS
(Rungis), + CS-SI (Toulouse), *** IRIT-
ENSEEIHT (Toulouse).
- Ada 2005 pour les systèmes embarqués
temps réel. José F. Ruiz, AdaCore (Paris).
- Les outils de retro-ingénierie de code
Ada. Eric Audrezet, Sodius (Nantes).
[See also same topic in AUJ 28-4 (Dec
2007) —su]

Feb 24 — Ada Deutschland
From: AdaCore Press Center
Date: Thursday December 20, 2007
Subject: Efficient Development of Reliable

Software Workshop
RSS:

http://www.adacore.com/2007/12/20/effi
cient-development-of-reliable-software-
workshop/

Ada Deutschland has organized a one day
event round the topic of:
Efficient Development of Reliable
Software and Related Methods.
Jóse Ruiz will be giving a talk on “Ada
2005 for real-time, embedded and high-
integrity systems”.

June 16–20 — Ada-Europe
2008
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Sun, 6 Jan 2008 22:03:27 +0100

(CET)
Organization: Ada-Europe, c/o Dept. of

Computer Science, K.U.Leuven
Subject: FINAL CfIP, Conference Reliable

Software Technologies, Ada-Europe
2008

Newsgroups: comp.lang.ada,
fr.comp.lang.ada,comp.lang.misc

Summary: One week until submission
deadline!
Keywords: Conference,tutorials,industry,
reliability, Ada,LNCS,Venice,Italy
 FINAL Call for Industrial Presentations
 13th International Conference on
 Reliable Software Technologies —
 Ada-Europe 2008
 16 – 20 June 2008, Venice, Italy
 http://www.ada-europe.org/
 conference2008.html
The 13th International Conference on
Reliable Software Technologies (Ada-

6 Ada-related Events

Volume 29, Number 1, March 2008 Ada User Journal

Europe 2008) will take place in Venice,
Italy. Following its traditional style, the
conference will span a full week,
including a three-day technical program
and vendor exhibitions from Tuesday to
Thursday, along with parallel tutorials and
workshops on Monday and Friday.
In addition to the usual call for papers, the
conference also seeks industrial
presentations which may have value and
insight, but do not fit the selection process
for regular papers.
Authors of industrial presentations are
invited to submit a short overview (at
least 1 page in size) of the proposed
presentation to the Conference Chair
(tullio.vardanega@math.unipd.it) by 13
January 2008. The Industrial Program
Committee will review the proposals and
make the selection.
The authors of selected presentations shall
prepare a final short abstract and submit it
to the Conference Chair by 11 May 2008,
aiming at a 20-minute talk. The authors
of accepted presentations will be invited
to derive articles from them for
publication in the Ada User Journal,
which will host the proceedings of the
Industrial Program of the Conference.
Ada-Europe will offer honorary awards
for the best regular paper and the best
presentation.
Schedule
13 January 2008: Submission of
industrial presentation proposals
03 February 2008: Notification to all
authors
11 May 2008: Industrial presentation
material required
16-20 June 2008: Conference
Industrial Committee Members
(preliminary list)
Guillem Bernat, Rapita Systems
Olivier Devuns, Aonix
Franco Gasperoni, AdaCore
Rei Stråhle, Saab Systems
Tullio Vardanega, Ada-Europe
(President)
Dirk Craeynest, Ada-Europe (Vice-
President)

Oct 26–30 — SIGAda 2008
From: Michael Feldman

<mfeldman@seas.gwu.edu>
Newsgroups: comp.lang.ada
Subject: Call for contributions to SIGAda

2008, Portland Oct. 26-30
Date: Tue, 22 Jan 2008 20:41:33 −0000
Organization: The George Washington

University
Call for Technical Contributions —

SIGAda 2008
ACM SIGAda Annual

International Conference

Toward Safe, Secure, Reliable Software
October 26–30, 2008

University Place Hotel and
Conference Center

Portland, Oregon, USA
Sponsored by ACM SIGAda, the ACM

Special Interest Group on Ada
http://www.acm.org/sigada/conf/

sigada2008/
(ACM Approval Pending)

SUMMARY
Reliability, safety, and security are among
the most critical requirements of
contemporary software. The application
of software engineering methods, tools,
and languages all interrelate to affect how
and whether these requirements are met.
Such software is in operation in many
domains of application. Much has been
accomplished in recent years, but much
remains to be done. Our tools, methods,
and languages must be continually
refined; our management process must
remain focused on the importance of
reliability, safety, and security; our
educational institutions must fully
integrate these concerns into their
curricula.
The conference will gather industrial and
government experts, educators, software
engineers, and researchers interested in
developing, analyzing, and certifying
reliable, safe, secure software. We are
soliciting technical papers and experience
reports with a focus on, or comparison
with, Ada. We are especially interested in
experience in integrating these concepts
into the instructional process at all levels.
CONFERENCE LOCATION
Portland is the attractive, livable “City of
Roses” in the Pacific Northwest. The
weather in October is usually cool and
often beautiful. University Place is a
modern and reasonably-priced hotel
located within walking distance of the
central business district, the lively
riverfront area, and the Portland State
University campus.
HOW YOU CAN CONTRIBUTE
SIGAda 2008 solicits contributions in six
major categories: Technical Articles,
Extended Abstracts, Experience Reports,
Workshops, Panel Sessions, and
Tutorials.
Contributions from students and faculty
are actively solicited, as are experience
reports from practitioners.
Final acceptance will be contingent on at
least one co-author registering for and
presenting the contribution at the
Conference.
POSSIBLE TOPICS include but are not
limited to:
- Transitioning to Ada 2005
- Educational challenges for developing

reliable, safe, secure software
- Ada and SPARK in the classroom and
student laboratory
- Language selection for a high reliability
system
- Use of high reliability subsets or profiles
such as MISRA C, Ravenscar, SPARK
- High reliability standards and their
issues
- Software process and quality metrics
- Analysis, testing, and validation
- Use of ASIS for new Ada tool
development
- Mixed-language development
- High-reliability development experience
reports
- Static analysis of code
- Integrating COTS software components
- System Architecture & Design
- Information Assurance
- Ada products certified against Common
Criteria / Common Evaluation
Methodology
TECHNICAL ARTICLES present
significant results in research, practice, or
education. These papers will be double-
blind refereed and published in the
Conference Proceedings and in Ada
Letters.
EXTENDED ABSTRACTS discuss
current work for which early submission
of a full paper may be premature. If your
abstract is accepted, you will be expected
to produce a full paper, which will appear
in the proceedings. Extended abstracts
will be double-blind refereed. Clearly
state the contribution of the work being
described, its relationship with previous
work by you and others (with
bibliographic references), results to date,
and future directions.
EXPERIENCE REPORTS present timely
results on the application of Ada and
related technologies to the design and
implementation of applications such as
the following: avionics, aerospace,
automobile, command and control,
consumer electronics, process control,
transportation, trading systems, energy,
medical systems, simulation,
telecommunications, etc. Such reports
will be selected on the basis of the interest
of the experience presented to the
community of Ada practitioners. Submit a
1–2 page description of the project and
the key points of interest of project
experiences. Descriptions will be
published in the final program or
proceedings, but a paper will not be
required.
PANEL SESSIONS gather a group of
experts on a particular topic who present
their views and then exchange views with
each other and the audience. Panel
proposals should be 1–2 pages in length,
identifying the topic, coordinator, and
potential panelists.

Ada-related Resources 7

Ada User Journal Volume 29, Number 1, March 2008

WORKSHOPS are focused work
sessions, which provide a forum for
knowledgeable professionals to explore
issues, exchange views, and perhaps
produce a report on a particular subject. A
list of planned workshops and
requirements for participation will be
published in the SIGAda 2008 Advance
Program. Workshop proposals will be
evaluated by the Program Committee and
selected based on their applicability to the
conference and potential for attracting
participants. Proposals should state the
problem or issue to be addressed, the
coordinator(s), and criteria for participant
selection.
TUTORIALS offer the flexibility to
address a broad spectrum of topics
relevant to Ada, and those enabling
technologies which make the engineering
of Ada applications more effective.
Submissions will be evaluated based on
relevance, suitability for presentation in
tutorial format, and presenter's expertise.
Tutorial proposals should include the
expected level of experience of
participants, an abstract or outline, the
qualifications of the instructor(s), and the
length of the tutorial.
SUBMISSION DEADLINE: May 12,
2008
HOW TO SUBMIT:
Send contributions in Word, PDF, or text
format as follows:
Technical Articles, Extended Abstracts,
Experience Reports, and Panel Session
Proposals: Program Chair, Leemon C.
Baird III (leemon.baird at usafa.edu).
Workshop proposals: Workshops Chair,
Bill Thomas (BThomas at MITRE.org).
Tutorial proposals: Tutorials Chair, David
A. Cook (DCook at AEgisTG.Com).
- OUTSTANDING STUDENT PAPER
AWARD. An award will be given to the
student author(s) of the paper selected by
the program committee as the outstanding
student contribution to the conference.
- VENDORS. Please contact S. Ron
Oliver (SROliver at CSC.CalPoly.Edu)
for information about participation at
SIGAda 2008.
Please submit any questions on the
conference to the Conference Chair,
Michael Feldman (mfeldman at gwu.edu).
IMPORTANT VISA INFORMATION
FOR NON-US SUBMITTERS
General Visa Information
The sites
http://www.UnitedStatesVisas.gov and
http://travel.state.gov have information
about obtaining a visa for those traveling
to the United States. Both sites have links
to websites for U.S. embassies and
consulates worldwide. The embassy and
consulate websites have helpful
information about procedures, timelines,

communities served, required
documentation, and fees.
Letters from ACM
International registrants should be
particularly aware and careful about visa
requirements, and should plan travel well
in advance. All visa inquiries must be
handled by ACM Headquarters. Please
send your request for a letter in support of
a visa application to Ashley Cozzi (acozzi
at acm.org), and include your name,
mailing address, and fax number, as well
as the name of the conference you are
attending. (Authors of papers/posters
should also include the title). Please note
that ACM does not issue formal “letters
of invitation” to any of its conferences.

Ada and Education
Public Ada Courses
From: Ed <colbert@abssw.com>
Date: Fri, 22 Feb 2008 17:54:54 −0800

(PST)
Subject: [Reminder] Public Ada Courses 3–

7 March '08 in Carlsbad CA
Newsgroups: comp.lang.ada
Absolute Software will be holding a
public Ada course during the week of 3
March in Carlsbad, CA. You can find a
full description and registration form on
our web-site, www.abssw.com. Click the
Public Courses button in the left margin.
(We also offer courses on software
architecture-based development, safety-
critical development, object- oriented
methods, and other object-oriented
languages.) [...]
[See also same topic in AUJ 28-3 (Sep
2007) —su]

SPARK Training
From: Praxis HIS — SPARKAda
Subject: SPARK Training
Date: March, 2008
URL: http://www.praxis-his.com/

sparkada/training.asp
Public Course Dates for 2008 — UK
Course 1 — “Software Engineering with
SPARK”
3rd – 6th March 2008 at the Praxis
Offices in Bath
15th – 18th September 2008 at the Praxis
Offices in Bath
Course 2 — “Black-Belt SPARK”
11th – 13th March 2008 at the Praxis
Offices in Bath
23rd – 25th September 2008 at the Praxis
Offices in Bath
[See also same topic in AUJ 28-3 (Sep
2007) —su]

Webminar: GPS InSight
From: AdaCore Press Center
Date: Thursday December 13, 2007
Subject: GPS InSight Webinar
RSS: http://www.adacore.com/2007/12/13/

gps-insight-webinar/
GPS InSight Webinar
The archive of this webinar featuring a
presentation and demo of GPS 4.2.0 is
now available. Please click here to view it
or visit:
http://www.adacore.com/home/gnatpro/
webinars
[See also “Webminar: GNATbench” and
“Webminar: Eclipse” in AUJ 28-3 (Sep
2007). —su]

Ada-related Resources
New Blog about Ada
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Mon, 21 Jan 2008 11:53:33 +0100
Subject: [blog] The Henn and Egg problem
Newsgroups: comp.lang.ada
There is a new entry on the Ada
programming blog [...] which might be of
interest.
http://ada-programming.blogspot.com/
PS: it is possible to add additional authors
to the “Ada programming blog” — mail
me if you are interested.

Ada Social networks
From: melampus <henssel@gmail.com>
Date: Tue, 22 Jan 2008 02:34:16 −0800

(PST)
Subject: Re: Social networks for Ada people
Newsgroups: comp.lang.ada
> If a social network dedicated to Ada

programmers existed, how many of the
people here would use it?

Something like Ohloh
(http://www.ohloh.net/) would at least
present Ada — and its fans — as
“modern” and finding solutions to the
current ITC demand and issues. Currently
most ITC folks probally sees Ada as more
Dino than T.Rex ;-)
We could also try to establish “open” Ada
groups in Facebook, LinkedIn or other
web waterholes.
From: Manuel Gomez

<mgrojo@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Social networks for Ada people
Date: Tue, 22 Jan 2008 11:58:48 −0800

(PST)
By the way, Ada is already in that site,
see http://www.ohloh.net/languages/21
From: Manuel Gomez

<mgrojo@gmail.com>
Newsgroups: comp.lang.ada

8 Ada-related Tools

Volume 29, Number 1, March 2008 Ada User Journal

Subject: Re: Social networks for Ada people
Date: Tue, 22 Jan 2008 11:41:31 −0800

(PST)
> That's what the existing Ada wikis are.

Here is a list:
English:
http://en.wikibooks.org/wiki/Ada_Progr
amming
English:
http://ada.krischik.com/index.php
French:
http://fr.wikibooks.org/wiki/Programma
tion_Ada/FAQ/
French: http://www.ada-france.org

I know these wikis, in fact I'm one of the
contributors of Ada Programming
wikibook. The problem with the wikibook
is its perfectly defined scope, it's a wiki
for writing a text-book. The site I was
thinking about would probably have a
wiki open for any subject related to Ada,
but it should include other web 2.0
features so it can become the community-
driven version of:
 http://www.adapower.com/
 http://www.adaworld.com/
For example, it should include uploading
of code snippets, presentations (or
embedded from something like
 http://www.slideshare.net/tag/ada
submission of articles, etc. All of this
content should be submitted under a clear
open-content license, like GFDL, or
Creative Commons.

FAQ fr.comp.lang.ada
changes
From: Samuel Tardieu <sam@rfc1149.net>
Date: Sun, 2 Mar 2008 11:00:43 GMT
Subject: [FAQ] fr.comp.lang.ada
Newsgroups:

fr.comp.lang.ada,fr.usenet.reponses
Summary: Questions fréquemment posées

sur le groupe de discussion
 fr.comp.lang.ada, dédié au langage Ada
[Translated from French. —su]
WWW-Archive-Name:
http://www.rfc1149.net/fcla/
Maintainer: sam@rfc1149.net (Samuel
Tardieu)
Last-Modified: Wed Feb 21 11:18:00
CET 2007
Archive-Name: fr/comp/lang/faq-ada
FAQ fr.comp.lang.ada
After March 5, 2007, the fr.comp.lang.ada
FAQ is collectively managed at:
http://fr.wikibooks.org/wiki/
Programmation_Ada/FAQ/
Do not hesitate to consult and improve it.

Ada-related Tools
AdaCL 5.0.8 — Ada Class
Library
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sat, 08 Dec 2007 19:34:56 +0100
Subject: [Announcement] AdaCL 5.0.8

released
Newsgroups: comp.lang.ada
I have just released a new version of
AdaCL which fixes the problems with
newer GNAT compilers. At least when
the garbage collector support is switched
off it is now possible to compile AdaCL
with GNAT.
To download and to see what AdaCL
actually does see:
http://adacl.sourceforge.net/
Note that with Version 5 AdaCL is now
strictly Ada 2005 and makes use of Ada
2005 features.
AdaCL will also be part of the next
release of The GNU Ada Project.
From: Martin Krischik

<krischik@users.sourceforge.net>
Subject: Re: [Announcement] AdaCL 5.0.8

released
Newsgroups: comp.lang.ada
Date: Sat, 22 Dec 2007 14:05:56 +0100
I have just uploaded the Solaris 10
packages. Get it while it's hot:
 http://gnuada.sourceforge.net/
[See also “AdaCL 4.2.0 — Ada Class
Library” in AUJ 25-4 (Dec 2004) —su]

Strings Edit
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 12 Jan 2008 20:14:06 +0100
Subject: ANN: Strings_Edit v2.0
Newsgroups: comp.lang.ada
The library provides a set of packages for
formatting and text processing of:
- Integer numbers (generic, package
Integer_Edit);
- Integer sub- and superscript numbers;
- Floating-point numbers (generic,
package Float_Edit);
- Roman numbers (the type Roman);
- Strings;
- Ada-style quoted strings;
- UTF-8 encoded strings;
- Unicode case mappings;
- Wildcard pattern matching.
 http://www.dmitry-kazakov.de/
 ada/strings_edit.htm
[...]
[See also same topic in AUJ 28-2 (Jun
2007) —su]

Simple components
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 10 Feb 2008 21:37:04 +0100
Subject: ANN: Simple components v2.7
Newsgroups: comp.lang.ada
http://www.dmitry-kazakov.de/
ada/components.htm
Changes to the version 2.5:
- Function Is_Empty was added to
doubly-linked lists;
- Functions Erase and Take were added
for doubly-linked webs and lists:
- Persistent storage packages interface
was changed from Wide_String (UCS-2)
to String (UTF-8) Unicode support;
- Persistent storage now supports
hierarchical names of objects;
- Get_Class abstract operation was added
to the persistent storage interface;
- The package
Generic_Random_Sequence was added to
provide random sequences of non-
repeating numbers;
- The package
Strings_Edit.Symetric_Serialization
provides symmetric encryption and
encoding of short plain strings, which can
be used for storing user credentials.
[See also same topic in AUJ 28-3 (Sep
2007) —su]

AdaSubst & AdaDep
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 12 Feb 2008 17:31:59 +0100
Organization: Adalog
Subject: Updated versions of AdaSubst and

AdaDep
Newsgroups: comp.lang.ada
Adalog is pleased to announce a new
release of AdaSubst and AdaDep. No real
change in functionality, but better
packaging, doc now in info, html, and pdf
formats, and makes use of the latest
version of the components that are
common with AdaControl (i.e. bugs
fixed).
Download and more info from
http://www.adalog.fr/compo2.htm
[See also same topic in AUJ 25-2 (Jun
2004) —su]

GNU Ada Compiler
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 09 Dec 2007 17:46:55 +0100
Subject: [Announcement] The GNU Ada

Project Release 8
Newsgroups: comp.lang.ada
New with release 8 of The GNU Ada
Project brings you:
1) GNAT/GCC 4.2.2
2) GNAT/GPL 2007-2
3) A GNAT Programming Studio for

Ada-related Tools 9

Ada User Journal Volume 29, Number 1, March 2008

GCC and GPL
4) AdaCL, the Ada Class Library
The GPS it the newest I could compile as
there are compiler dependencies and the
new GPS 4.2.0 will compile only with
GNAT/PRO. This implies that I could not
distribute the newest GtkAda and
XMLAda as as an older GPS won't
compiler with newer libraries.
As allways SuSE 10.3 x86_64 is the first
to be released with other Systems
following later. So stay tuned.
[See also same topic in AUJ 28-3 (Jun
2007) —su]
From: Martin Krischik

<krischik@users.sourceforge.net>
Date: Sun, 27 Jan 2008 13:28:42 +0100
Subject: [anouncement] MingGW release

for the GNU Ada Project
Newsgroups: comp.lang.ada
[...]
This is the first release which includes the
files needed to compile ASIS, GLADE
and GPS later on [1].
Like the Unix Releases this release
installs into /opt and therefore won't
overwrite your default MinGW compiler.
The release is still not as complete as the
Unix bases releases but it allready
contains the Booch components and
XMLAda.
Download from:
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=240621
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=260608
[1] Note to other maintainers: Those files
are *not* included on “make install” —
You have to add them yourself!
From: Simon Wright

<simon.j.wright@mac.com>
Date: Sun, 27 Jan 2008 19:36:25 +0000
Subject: ANN: GNAT/GPL Solaris 10:

2007-solaris-x86
Newsgroups: comp.lang.ada
I've uploaded this to the GNU Ada project
at SourceForge:
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=260618
& release_id=571804
From: Simon Wright

<simon.j.wright@mac.com>
Date: Mon, 14 Jan 2008 18:38:17 +0000
Subject: ANN: GNAT/GPL Mac OS X:

2007-tiger-ppc
Newsgroups: comp.lang.ada
I've uploaded this to the GNU Ada project
at SourceForge:
http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=258771
You might find its location at /opt/gnat-
gpl-2007 unhandy, you may find gnatfe
helpful:

http://sourceforge.net/project/showfiles.ph
p?group_id=12974&package_id=258764

AVR-Ada
From: Rolf Ebert <rolf.ebert@gmx.net>
Date: Thu, 20 Dec 2007 23:34:41 −0800

(PST)
Newsgroups: comp.lang.ada
Subject: [Ann] AVR-Ada V0.5.2 released
We are proud to announce a new release
of AVR-Ada, one of the first GCC based
Ada compilers targeting 8-bit
microcontrollers.
You get the project description and some
documentation at
 http://avr-ada.sourceforge.net/
The Sourceforge development pages with
the download section are at
http://www.sourceforge.net/projects/
avr-ada/
AVR-Ada is available in source and
binary form for Windows. The binary
packages of the cross compiler hosted on
Windows is now part of the just released
WinAVR tool suite.
For any questions please join the mailing
list at
http://lists.sourceforge.net/mailman/
listinfo/avr-ada-devel
It has quite low traffic.
Please use SF's bug reporting and feature
request system for guiding future
development of AVR-Ada.
[See also same topic in AUJ 27-2 (Jun
2006) —su]

Gela — BSD compiler in
development
From: Vadim Godunko

<vgodunko@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Restricted or no run time in

Ada
Date: Thu, 3 Jan 2008 12:05:50 −0800

(PST)
> GNAT (non-PRO) is the only one that

is free and open source.
Yet another open source (under BSD
license!) Ada compiler:
http://www.ten15.org/wiki/Ada
[The following description is from the
web page —su]
Gela — Ada Support for TenDRA
The goal of Gela project is creation of
portable Ada compiler.
TenDRA is a C compiler, with C++ STL
support forthcoming. The original Crown
copyright from DERA is still present, and
further expansion of TenDRA is under the
BSD License.
TenDRA uses the TenDRA Distribution
Format (TDF) as its intermediate

language. It is based on (X)ANDF
(Architecture Neutral Distribution
Format) which evolved from TDF. ANDF
focuses on abstracting high level
languages instead of assembler languages,
as is common with most compilers. This
makes TenDRA a powerful tool in code
verification and checking.
TenDRA Goals:
 - To continuously produce correct code.
 - To continuously improve the
performance of the compiler and resulting
code, unless it would jeopardise the point
above.
 - To create tools that facilitate
programming, not to have programming
facilitate the tools.
 - To be a friendly competitor to GCC in
order to get a best-of-breed compiler.
From: Maxim Reznik

<reznikmm@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Restricted or no run time in

Ada
Date: Fri, 4 Jan 2008 06:13:19 −0800

(PST)
[...] Today most usable part of Gela is
Gela-ASIS. This is target independent
ASIS implemented from scratch. It
implement most of ASIS for Ada 95
queries and 12 extension to support Ada
2005 according to SI99 proposals.
From: Maxim Reznik

<reznikmm@gmail.com>
Date: Fri, 4 Jan 2008 01:23:18 −0800

(PST)
Subject: Re: Restricted or no run time in

Ada
Newsgroups: comp.lang.ada
[...] Of course Gela project is far away of
completion and not yet ready to be used in
your project, but code it can generate for
now not much worse than one of others
compilers.

GTKAda contributions
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Subject: ANN: GtkAda contributions 2.1
Newsgroups: comp.lang.ada
Date: Sun, 10 Feb 2008 21:42:26 +0100
The packages extend GtkAda, an Ada
bindings to GTK+. It deals with the
following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renders for tree view
widget;
- Multi-columned derived model;
- Extension derived model (to add
columns to an existing model);
- Abstract caching model for directory-
like data;
- Tree view and list view widgets for
navigational browsing of abstract caching
models;
- File system navigation widgets with
wildcard filtering;

10 Ada-related Products

Volume 29, Number 1, March 2008 Ada User Journal

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms and bug
fixes;
- Measurement unit selection widget and
dialogs;
- Improved hue-luminance-saturation
color model;
- Simplified image buttons and buttons
customizable by style properties;
- Controlled Ada types for GTK+ strong
and weak references;
- Simplified means to create lists of
strings.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
[...]
[See also same topic in AUJ 28-4 (Dec
2007) —su]

QtAda binding
From: Vadim Godunko

<vgodunko@gmail.com>
Date: Tue, 12 Feb 2008 13:20:38 −0800

(PST)
Subject: Announce: QtAda 1.0.2
Newsgroups: comp.lang.ada
We are pleased to announce QtAda 1.0.2
release. This release includes fixes for
critical bugs and workarounds for the
GNAT compiler's bugs. Full list see at the
end of this mail.
QtAda is an Ada2005 language bindings
to the Qt libraries and a set of useful tools.
QtAda allows easily to create cross-
platform powerful graphical user interface
completely on Ada 2005. QtAda
applications will work on most popular
platforms — Microsoft Windows, Mac
OS X, Linux/Unix — without any
changes and platform specific code.
QtAda allows to use all power of visual
GUI development with Qt Designer on all
software lifecycle stages — from
prototyping and up to maintenance.
QtAda is not just a bindings to the
existent Qt widgets, it also allows to
develop your own widgets and integrates
it into the Qt Designer for high speed
visual GUI development.
QtAda can be downloaded from:
http://www.qtada.com/
[...]
[See also same topic in AUJ 28-4 (Dec
2007) —su]

AutoIT — Automated GUI
Testing
From: Per Sandberg

<per.sandberg@bredband.net>
Date: Thu, 07 Feb 2008 06:38:14 +0100
Subject: ada-AutoIT 1.5.3 Released
Newsgroups: comp.lang.ada
ada-AutoIT 1.5.3 is released

Small cleanups and bumped to AutoIT
3.2.10.0
Win32 only !
AutoIT Homepage:
http://www.autoitscript.com/autoit3/
SourceForge
http://sourceforge.net/projects/ada-autoit/
[See also same topic in AUJ 27-4 (Dec
2006) —su]

TclAdaShell
From: Simon Wright

<simon.j.wright@mac.com>
Date: Sun, 03 Feb 2008 22:02:39 +0000
Subject: ANN: TclAdaShell release
Newsgroups: comp.lang.ada
I've released two packages, which you can
find here:
http://sourceforge.net/project/showfiles.ph
p?group_id=164395
Under 'source' is a release for people who
have a full development environment. As
is, it works with GNAT GPL 2007 (will
work with earlier versions, with some
makefile tweaks).
Under 'windows' is a Windows binary
release (made on Windows 2000): GNAT
GPL 2007, ActiveState's Tcl.
I haven't made binary releases for other
platforms, mainly because there are so
many of them.
More info at
http://tcladashell.wiki.sourceforge.net/

Hibachi plans
From: Tom Grosman <grosman@aonix.fr>
Date: February 23, 2008 00:53
Subject: RE: [hibachi-dev] Hibachi Plans

Questions
newsgroup: eclipse.tools.hibachi
[...] There is no effort to include a
compiler with Hibachi. This is not
possible for several reasons. First,
everything released under the Hibachi
project must meet Eclipse's rigorous
Intellectual Property rules. So for
instance, even the GNAT compiler, which
is under GPL, couldn't be distributed as
part of Hibachi since GPL is not
compatible with EPL. There are other
reasons why a compiler is not included as
part of Hibachi, but the one I listed is a
deal breaker, so no need to go on.
That said, there will probably be a release
of an Eclipse based Ada development
environment bundle including Hibachi,
the GNAT toolchain and anything else
needed to do Ada development with a
single download. However, it will not be
part of the Hibachi project. It would be
available via a non-Eclipse download site.
This is actually what Doug Schaefer (the
CDT project lead) has done for C/C++

with Wascana (see
http://wascana.sourceforge.net/).
[See also “Hibachi official Eclipse Open
Source Project” and “Aonix — Eclipse
Hibachi Project Unites Ada Suppliers in
Common Environment” in AUJ 28-4
(Dec 2007). —su]

Hibachi sources available
From: Tom's Hibachi musings
Date: January 17, 2008
Subject: Sources available!
RSS:

http://hibachitom.blogspot.com/2008/01/
sources-available.html

The Hibachi sources are now available on
the Eclipse server. There have already
been a few folks who have downloaded
them and built Hibachi. Getting the
sources through the parallel IP process
was not a piece of cake. We had to
replace the parser generator, and leave out
the pretty printer. Even though the authors
of the pretty printer gave their written
consent for us to use it, because it had
been released elsewhere under GPL
(which is not Eclipse compliant), we
couldn't use it. The IP process also
brought up such issues as comments that
suggested use of a possibly non-compliant
library (not the actual use of the library,
mind you).
I suppose it's a good thing that the legal
team at Eclipse is so thorough. In the end
it will help insure widespread acceptance,
but in the short run, it adds a non-trivial
delay to the moment when a piece of code
becomes available for use.

UnZip-Ada
Date: Fri, 11 Jan 2008 06:46:38 +0100
From: Gautier de Montmollin

<gdemont@hotmail.com>
Newsgroups: comp.lang.ada
Subject: Ann: UnZip-Ada v.23
Here is some progress on the UnZip &
Zip libraries...
You find UnZip-Ada there:
http://sourceforge.net/projects/unzip-ada/
and there:
http://homepage.sunrise.ch/mysunrise/
gdm/unzipada.htm
[...]
[See also same topic in AUJ 28-2 (Jun
2007) —su]

Ada-related Products
AdaCore — Plans for 2008
From: Jamie Ayre <ayre@adacore.com>
Subject: [AdaCore] Happy Ada

programming in 2008
Date: Mon, January 7, 2008 9:07 am
To: announce@adacore.com

Ada-related Products 11

Ada User Journal Volume 29, Number 1, March 2008

Happy new year, and best wishes for
successful Ada programming in 2008! I
wanted to take this opportunity to give
you an idea about what we are planning
for the coming year. This is tentative of
course, since we constantly redefine our
development plans in light of customer
wishes and needs.
On the compiler front, the implementation
of Ada 2005 features is essentially
complete, and what is very encouraging is
that we have several users who have been
banging away at these new features
furiously, in some cases with
frighteningly complex programs. This
means that the implementation has
matured very rapidly, and the new 6.1.1
release is already a very solid
implementation of Ada 2005. So you can
venture in this direction with confidence.
We are busy planning a number of
interesting new features for the compiler,
including an implementation of
precondition and postcondition pragmas.
Keep a watch on the websites at the
development center for latest news, and
remember, if you see a feature that sounds
interesting to try out, you can always
request a wavefront that incorporates all
the latest fixes and features.
Many new ports of the GNAT Pro
technology have appeared recently and
more will appear in the near future,
including ports for Microsoft .NET,
Nucleus OS, Ardence RTX, VxWorks
653 version 2.2, VxWorks 6.5, LynxOS 5,
and Windows Vista. We intend to
continue to provide versions of GNAT
Pro for all popular architectures and
operating systems.
We are also pursuing incorporation of the
latest GCC and GDB technology,
including GCC 4.3 and GDB 6.6, to
enable our customers to benefit from the
latest developments in the GCC/FSF
community.
In 2007 we refocused our safety critical
products to better serve our users with the
new High-Integrity Family. The first
member of this family is the “GNAT Pro
High-Integrity Edition for DO-178B” for
embedded safety-critical application
development. In 2008 we will be
enhancing the second member of this
family, the “GNAT Pro High- Integrity
Edition for Servers”. This Edition is
designed to address high-integrity
requirements in server contexts as
opposed to embedded environments, and
will include the high-integrity cross run-
time libraries available on host
configurations to allow easier host-based
testing of embedded applications.
In the tools area, we are moving
energetically into the area of qualified
tools, including GNATstack (static stack
analysis) and GNATcheck (coding/style
conformance checking). We have also
incorporated GPROF (profiling) and

GCOV (coverage analysis) into GNAT
Pro as fully supported elements of the
technology.
In the area of IDE's, AdaCore supports
both the GPS and GNATbench
environments. We are positioned to
support both of these environments on a
permanent long term basis. This dual
support is made practical by the structure
in which the great majority of the Ada
functionality of both these IDE's is
embodied in a common library shared by
both implementations. 2008 will see
multiple releases of both IDE's with many
new features.
Recognizing the continued importance of
mixed language programming, we will be
releasing comprehensive Java interfacing
technology allowing mixing of Ada and
Java, including the use of binding
generators in both directions. In addition,
our new GPRBUILD tool brings the
power of project file-driven builds to
multi-language programs.
Another important new direction is the
first release of the “AdaCore Reusable
Components”. These components will be
extracted from our internal technology
(such as GPS and GNAT Tracker) to let
our customers benefit from high-level
libraries that solve common programming
challenges.
Again, we wish you a productive new
year, and we look forward to working
with you to ensure the success of your
Ada projects.
Robert Dewar
AdaCore President / CEO

AdaCore — GPS 4.2.0
From: AdaCore Press Center
Date: December 10, 2007
Subject: GPS 4.2.0
RSS: http://www.adacore.com/2007/12/10/

gps-420/
AdaCore is pleased to announce the
immediate availability of GPS 4.2.0. New
functions in GPS 4.2 include:
- Graphical support for code coverage
(gcov)
- Improved documentation generation
with faster, improved HTML output using
CSS and Javascript
- Enhanced code completion, including
support for the Object.Method syntax as
provided in Ada 2005.
- Full ability to manage files and
directories from GPS
- Source editor improvements better
tooltips, source navigation and
indentation
- Improved handling of dispatching calls
and primitives, enabling better
understanding (prior to run time) of which
subprograms will be executed
New plug-ins, including:

- Support for code verification through
gnatcheck
- Support for addr2line
- Listing of unused entities (replaces
gnatxref)
- Display of dependency paths across files
- Ability to cut/copy/paste in contextual
menu
- Recomputation of Ada cross references
GPS 4.2.0 is compatible with GNAT Pro
versions 3.16a1 up to 6.1.
[See also “AdaCore — GPS 4.1.3” in
AUJ 28-4 (Dec 2007) —su]

AdaCore — GNATcheck
From: AdaCore Press Center
Date: Wednesday January 30, 2008
Subject: Coding Standard Verification Tool

Eases DO-178B Compliance
RSS: http://www.adacore.com/2008/01/30/

coding-standard-verification-tool-eases-
do-178b-compliance/

TOULOUSE, France and NEW YORK
— January 30, 2008 — Embedded Real-
time Software (ERTS) Conference —
AdaCore, provider of the highest quality
Ada tools and support services, today
announced the availability of
GNATcheck, an integrated coding
standard verification tool within the
GNAT Pro development environment.
GNATcheck meets the growing need for
automated verification in safety-critical
avionics systems, particularly those
systems that need to satisfy the DO-178B
standard. Developed by RTCA and
EUROCAE, DO-178B defines the
guidelines for development of aviation
software in both the US and Europe and is
being increasingly adopted by other
related sectors, such as air traffic control
and military applications.
AdaCore’s GNATcheck is an extensible
rule-based tool with an easy-to-use
interface. It allows developers to
completely define a coding standard
(referred to as a “Software Code
Standard” in DO-178B) as a set of rules,
for example a subset of permitted
language features. It verifies a program’s
conformance with the resulting rules and
thereby facilitates demonstration of a
system’s compliance with DO-178B.
“The combination of the Ada language
(an international standard), GNATcheck,
and additional constraints and reporting
inside GNAT Pro, provides a
comprehensive solution for avionics
developers,” said Robert Dewar, President
and CEO of AdaCore. “Ada has already
been used in many safety-critical systems,
such as the Boeing 787 and C-130 AMP,
Airbus A380 and Eurofighter among
others.”
“With software innovation powering
today’s successful aircraft, automatic
coding standard verification is becoming
more and more important,” commented

12 Ada-related Products

Volume 29, Number 1, March 2008 Ada User Journal

Cyrille Comar, Managing Director,
AdaCore Europe. “The highly structured
nature of the Ada language makes it a
natural choice for avionics development,
and by adding our own enhancements
within GNAT Pro we can offer the most
complete and integrated solution for
coding standard verification compliant
with DO-178B requirements.”
The key features of GNATcheck include:
- An integrated Ada Restrictions
mechanism for banning specific features
from an application. This can be used to
restrict features, such as tasking,
exceptions, dynamic allocation, fixed or
floating point, input/output and
unchecked conversions
- GNAT Pro specific Restrictions, which
complement Ada’s set of restrictions,
such as those banning the generation of
implicit loops or conditionals in the object
code, or the generation of elaboration
code
- Additional rules based on Ada semantics
specification developed following
extensive customer input, including
detailed issues, such as ordering of
parameters, normalized naming of entities
and subprograms with multiple returns
- Easy-to-use interface for creating and
using a complete coding standard
- Generation of project-wide reports,
including evidence of the level of
compliance to a given coding standard
- Over 30 compile time warnings from
GNAT Pro that detect typical error
situations, such as local variables being
used before being initialized, incorrect
assumptions about array lower bounds,
infinite recursion, incorrect data
alignment, and accidental hiding of names
- Style checks that allow developers to
control indentation, casing, comment
style, and nesting level
Work on qualifying GNATcheck as a
verification tool (in a DO-178B context)
is in progress. After this work is
completed, GNATcheck’s status as a
qualified tool will allow the evidence that
it generates to be used as part of a
system’s certification.
Pricing and Availability
GNATcheck is currently available as part
of the GNAT Pro subscription. Please
contact AdaCore (sales@adacore.com)
for the latest information on pricing and
supported configurations.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a modern programming language
designed for large, long-lived applications
where safety, security, and reliability are
critical. AdaCore’s flagship product is the
GNAT Pro development environment,
which comes with expert on-line support
and is available on more platforms than

any other Ada technology. AdaCore has
an extensive worldwide customer base;
See
http://www.adacore.com/home/company/
customers/ for more information.
Ada and GNAT Pro continue to see
growing usage in high-integrity and
safety-certified applications, including
commercial aircraft avionics, military
systems, air traffic management/control,
railroad systems, and medical devices,
and in security-sensitive domains such as
financial services. AdaCore has North
American headquarters in New York and
European headquarters in Paris.
www.adacore.com

AdaCore — GNATbench
2.1.0
From: Jamie Ayre <ayre@adacore.com>
Subject: [AdaCore] Announcing the

availability of GNATbench 2.1.0 for
Eclipse

Date: Fri, February 29, 2008 6:56 am
To: announce@adacore.com
AdaCore is pleased to announce
GNATbench 2.1.0, a major enhancement
to the GNAT Pro Eclipse-based plug-in,
for the following platforms:
 sparc-solaris
 x86-linux
 x86_64-linux
 x86-windows
 p55-elf-windows
 ppc-elf-solaris
 ppc-elf-windows
GNATbench 2.1.0 supports Eclipse 3.3,
with version 4.0 of the C/C++
Development Tools (CDT), on the Linux
(x86 and x86-64), Solaris (SPARC), and
Windows platforms.
GNATbench 2.1.0 introduces the
following features among others:
Project Management and Presentation
- Independent Project Hierarchies
- Cleaning Project Hierarchies
- Fully Restorable Projects
- Problems View Entries for GNAT
Project Files
Language-Sensitive Editor Enhancements
- “Quick Fix” for Ada
- Smart Space Key
- Automatic Construct Closing
- Smart Tab Key
- Smart Enter Key
- Text and Comment Lines Refilled
Against Margin
- Special Coloring for “Annotation
Comments”
- The “Show In” Contextual Menu Entry
Supported
- Improved Comment Block Selection
- Standard Parenthesis Highlighting
- Integration of Code Formatting Features

- Recent Chosen Completions Displayed
at the Top
Additional Wizards
- A “New Ada Source Folder” Wizard
- A “New Ada Source File” Wizard
- Additonal “New Ada Project Wizard”
Builder Enhancements
- Altered Ada Files Saved Automatically
- Console View Visible Automatically
- Persistent Scenario Variable Settings
- Builder Command Key Bindings
- Compiling Individual Files via the Ada
Project Explorer
- Toolchain Selection
- Linker Messages In the Problems View
Source Code Navigation Enhancements
- Enhanced Open Declaration / Open
Body Actions
- Next / Previous Subprogram and Entry
Navigation
Miscellaneous Improvements
- Ada Project Explorer Support for
Double-Click Actions
- New “Ada” Category for GNAT Import
Wizard
- Additional Icon Decorations in Ada
Project Explorer
GNATbench 2.1.0 can be downloaded as
usual using GNAT Tracker. As always,
for questions, or to inform us of issues
that you encounter, please let us know
through the GNAT Tracker report facility
or by email to the usual
report@adacore.com address.
[See also “AdaCore — GNATbench
Eclipse Plug-in” in AUJ 28-2 (Jun 2007)
—su]

AdaCore — GNAT Pro 6.1.1
From: AdaCore Press Center
Date: Wednesday March 5, 2008
Subject: Latest GNAT Pro Release Adds

New Platforms, New Tools
RSS: http://www.adacore.com/2008/03/05/

gnatpro-611-release/
Powerful Ada Development Environment
Enhanced for High-Integrity Systems
NEW YORK and AMSTERDAM,
Netherlands, March 5, 2008 — Avionics
2008 — AdaCore, provider of the highest
quality Ada tools and support, today
announced the company’s twelfth annual
release of its signature GNAT Pro Ada
development environment. GNAT Pro
6.1.1 offers more than 150 new features
and is available on the largest set of
supported platforms in the industry — 44
configurations (including 28 cross
compilers) on 79 different operating
system versions, including multiple
versions of Windows, Linux and Solaris.
“Our annual release cycle is a major part
of our commitment to make Ada the
development language of choice for long-
lived, critical systems,” said Cyrille
Comar, Managing Director, AdaCore

Ada-related Products 13

Ada User Journal Volume 29, Number 1, March 2008

Europe. “Our expert team of engineers is
constantly working on enhancements and
new tools for GNAT Pro that will help
customers for years to come. We are
particularly focused on high-integrity
systems, where many of Ada’s advantages
stand out.”
“Ever since our company was founded,
our customers have come to expect the
level of quality and front-line support that
our solutions provide,” said Robert
Dewar, President and CEO of AdaCore.
“We pride ourselves on being able to
offer regular enhancements, many of
which originate as customer requests.
After a rigorous quality assurance
process, we have integrated many of these
features as part of this latest version of the
GNAT Pro tool suite.”
GNAT Pro 6.1.1’s new features include:
- High-Integrity versions for VxWorks 6,
including the Ravenscar profile
- Thread-safe profiling with gprof, a tool
currently available for GNAT Pro on
several platforms
- Increased Ada support in gcov, a
coverage analysis tool
- Enhanced tools such as gnatcheck,
gnatpp, and gnatmetric, to support a wider
variety of coding styles and coding
standards
- New warnings to help programmers
detect errors earlier
- An upgraded debugging engine
- Improved robustness and efficiency for
Ada 2005 features
- Better real-time support on win32
platforms
- Fully-integrated Windows .NET
framework support
About GNAT Pro
The GNAT Pro development
environment, available on more platforms
than any other Ada toolset, combines
industry-leading technology with an
expert support infrastructure and provides
a natural solution for organizations that
need to create reliable, efficient, and
maintainable code. GNAT Pro is the first-
to-market implementation of the Ada
2005 standard, allowing users to take
advantage of the many enhancements in
areas such as object-oriented
programming, real-time support, and
predefined libraries.
At the heart of GNAT Pro is a full-
featured, multi-language development
environment complete with libraries,
bindings and a range of supplementary
tools. All GNAT Pro technology offers
the flexibility and freedom associated
with open source development, together
with the assurance that comes from
knowing that all tools go through a
rigorous quality assurance process.
GNAT Pro is based on the widely used
GCC technology and is backed by rapid
and expert support service.
Pricing

Pricing for GNAT Pro subscriptions starts
at $14,000. Please contact AdaCore
(sales@adacore.com) for the latest
information on pricing and supported
configurations.
[See also “AdaCore — GNAT Pro 6.0.1”
in AUJ 28-1 (Mar 2007) —su]

Adalog — AdaControl
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 05 Feb 2008 18:44:40 +0100
Subject: AdaControl 1.8r7 released
Organization: Adalog
Newsgroups: comp.lang.ada
Adalog is pleased to announce the release
of a new version of AdaControl. This
version features improvements to GPS
integration and, of course, plenty of new
rules. There are now 317 possible checks,
at the latest count!
The user guide has also been improved, as
well as examples of rules files (including
equivalences to Gnatcheck).
And of course, everything is still
GMGPL, with commercial support
available from Adalog.
Download from
http://www.adalog.fr/adacontrol2.htm
[See also same topic in AUJ 28-3 (Sep
2007) —su]
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Fri, 08 Feb 2008 13:47:53 +0100
Subject: Small glitch with AdaControl fixed
Organization: Adalog
Newsgroups: comp.lang.ada
The new GPS interface requires GPS 4.2,
which made it non-functional with the
version of GPS distributed with
Gnat/GPL2007.
I made a new release available (tagged
1.8r8) that provides the old interface for
those who have not upgraded their GPS.
There is no change in AdaControl itself.

Aonix — ObjectAda 8.3 for
Solaris
From: Aonix Press releases
Subject: Aonix’s ObjectAda Brings Eclipse

to Sun Solaris Platforms
Date: January 28, 2008
URL: http://www.aonix.com/

pr_01.28.08.html
Eclipse enables best-selling Ada
technology to better serve large project
groups
San Diego, CA, January 28, 2008
Aonix®, a provider of solutions for
safety- and mission-critical applications,
announced the release of ObjectAda for
Solaris products. ObjectAda V8.3 for
Sun’s popular Solaris platforms running
on SPARC and Intel processors provides

a complete enterprise-level environment
for the development of native Unix
applications using the Ada programming
language. These latest releases integrate
AonixADT (Ada Development Toolkit),
an Eclipse-based development
environment, into ObjectAda, providing
developers with access to the broad range
of tools available through the Eclipse
framework.
Aonix offered the first commercial
Eclipse plug-in for ObjectAda in 2004. To
further this initiative, Aonix has
contributed the AonixADT source code as
the baseline code for Hibachi, a new
open-source Ada development tooling
project that parallels and complements
CDT, the C/C++ development tooling
project. Both of these projects will
provide a multilanguage native embedded
software project for developers.
In addition to providing access to the
broad spectrum of Eclipse-based tools,
ObjectAda for Solaris supports a new
dynamic debugging facility. Developers
now have run-time debug capabilities and
can attach the debug facility in the toolkit
to an already running process in the
application. Dynamic debug extends the
already powerful debug capability
provided in all Aonix native and cross-
development products.
“As a long-standing leader in
development tools for Unix environments,
we are pleased to provide technology that
advances methodologies and improves
usability of development tools for our
customers,” noted Gary Cato, director of
strategic alliances at Aonix. “Mission-
critical systems are hard enough to
develop without spending time and
energy dealing with non-standard tools.
ObjectAda with Eclipse toolset support
provides significant additional
development tools while minimizing
toolset integration and learning-curve
overhead”
ObjectAda® for Solaris comes with both
a graphical and command-line interface,
integrated language-sensitive editor,
lightweight source-based library model,
and industry-leading compilation speed.
The ObjectAda for Solaris compilation
system is composed of the editor, source-
code browser, compiler, debugger, and
full library manager.
Optional package upgrades can be added
to the basic compiler development
package such as the ObjectAda Project
Pack that contains the AdaNav™ toolset.
AdaNav provides complete system
HTML source-navigation capabilities as
well as call- and unit-tree graphical
reporting and automatic data dictionary
generation. The AdaNav profiler also
offers run-time performance reporting to
identify application hot spots.
A second package, ObjectAda Test Pack
can also be added atop ObjectAda Project

14 Ada-related Products

Volume 29, Number 1, March 2008 Ada User Journal

Pack on the SPARC/Solaris platform that
provides VectorCast/Ada a world-class
testing tool that significantly reduces the
time, effort, and cost associated with
testing Ada software components
necessary for validating safety- and
mission-critical systems.
Shipping and Availability
ObjectAda for SPARC/Solaris and
ObjectAda for Intel/Solaris are
immediately available. Prices start at
$8,000 for a single seat license. Quantity
discounts are available.
About Aonix
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading high-reliability, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,
CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors. For
more information, visit www.aonix.com.
[See also “Aonix — ObjectAda RAVEN
for VxWorks 653” in AUJ 28-4 (Dec
2007) —su]

DDC-I — OpenArbor for
LynxOS-178
From: DDC-I Press releases
Subject: DDC-I Announces Mixed Language

Development Support for LynuxWorks’
FAA Certified LynxOS-178 RTOS

Date:January 7, 2007
URL: http://www.ddci.com/

display_news_item-filename-
news_Mixed_Language_Development_S
upport_release.htm

OpenArbor™ developers can now deploy
safety-critical applications combining C,
C++, and Ada on DO-178B-compliant
systems running FAA-certified LynxOS-
178
Phoenix, AZ. January 7, 2007. DDC-I, a
leading supplier of development tools and
engineering services for safety-critical
applications, today announced that its
Eclipse-based OpenArbor mixed-
language development environment now
supports LynuxWorks’ FAA Certified
LynxOS-178 real-time operating system.
OpenArbor developers working with any
combination of Ada, C, and Embedded
C++ (EC++) can now deploy their safety-
critical applications on LynxOS-178
target systems certifiable to DO-178B
Level A, the FAA’s highest level of safety
criticality.
“Safety-critical software development and
deployment are our bread and butter,”
said Bob Morris, president and CEO of

DDC-I. “LynxOS-178 provides an
excellent platform for deploying safety-
critical C, Embedded C++, and Ada,
developed using OpenArbor, particularly
for systems requiring FAA certification.”
“Open Arbor’s open Eclipse framework
and mixed language capability make it a
great complement to our Luminosity
development suite, and now offers the
strongest set of integrated tools for
developing safety-critical applications on
target systems running LynxOS-178,”
said Joe Wlad, director of marketing at
LynuxWorks. “OpenArbor developers can
now deploy their mixed-language
applications on an ironclad, memory-
partitioned RTOS with a fast track to
FAA certification.”
LynxOS-178 is a real-time operating
system designed to fulfill the stringent
needs of multithreaded and multiprocess
applications in safety-critical real-time
systems. LynxOS-178 enhances safety
and security by using Virtual Machine
(VM) brick-wall partitions that prevent
system events in one RTOS partition from
interfering with events in another.
Effectively, each partition behaves as if it
were running on its own separate
computer.
LynxOS-178 is the first and only
commercial hard real-time operating
system certified to DO-178B level A that
combines the interoperability benefits of
POSIX with support for the ARINC 653
APplication EXecutive (APEX).
Available for both Pentium and PowerPC
platforms, LynxOS-178 is also the first
and only time- and space-partitioned,
FAA-accepted Reusable Software
Component (RSC). To speed the FAA
certification process, LynxOS-178
provides complete DO-178B
documentation, including an artifacts
package. The Luminosity development
environment for LynxOS-178 is also
Eclipse-based, and by using a pristine
Eclipse framework it can easily integrate
with the OpenArbor environment from
DDC-I via the standard Eclipse plug-in
mechanism.
OpenArbor is a mixed-language, object-
oriented IDE for developing and
deploying real-time, safety-critical
applications. The core environment
combines optimizing compilers and
libraries for C and Embedded C++ with
the SCORE® mixed-language debugger.
The SCORE debugger features an
intuitive multi-window GUI, project
management support, and automated
build/make utilities. SCORE’s symbolic
debugger recognizes C/EC++, Ada and
Fortran syntax and expressions, and can
view objects, expressions, call chains,
execution traces, interspersed machine
code, machine registers, and program
stacks.

OpenArbor provides separate Eclipse
plug-ins for Ada development. The Ada
compiler plug-in, known as SCORE-Ada,
features an optimizing Ada compiler and
supports full Ada-level debugging,
including constraints, attributes, tasking,
exceptions, break-on-exception and
break-on-tasking events. The Ada
debugger plug-in supports true mixed
language debugging in a single session,
making it easy to debug applications
written in multiple languages. The
debugger is non intrusive, can debug at
the source or machine level, and can be
enabled without changing the generated
code.
OpenArbor is available immediately for
LynxOS-178. Pricing for the core
configuration starts at $5,000.
About DDC-I, Inc.
DDC-I, Inc. is a global supplier of
software development tools, custom
software development services, and
legacy software system modernization
solutions, with a primary focus on safety-
critical applications. DDC-I's customer
base is an impressive “who's who” in the
commercial, military, aerospace, and
safety-critical industries. DDC-I offers
compilers, integrated development
environments and run-time systems for
real-time Java, C, Embedded C++, Ada,
and JOVIAL application development.
For more information regarding DDC-I
products, contact DDC-I at 1825 E.
Northern Ave., Suite -125, Phoenix,
Arizona 85020; phone (602) 275-7172;
fax (602) 252-6054; e-mail
sales@ddci.com
[See also “DDC-I — OpenArbor Eclipse
Development Suite” in AUJ 28-4 (Dec
2007) —su]

Rapita Systems — RapiTime
1.3
From: Rapita Systems News
Subject: RapiTime Version 1.3
Date: 8 October, 2007
RSS: http://www.rapitasystems.com/

node/150
Rapita is pleased to announce the latest
release of RapiTime, version 1.3. This
release provides many new features
including:
- Enhanced support for function pointers.
RapiTime can now perform an automatic
discovery of the targets of function
pointers.
- Generic text trace filters. Allows the
processing of a wide range of text based
trace formats (Debugger, Logic
Analyzers, etc.).
- All new RapiTime report browser based
on Eclipse technology.
From: Rapita Systems News
Subject: RapiTime Code Analysis Tool Gets

Eclipsed

Ada-related Products 15

Ada User Journal Volume 29, Number 1, March 2008

Date: 17 October, 2007
RSS: http://www.rapitasystems.com/

node/151
RapiTime 1.3 version to be demonstrated
at UK Embedded System Show
Rapita Systems have announced that their
acclaimed software analysis tool
RapiTime has undergone a number of
significant updates, a key feature being
that RapiTime is now integrated with the
industry standard Eclipse IDE. Rapita's
state-of-the-art RapiTime worst-case
execution time analysis solution has
enjoyed a great deal of success and
recognition since its inception and the
additional features are expected to
broaden its appeal amongst embedded
software developers.
The new RapiTime 1.3 version includes
full Eclipse based RapiTime report
visualisation, fast display of very large
reports, integration with standard C
Eclipse based source code editor and
source code worst-case path colourisation,
along with a number of other new
features. Rapita's ambition for RapiTime
version 1.3 was to enhance usability and
also to make RapiTime more easily
integrated into existing development
environments.
“The RapiTime Eclipse report plug-in
makes integration of RapiTime with other
tools very easy,” said Dr. Guillem Bernat,
CEO of Rapita Systems Ltd. “It also
provides greater flexibility in presenting
and manipulating timing data. We are
confident the new RapiTime will be
appreciated by engineers working to
develop responsive and reliable code.”
Other features that contribute to the new
RapiTime are customisable report tables,
improved support for RTOS integration,
support for logic analyser based tracing
and improved display and handling of
execution time profiles. In the UK,
RapiTime is sold through European
embedded systems tools specialist, SDC
Systems, who will be exhibiting the
Rapita toolset at the Embedded Systems
Show.
“The RapiTime product has been exciting
for us,” said Stuart Parker. “It's proven to
be best in its class and the new features
will certainly put it further ahead in its
field. RapiTime is saving some of our
customers a lot of development time and
energy, and helping to create far more
robust embedded software. It's proving to
be a product that can really make a
difference.”
SDC can be found on stand 520 and will
also be exhibiting a range of embedded
development products that include
embedded Linux from MontaVista,
embedded BIOS solutions from General
Software and embedded GUI tools from
Tilcon.
About SDC Systems

SDC Systems Limited is a leading
European distributor of embedded
development software, tools and
hardware. Focused on innovative and
leading edge technology, SDC strives to
provide “technology that makes a
difference”, technology that will
positively impact the development
process and the quality and functionality
of the final product. With many years of
experience and talented engineering
support, SDC Systems work closely with
their clients to provide an important
source of embedded expertise and
products. www.sdcsystems.com
About Rapita Systems Ltd
Rapita Systems Ltd. is a specialist in the
worst-case execution time (WCET)
analysis and simulation of real-time
embedded systems for the avionics,
automotive and telecommunications
markets. Its innovative RapiTime product
makes Rapita Systems the leader in
measurement based on-target WCET
analysis solutions.
www.rapitasystems.com

Vector Software —
VectorCAST for NEC V850
From: Vector Software Press Releases
Subject: Vector Software Provides

Automated Software Test Solution for
NEC’s V850 Development Environment

Date: December 3, 2007
URL: http://www.vectors.com/pdf/

vc_pr_nec_v850.pdf
North Kingstown, RI — December 3,
2007 — Vector Software, Inc., a world
leader in the embedded software test tool
market, today announced the integration
of their VectorCAST test tool with the
NEC V850 compiler environment. The
joint offering will provide developers
using the NEC V850 environment with an
automated unit and integration test
capability allowing faster time to market
with lower cost and better reliability.
Vector Software’s VectorCAST™ is a
world-class integrated software test
solution that automates the tasks
associated with testing software
components for C/C++, Embedded C++,
and Ada83/Ada95 programs. Automation
includes: complete test harness
construction (stubs and drivers), test
generation, test execution, code coverage
analysis, regression testing and static
measures for code complexity, basis path
analysis, and coding standards
enforcement. VectorCAST enables
companies to significantly reduce the
time, effort and cost to validate safety,
mission, and business-critical systems.
“At Vector Software, we are committed to
delivering the industry-leading
verification tools that developers of
embedded software applications need,”
said Bill McCaffrey, director of marketing

at Vector Software. “This integration of
VectorCAST™ with the NEC V850
compiler environment provides several of
our largest customers with the ability to
automate unit, integration testing, and
code coverage on the NEC v850 chip.”
About NEC Electronics
NEC Electronics Corporation (TSE:
6723) specializes in semiconductor
products encompassing advanced
technology solutions for the high-end
computing and broadband networking
markets, system solutions for the mobile
handset, PC peripherals, automotive and
digital consumer markets, and platform
solutions for a wide range of customer
applications. NEC Electronics
Corporation has 25 subsidiaries
worldwide including NEC Electronics
America, Inc. (www.am.necel.com) and
NEC Electronics (Europe) GmbH
(www.eu.necel.com). For additional
information about NEC Electronics
worldwide, visit www. necel.com.
About Vector Software
Vector Software, Inc, is a leading
independent provider of automated
software testing tools. Vector Software’s
VectorCAST line of products reduces the
burden placed on individual developers
by automating and standardizing
application-component testing. The
VectorCAST tools support the C, C++,
Ada83, and Ada95 programming
languages.
The market focus of Vector Software is
on companies developing embedded
systems for aerospace, military, medical,
telecom, and process-control applications.
Vector Software’s Product Family
 VectorCAST/C++
 VectorCAST/Ada
 VectorCAST/RSP
 VectorCAST/Cover
 Modified Condition / Decision
Coverage (MC/DC) module
 DO-178B Qualification Packages
[See also “Vector Software —
VectorCAST 4.0” in AUJ 27-2 (Jun
2006), and “Vector Software —
VectorCAST for ARM” in this issue —
su]

Vector Software —
VectorCAST for ARM
From: Vector Software Press Releases
Date: January 31, 2008
Subject: Vector Software Adds Automated

Test Capability to the ARM Compiler
Environment

URL: http://www.vectors.com/pdf/
vc_pr_arm1.pdf

North Kingstown, RI — January 31, 2008
— Vector Software, Inc., a world leader

16 Ada and GNU/Linux

Volume 29, Number 1, March 2008 Ada User Journal

in the embedded software test tool
market, today announced the integration
of their VectorCAST™ test tool with the
ARM compiler environment. The joint
offering will provide developers using the
ARM environment with an automated
unit, integration, and system test
capability allowing faster time to market
with lower cost and better reliability.
Vector Software’s VectorCAST™ is a
world-class integrated software test
solution that automates the tasks
associated with testing software
components for C/C++, Embedded C++,
and Ada 83/Ada 95 programs.
Automation includes: complete test
harness construction (stubs and drivers),
test generation, test execution, code
coverage analysis, regression testing and
static measures for code complexity, basis
path analysis, and coding standards
enforcement. VectorCAST™ enables
companies to significantly reduce the
time, effort and cost to validate safety,
mission, and business-critical systems.
“The integration of our VectorCAST™
product with the ARM tool chain was the
result of a request from a major
semiconductor company,” said Bill
McCaffrey, Director of Marketing at
Vector Software. “This integration of
VectorCAST™ with the ARM compiler
environment for ARM7 and ARM9
further illustrates the importance that
Vector places on delivering our state of
the art testing solutions to the most
popular development environments.”
About ARM
ARM designs the technology that lies at
the heart of advanced digital products,
from wireless, networking and consumer
entertainment solutions to imaging,
automotive, security and storage devices.
ARM's comprehensive product offering
includes 16/32-bit RISC microprocessors,
data engines, 3D processors, digital
libraries, embedded memories,
peripherals, software and development
tools, as well as analog functions and
high-speed connectivity products.
[See also “Vector Software —
VectorCAST 4.0” in AUJ 27-2 (Jun
2006), and “Vector Software —
VectorCAST for NEC V850” in this issue
—su]

Ada and GNU/Linux
Debian — Transition to
GCC 4.3
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Newsgroups: comp.lang.ada
Subject: Ada in Debian: transition to GCC

4.3 for Lenny
Date: Tue, 5 Feb 2008 02:03:49 −0800

(PST)

My last status report was back in June
2007 so I think I should keep everyone
posted.
gnat-4.2 has been in unstable since 2007-
07-09. With help from Xavier Grave of
Toy Lovelace fame, we now provide both
the zero-cost and setjump/longjump
exception handling mechanisms (i.e. two
different versions of libgnat). ZCX is still
the default and comes in both shared and
static flavours. SJLJ is static only and is
necessary for proper operation of the
Distributed Systems annex. In addition to
that, we are trying to add mips and mipsel
to the list of supported architectures.
Xavier took over maintenance of the gnat-
glade package and has had gnat-glade
2006 working with GCC 4.2 (SJLJ)
experimentally since around November.
However we decided not to upload it to
unstable because...
... we decided to skip the transition to
gnat-4.2 altogether, and go straight for
gnat-4.3. As I reported earlier, upstream
(and in particular Samuel Tardieu who
deserves special thanks) has been very
good at fixing bugs old and new. As a
consequence, I feel that gnat-4.3 will be
more stable and correct than gnat-4.2
(which is already pretty good). In
addition, it seems suitable for building the
latest versions of AWS and ASIS (but I'll
report separately on that when the time
comes).
Xavier and I ported all our patches from
gnat-4.2 to gnat-4.3. I uploaded a
prerelease of gnat-4.3 last week; it is now
waiting for approval in the queue of new
packages. Xavier is already working on
porting gnat-glade to this prerelease.
The next steps are to stabilise gnat-4.3 to
the point where we can make it the default
Ada compiler and then start upgrading the
other packages, starting, as usual, with
asis and gnat-glade.
That's a lot of work and, as always, help is
more than welcome.
[See also “Debian transition to GCC 4.2”
in AUJ 28-4 (Dec 2007) —su]

Debian packaging
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 26 Feb 2008 05:51:02 −0800

(PST)
Subject: Re: Attn: Ludovic, on Debian Ada
Newsgroups: comp.lang.ada
> I have thought for some time that I

would like to add my binding player-
ada to Debian, and I think this will take
some degree of implication on my part.
It would be great if you could send me
some pointers on what would be needed
and how to get started. [...]

Great idea. As I have said many times, I
will help anyone interested in packaging
Ada things in Debian and even sponsor

your packages. We'll take the details off-
line, of course, but here are pointers to get
you started.
As a prerequisite, you need a GPG or
PGP key[1] signed by at least one Debian
developer[2]. I suggest this as your first
step, as setting up a physical meeting with
a DD might take some time. In the mean
time, of course, don't let that stop you
from starting your packaging.
[1] GPG mini-HOWTO:
http://www.dewinter.com/gnupg_howto/e
nglish/GPGMiniHowto.html
[2] Debian Key Signing Coordination
page: https://nm.debian.org/gpg.php
Then dive into the technicalities:
[3] Debian New Maintainer's Guide:
http://www.debian.org/doc/maint-guide/
[4] Work-Needing and Prospective
Packages:
http://www.debian.org/devel/wnpp/
[5] Debian Policy for Ada:
http://www.ada-france.org/debian/debian-
ada-policy.html
[6] Packaging scripts for all of my
packages: http://www.ada-
france.org/article131.html
OpenToken and TextTools are very
simple packages you may want to look at
for inspiration.
[See also “Official Debian Developers” in
AUJ 27-3 (Sep 2006), p.43. —su]

Gentoo — Multiple
compilers
From: George Shapovalov

<george@gentoo.org>
Newsgroups: comp.lang.ada
Subject: Small changes in Ada handling in

Gentoo
Date: Thu, 24 Jan 2008 07:39:30 −0800

(PST)
I have finally implemented the multiple
gnat handling in full, resolving bug -
151343. The operational procedures on
user side remain largely the same,
however there is one modification
everybody using Ada compilers in Gentoo
should be aware of.
Now (as was discussed in -151343)
gnatbuild.eclass, gnat.eclass and eselect-
gnat support the notion of “primary”
compilers. The idea here is that most
users will want one or, possibly, two
variants of Ada compilers used for
everyday work at most, while,
occasionally, wishing to test some other
variant(s).
These “everyday” compilers (designated
“primary” further on) have to be listed in
/etc/ada/primary-compilers. The file
simply contains a listing of gnat profiles
user desires to designate primary, one per
line. Mine, for example, contains:

References to Publ icat ions 17

Ada User Journal Volume 29, Number 1, March 2008

$ cat /etc/ada/primary_compilers
x86_64-pc-linux-gnu-gnat-gcc-4.2
x86_64-pc-linux-gnu-gnat-gpl-4.1
All Ada libs will be built only for these
compilers and not for any other installed.
However “eselect gnat set” will allow
user to set any installed gnat, as before.
Thus we avoid ABI issues when updating
packages that have some Ada lib as a
dependency (there are already a few) via
enforcing a consistent set of ABIs, cut
compilation time (libs are now not getting
built for an “occasional” compiler) while
still providing an ability to use any gnat in
portage.
As a safeguard gnatbuild.eclass has also
been modified to populate
/etc/ada/primary-compilers, if this file
does not exist yet, with the corresponding
profile upon emerging gnat for the first
time. Please, however, take your destiny
in your own hands and update that file
accordingly to your desires.
[See also “GNAT Split in Gentoo” in
AUJ 27-4 (Dec 2006) —su]

References to
Publications
“Computer Science
Education: Where Are the
Software Engineers of
Tomorrow?“ — CrossTalk
From: AdaCore Developer Center
Date: Monday January 7, 2008
Subject: Interesting article on the state of

CS education
RSS: http://www.adacore.com/2008/01/07/

interesting-article-on-the-state-of-cs-
education/

Robert Dewar and Ed Schonberg recently
published an article in CrossTalk
discussing:
“Computer Science Education: Where
Are the Software Engineers of
Tomorrow?“
Abstract:
“It is our view that Computer Science
(CS) education is neglecting basic skills,
in particular in the areas of programming
and formal methods. We consider that the
general adoption of Java as a first
programming language is in part
responsible for this decline. We examine
briefly the set of programming skills that
should be part of every software
professional’s repertoire.”
From: Slashdot
Subject: Professors Slam Java As

“Damaging” To Students
Date: Tue Jan 08, 2008 03:18 AM
RSS: http://slashdot.org/article.pl?

sid=08/01/08/0348239
jfmiller call to our attention two
professors emeritus of computer science

at New York University who have penned
an article titled “Computer Science
Education: Where Are the Software
Engineers of Tomorrow?” [1] in which
they berate their university, and others,
for not teaching solid languages like C,
C++, Lisp, and Ada. The submitter
wonders whether any CS students or
professors would care to respond. Quoting
the article:
“The resulting set of skills [from today's
educational practices] is insufficient for
today's software industry (in particular for
safety and security purposes) and,
unfortunately, matches well what the
outsourcing industry can offer. We are
training easily replaceable professionals...
Java programming courses did not
prepare our students for the first course in
systems, much less for more advanced
ones. Students found it hard to write
programs that did not have a graphic
interface, had no feeling for the
relationship between the source program
and what the hardware would actually do,
and (most damaging) did not understand
the semantics of pointers at all, which
made the use of C in systems
programming very challenging.”
[1] http://www.stsc.hill.af.mil/CrossTalk/
2008/01/0801DewarSchonberg.html
From: Slashdot
Subject: Followup On Java As “Damaging”

To Students
Date: Mon Jan 21, 2008 09:52 PM
RSS: http://slashdot.org/article.pl?

sid=08/01/22/0217200
A prior article on the damage Java does to
CS education was discussed here recently.
There was substantial feedback and the
mailbox of one of the authors, Prof
Dewar, also has been filled with mainly
positive responses. In this followup to the
article, Prof. Dewar clarifies his position
on Java [1]. In his view the core of the
problem is universities 'dumbing down
programs, hoping to make them more
accessible and popular. Aspects of
curriculum that are too demanding, or
perceived as tedious, are downplayed in
favor of simplified material that attracts a
larger enrollment.'
[1] http://itmanagement.earthweb.com/
career/article.php/3722876
From: ahab <ahabeger@gmail.com>
Newsgroups: comp.lang.ada
Subject: Re: Ada supportive artice discussed

on /.
Date: Tue, 8 Jan 2008 10:54:09 −0800

(PST)
Same article made it onto
http://programming.reddit.com/ , a few
comments here
http://programming.reddit.com/info/
64utw/comments/
Reddit is very Python / Ruby / Scala
centric.

Joachim Schueth Interviews
From: Frederik Sausmikat

<frederik.sausmikat@gmx.de>
Date: Thu, 24 Jan 2008 21:52:50 +0100
Subject: [FYI] Joachim Schueth Interviews
Newsgroups: comp.lang.ada
As most of you already know, in
November 2007 Joachim Schueth has
beaten a reconstruction of the Colossus
code breaking machine using the Ada
programming language and a laptop
running NetBSD.
Two interviews with Jo have been
published, which might be of interest to
you:
AdaCore:
<http://www2.adacore.com/home/
ada_answers/lorenz-code>
NetBSD: <http://www.netbsd.org/gallery/
schueth-interview.html>
[See also “Ada helps win Cryptography
Challenge” in AUJ 28-4 (Dec 2007) —su]

“There’s nothing new about
multicore mania” — EE
Times
From: AdaCore Press Center
Date: Wednesday February 27, 2008
Subject: There's nothing new about

multicore mania
RSS: http://www.adacore.com/2008/02/27/

theres-nothing-new-about-multicore-
mania/

The recent introduction of multicore
architectures has caused a surprising
amount of uproar. Multiprocessing has
been around for decades. But it took the
introduction of multicore chips by Intel
and other manufacturers to bring
multiprocessing to the attention of the
public. And people are shocked to find
out that many mainstream languages,
including C and C++, are entirely ill-
equipped for the task.

“Use Ada For Better Safety,
Security, And Reliability” —
Electronic Design
From: Ada Resource Association
Date: February 15, 2008
Subject: Electronic Design article
URL: http://adaic.com/whatsnew.html
Electronic Design publishes Use Ada For
Better Safety, Security, And Reliability.

“Letters to the Editor: Ada’s
Tried and Tested” — SD
Times
From: SD Times
Date: October 1, 2007
Subject: Letters to the Editor: Ada’s Tried

and Tested

18 Ada Inside

Volume 29, Number 1, March 2008 Ada User Journal

URL: http://www.sdtimes.com/content/
article.aspx?ArticleID=31209

The article “When Failure Isn’t an
Option,” [Aug. 15, page 26] requires
some clarification. It states that AdaCore
is a member of the JSR 302 (“Safety
Critical Java Technology”) Expert Group.
This is not accurate. A member of
AdaCore’s technical staff, Ben Brosgol, is
an individual member of that expert
group, but he is not there representing
AdaCore.
One reason that AdaCore is not a
corporate member of the JSR 302 group is
that we have seen no interest in safety-
critical Java from our customers. We
produce development environments for
safety-critical Ada systems, and our
customers are much more interested in
using tried and tested technology for a
language—Ada—that was designed
precisely for these sorts of applications,
than to take the risk of moving to a
language that intrinsically introduces
major complications into the certification
process.
We understand that some organizations
make technology decisions based on
what’s popular vs. what’s technically
more fit to purpose, and that was the
essence of my quote: “Language choice
has always been significantly a matter of
personal taste and enthusiasm, and there
are lots of Java enthusiasts around.”
Unfortunately the quote was positioned so
as to make it look like I agreed with that
rationale.
As I explained in some other material that
I furnished to the author, the real issue for
managers of safety-critical projects is not
which specific language the staff is
familiar with—a competent programmer
in any modern programming language
should be able to learn a new language in
short order. Rather, the more significant
(and much harder to find) talent is the
ability to develop large, safe systems, and
that skill is rarely taught in universities.
Java brings no advantages here.
Safety-critical Java is attracting a lot of
“buzz” these days, in part because the
technical issues that it raises tend to draw
researchers who like to solve hard
problems. But it is still very much a work
in progress, as the article notes, and
frankly a much riskier choice than Ada
for a community that rightfully prides
itself on conservatism. From our vantage
point, Java seems a language of chance,
not a language of choice, for safety-
critical applications.

Robert Dewar
President and CEO
AdaCore

AdaCore — “Providing
Effective Support for
Software”
From: AdaCore Developer Center
Date: Wednesday January 16, 2008
Subject: Providing Effective Support for

Software
RSS: http://www.adacore.com/2008/01/16/

providing-effective-support-for-software/
In this paper, Emmanuel Briot ands
Robert Dewar discuss and describe an
infrastructure for providing effective
support for complex software tools. The
purchase of software usually includes
provisions for ongoing support, and
indeed there are some fundamental
reasons why software is a different kettle
of fish when it comes to providing this
support.
[http://www.adacore.com/wp-
content/uploads/2008/01/
effective_software_support.pdf —su]

AdaCore at Ada-Europe
2008
From: AdaCore Developer Center
Date: Monday February 4, 2008
Subject: Ada Europe 2008, 13th

International Conference on Reliable
Software Technologies

RSS: http://www.adacore.com/2008/02/04/
ada-europe-2008-13th-international-
conference-on-reliable-software-
technologies/

AdaCore will present a number of papers,
a tutorial, and will chair a discussion
panel. AdaCore will also be exhibiting at
this event.
Papers:
“A Comparison of the Object-Oriented
Features of Ada 2005 and Java” — Ben
Brosgol
“A Type Safe Database Interface” —
Emmanuel Briot and Florian Villoing
“Exceptionally Safe” — Arnaud Charlet,
Cyrille Comar, and Franco Gasperoni
Tutorials:
“Languages for Safety-Critical Software:
Issues and Assessment” — Ben Brosgol
Panels:
“A Rational Approach to Software
Engineering Education or: Java
considered Harmful” — Ed Schonberg

AdaCore — EclipseCon
2008
From: AdaCore Press Center
Date: Wednesday December 19, 2007
Subject: EclipseCon 2008
RSS: http://www.adacore.com/2007/12/19/

eclipsecon-2008/

Quentin Ochem will be giving a talk on
“Bringing Ada to the Eclipse plug-in
developers”.

Wind River EMEA
Aerospace and Defence
Seminars
From: AdaCore Press Center
Date: Wednesday January 9, 2008
Subject: Wind River Regional Developer

Conference Aerospace & Defense
Edition

RSS: http://www.adacore.com/2008/01/09/
wind-river-regional-developer-
conference-aerospace-defense-edition-2/

AdaCore will be exhibiting at all of the
RDC events. Dates and location are listed
below:
March 12, 2008
Hilton Santa Clara
4949 Great America Parkway
Santa Clara, CA 95054
Tel.: 408-330-0001
March 27, 2008
Turf Valley Resort
2700 Turf Valley Road
Ellicott City, MD 21042
Tel.: 410-423-0833
April 2, 2008
Four Seasons Resort & Club Dallas at Las
Colinas
4150 North MacArthur Boulevard
Irving, TX 75038
Tel.: 972-717-0700
[Click here to register
http://www.rtcgroup.com/windriveraandd
event/ —su]
[See also same topic in AUJ 28-4 (Dec
2007) —su]

Ada Inside
Saab — Real-Time Data
Distribution Service (DDS)
From: AdaCore Press Center
Date: Saturday December 8, 2007
Subject: Working With Saab, AdaCore and

RTI Integrate Support for Ada with DDS-
Compliant Real-Time Messaging
Middleware

RSS: http://www.adacore.com/2007/12/08/
working-with-saab-adacore-and-rti-
integrates-support-for-ada-with-dds-
compliant-real-time-messaging-
middleware/

Industry’s first Ada bindings for
AdaCore’s GNAT Pro Compiler for
development of high-performance
distributed real-time applications.
SANTA CLARA, CA and NEW YORK,
NY., November 12, 2007 — Real-Time
Innovations (RTI), The Real-Time
Middleware Experts, today announced
that it has integrated RTI Data

Ada Inside 19

Ada User Journal Volume 29, Number 1, March 2008

Distribution Service with an industry-
leading Ada compiler, GNAT Pro from
AdaCore Inc. Working closely with
software engineers at Saab Systems, RTI
has developed the first Ada bindings to
support middleware compliant with the
Data Distribution Service (DDS) for Real-
Time Systems standard. For the first time,
software developers can combine the
unsurpassed messaging performance of
RTI middleware, the portability and
interoperability provided by the DDS
standard, and the powerful development
environment of AdaCore’s GNAT Pro to
build high-performance, fully standards-
compliant distributed applications.
“RTI middleware with Ada integration is
helping our developers build complex
applications that require real-time data
availability and response across large
distributed systems,” said Thomas
Jungefeldt, senior systems engineer, Saab
Systems, Naval Systems Division. “A
major advantage of this approach is our
ability to support and develop
applications in a heterogeneous COTS-
based environment requiring simple and
straightforward integration of legacy code
with newly developed systems.”
“Adoption of the DDS standard is
growing across a wide range of real-time
distributed environments from desktop to
embedded devices, particularly in defense
and aerospace applications,” commented
Thomas Quinot, middleware specialist,
AdaCore. “The integration of GNAT Pro
with RTI’s industry-leading real-time
middleware is a critical part of our
ongoing commitment to make Ada a
development language of choice in high-
performance distributed applications,
allowing users to benefit from the
strengths of both working together.”
“The demand for DDS support from the
Ada community is continuing to grow,”
explained David Barnett, vice president of
Product Management at RTI. “AdaCore’s
GNAT Pro is available on more platforms
than any other Ada technology, and we
are excited to be the first to allow
distributed application developers to take
advantage of Ada technology in
conjunction with RTI Data Distribution
Service and the DDS standard.”
About RTI Data Distribution Service
RTI Data Distribution Service is a high-
performance messaging and data-caching
solution for the development and
integration of applications that require
low latency, high throughput, high
scalability, deterministic responses and
minimal consumption of network,
processor and memory resources. RTI
Data Distribution Service is an open-
architecture platform that complies with
the Object Management Group’s
(OMG’s) DDS for Real-Time Systems
standard.
About Saab Systems

Saab Systems offers integrated command
and control system solutions and civil
security solutions, along with further
development and adaptations of existing
command and control systems. Saab
Systems is a business unit within the Saab
group and has around 1,200 employees in
Australia, Denmark, Finland, South
Africa and Sweden.
About RTI
Real-Time Innovations (RTI) provides
high-performance infrastructure solutions
for the development, deployment and
integration of real time, data-driven
applications. RTI’s messaging, caching,
Complex Event Processing (CEP) and
visualization capabilities deliver dramatic
improvements in latency, throughput and
scalability while slashing cost of
ownership. The company’s software and
design expertise have been leveraged in a
broad range of industries including
defense, intelligence, simulation,
industrial control, transportation, finance,
medical and communications. Founded in
1991, RTI is privately held and
headquartered in Santa Clara, CA. For
more information, please visit
www.rti.com.

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —su]
Job Description
 [...] One of our most aggressive projects
is creating a web-based, multi-media
contact center solution. This is soft real-
time software being developed in Ada. To
help us accomplish this goal, we are
hiring experienced Ada software
engineers to add to our existing staff.
Candidates must be motivated, with a
demonstrated ability to create useful
abstractions. Must be able to work both
individually and as part of a team. Will be
integrating with VoIP solutions, and
creating cutting-edge web-based user
interfaces. Some light system
administration will also be required.
Adherence to strict coding standards is
expected.
Must be able to program for Linux
operating systems. Willing to consider
this as a full-time remote/telecommuting
position. Some knowledge of
XHTML/XML/Javascript/CSS and VoIP
are preferred, but not required. So if you
are a self-motivated developer, we look
forward to you joining our energetic team.
[...]
Job Description: UK
I have a client located in Hampshire, UK
who is looking for Ada Software
Engineers on a permanent basis. They
will also consider candidates with little or

no Ada experience willing to be trained
and have Ada as part of their current skill
set.
Salaries are in the region of £40,000 p.a.
[...] many different and diverse
organisations [...] who require Ada
experience on both a contract and
permanent basis and we are therefore
always keen to hear from people with this
skill set. We also have vacancies for a
client located in Surrey. The salary would
be similar to that quoted above.
Job Description: USA
 [...] contractor for NASA at the White
Sands Complex near Las Cruces, New
Mexico. Operating here are two
functionally identical satellite ground
terminals: the White Sands Ground
Terminal Upgrade, and the second
TDRSS Ground Terminal. These two
terminals ensure uninterrupted
communications between various ground
stations, NASA’s orbiting fleet of
Tracking and Data Relay satellites,
customer spacecraft (satellites), and the
computer systems that support such
spacecraft. The WSC also serves as an
interface for distributing satellite data to
control centers and scientists who then
use the daily influx of data to expand our
ever growing knowledge of the Earth and
the universe.
The Software Engineering Department at
the White Sands Complex has openings
junior through senior developers within
several of our groups. [...]
Basic Qualifications:
- Software Engineer 1: BA/BS in
mathematics, engineering, computer
science or other related field and no
experience or AA in related field and 4
years of related experience. In lieu of
formal education, 8 years of related
experience. With experience in: C++ on
Linux, TCP/IP, MySQL, Unix/Linux
scripting with Bash and Perl, Ada
experience is an asset.
- Software Engineer 2: Minimum two
years experience with a high level
language (Ada preferred). MS in
mathematics, engineering, computer
science or other related field and no
experience, BA/BS in related field and 2
years of related experience, or AA in
related field and 6 years of related
experience. In lieu of formal education,
10 years of related experience.
- Software Engineer 3: Minimum four
years experience with a high level
language (at least one year with Ada). MS
in mathematics, engineering, computer
science, or other related field and 2 years
of related experience, or BA/BS in related
field and 4 years of progressive, related
experience, or AA in related field and 8
years of progressive, related experience.
In lieu of formal education, 12 years of
progressive, related experience.

20 Ada in Context

Volume 29, Number 1, March 2008 Ada User Journal

- Software Engineer 4: Minimum four
years experience with multiple high level
languages (at least two years with Ada
required). MS in mathematics,
engineering, computer science, or other
related field and 4 years related
experience, or BA/BS in related field and
8 years of progressive related experience,
or AA in related field and 12 years of
progressive related experience. In lieu of
formal education, 16 years of progressive
related experience.
- Software Engineer 5: We are looking for
an experienced Ada developer that is self
motivated and can quickly learn new
applications. Minimum four years
experience with multiple high level
languages, no less than 2 years with Ada
required. MS in mathematics,
engineering, computer science, or other
related field and 12 years related
experience, or BA/BS in related field and
14 years of progressive related
experience.
- Software Engineer 5 — TT&C Lead:
Minimum 8 years experience with a high
level language (at least four years of
Ada). MS in mathematics, engineering,
computer science or other related field
and 12 years of experience, BA/BS in
related field and 14 years of related
experience. Minimum two years
experience managing medium sized
groups (6-10 people).
 - Ability to obtain Secret security
clearance. Must be US Citizen.
Job Description: USA
 [...] small 8(a) company based in
Maryland. We have more than a decade of
experience with custom programming and
database development. Our current focus
has been on data visualization, modeling
and simulation. We are currently in the
DoD Mentor/Protégé program with the
Navy.
[...] system where by an artificial signal is
projected for reception by a radar system.
This allows testing of the radar, missile
systems, and personnel without having to
physically perform a scenario or alter the
radar system. Additional features will be
added to this system in addition to porting
the original system from Ada to C++, and
SGI/Irix to possibly IBM Blade
Server/Linux.
Programmer requirements:
Minimum: 3–4 yrs experience, Ada, C++,
clearable to DoD Secret
Preferred:
5–10 yrs experience, Ada, C++,
embedded programming, multi-threading,
multi-processor, parallel processing, real-
time systems, radar experience,
Unix/Linux experience, DoD Secret
clearance [...]

Ada in Context
Is the Ada Grammar context
free?
From: Hibou57

<yannick_duchene@yahoo.fr>
Date: Tue, 19 Feb 2008 16:47:52 -0800

(PST)
Subject: Is it really Ok to assert that the Ada

syntax is a context-free grammar ?
Newsgroups: comp.lang.ada
I got a doubt about [ARM 1.1.4-1]:
“The form of an Ada program is
described by means of a context-free
syntax together with context-dependent
requirements expressed by narrative
rules.”
But [...] as an example X(Y) can stand for
a type cast, a function call, an array
access, or even an array slice, and this
cannot be decided without knowlegde of
the context.
From: Robert A Duff <duff@adacore.com>
Date: Wed, 20 Feb 2008 15:51:13 −0500
Subject: Re: Is it really Ok to assert that the

Ada syntax is a context-free grammar ?
Newsgroups: comp.lang.ada
[...] The grammar given in the Ada RM
under “Syntax” is a context free grammar.
It is, however, ambiguous, and therefore
not LR(1).
You noted the biggest ambiguity — X(Y)
could mean various things. There are a
few others (e.g. .all can be implicit in
some cases, and subprogram calls with no
parameters don't get empty parens). The
full power of semantic analysis is required
to disambiguate these things, in the
general case.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Wed, 20 Feb 2008 17:19:25 +0200
Subject: Re: Is it really Ok to assert that the

Ada syntax is a context-free grammar ?
Newsgroups: comp.lang.ada
> [...] If it need name resolution to figure
out what means the construct, this is not a
context-free grammar.
The *grammar* in the ARM is surely
context-free. In each production, there is
only one non-terminal symbol on the left-
hand side, for example 6.4(3):
 function_call ::= prefix
actual_parameter_part
In a context-dependent grammar, there
would be several symbols on the left-hand
side, before the “::=” sign.
The *Ada language* is not context-free,
in the sense that the set of legal Ada
programs cannot be defined by a context-
free grammar. The same is true for all
practical programming languages that
allow user-defined identifiers with
different properties, for example type
identifiers and procedure identifiers, and

that allow only some kinds of identifiers
in some constructs. For example, you
cannot “call” a type, but you can “call” a
procedure.
The grammar in the ARM generates or
accepts many strings that are not legal
Ada programs. The “context-dependent
narrative rules” are there to say which of
these strings are legal Ada programs. This
same definition method is used for most
programming languages.
> Is this construct the only one of the

grammar which is not context-free, or
is there some others ?

Your are using the term “context-free” in
some peculiar way, not in its usual
meaning, I think.
It seems to me that you are really asking
this question: given a *fragment* of an
Ada program, for example “X(Y)”, can
this fragment be produced from more than
one non-terminal grammar symbol?
I don't think that this has much to do with
the context-freeness of the grammar, and I
don't understand why you feel so strongly
that there should be only one grammar
symbol for each fragment.
For another example, consider the
fragment
 delay 0.3
The way the grammar is now written, this
fragment can (I think) be produced only
from the non-terminal symbol
delay_statement, by the rule in ARM
9.6(4). Does that make you happy? But
look, the *meaning* of this fragment
depends strongly on the context of this
delay_statement: is it used as a
 simple_statement (5.1(4))
or a delay_alternative (9.7.1(6))
or a triggering_statement (9.7.4(4)) ?
These grammar rules could also be
written without using the non-terminal
symbol delay_statement, replacing it by
the sequence consisting of the terminal
symbol “delay” and the non-terminal
symbol “expression”. Then the fragment
“delay 0.3” could be produced directly by
any one of the three different non-
terminal symbols (simple_statement,
delay_alternative, triggering_statement). I
don't think that change in the grammar
would make any significant difference to
the readability or parsability of Ada, so I
don't see what your problem is.

A Coding War Story
From: Kickin' the Darkness
Date: Thursday, December 6, 2007
Subject: A Coding War Story: What's Your

Point?
RSS: http://blog.kickin-the-darkness.com/

2007/12/coding-war-story-whats-your-
point.html

I had been assigned the task of porting a
fairly large (about 400 KSLOC) missile

Ada in Context 21

Ada User Journal Volume 29, Number 1, March 2008

launch command and control system to an
upgraded OS version and new compiler
and language version. Specifically, from
Solaris 2.5.1 to Solaris 7, and from the
Verdix Ada Development System
(VADS), which was Ada 83, to Rational
Apex Ada, which was Ada 95. VADS had
been bought out by Rational, and its
product obsoleted, although Rational did a
pretty good job implementing compatible
versions of VADS-specific packages to
ease the transition to the Apex compiler.
Three other guys helped with the initial
compilations, just to get clean compiles of
the code, which took about two weeks,
and then I was on my own to actually
make the whole system work. Long story
short, it was the worst design and
implementation of a software system I'd
ever seen, and so took about two more
months to successfully complete the port.
It was then handed over for formal
testing, which took several months as
well. I fairly steadily fixed the bugs that
were found as testing got going, but that
rate quickly declined as it progressed (the
original code was a production system
after all, so its functionality was pretty
solid, I just had to kill the bugs that came
about due to adapting to the new
compiler). Eventually I was reassigned to
another project once everything appeared
to be working as well as the original.
Then came the phone call on the Friday
before Thanksgiving.
There was a missile test scheduled in
about three weeks, and during a lab
countdown test the command sequencing
had locked up. (...) Like most safety-
critical defense systems like this, a lot of
logging is captured, so it was fairly easy
to locate the handful of lines of code that
had been most recently executed when the
system froze. And of course there was
absolutely nothing questionable in those
lines of code, and these same statements
had already successfully executed literally
thousands of times during that same run.
We put the Apex guys at Rational on
notice, since it was their compiler and
some of their vendor-supplied routines
were being called in this area, and it was
impressed on them (and everyone) that
this was a problem of literally national
importance that had to be tracked down.
So they got their Thanksgiving week
trashed as well.
Since the logs could only tell us so much,
we needed to try to repeat the problem in
the local lab. For something that pops up
in only 1 in a 1000 test runs that's not
going to be easy. Amongst the conjectures
as to root cause was that a call into a
vendor-supplied mutex (part of a VADS
migration package) Unlock function was
not unlocking. (...) About an hour later the
system locked up. (...)

The trick now was to figure out exactly
where in the sequence of candidate
statements the lock up was occurring.
The implementation of this system used
Ada tasking, and used it extraordinarily
poorly. (...) Once rendezvous had been
made with a target task, that target task
would then rendezvous with another task,
which in turn would rendezvous with
another task, and so on, until eventually
some processing would get done, after
which all the rendezvous would be broken
and each of the tasks would go on their
merry way. So what you ended up with
was the world's most expensive function
calls, bringing an entire, “multi-tasking”
process to a halt while it processed a piece
of incoming data. It was only because the
normal throughput was so low that this
hadn't caused performance problems in
the past. (...)
So in tracking down exactly which line
was causing the problem I had to find a
way to record the progress through the
sequence of statements (...) The process
as a whole wasn't getting blocked, just a
(critical) task chain within it.
This was the wedge needed to get at
locating the offending statement.
I created an Ada package containing an
enumeration type, a global variable of that
type, and a task. (...) The monitoring task
then itself did nothing more than loop and
periodically check to see if the global
variable had changed value. Every time it
did, it printed out the value to a file. It
then delayed for a small interval, and
made its next check. Now the reason I
could write to a file from this task was
that this task only ran when a task switch
had occurred back in the problem area
and this task had been selected to run.
Whatever was done in this task should
have no effect on other, unrelated,
blocked tasks. (...)
Ran the instrumented executable. It froze
up. And the monitoring worked like a
charm.
The logging of the progress monitoring
variable displayed exactly the anticipated
sequence, which eventually ceased with a
value corresponding to having made a call
to the Mutex Unlock function, with the
value that should have been stored
signaling the resumption of the task never
showing up—like it had in the thousands
of previous invocations.
So over to you Rational. The Apex
engineers during this time had been
feverishly analyzing their code and had
found a place in the mutex code where it
could theoretically block for good, but the
odds of that happening were very remote
because of everything that had to happen
with the right sequencing and timing.
Murphy's Law, guys, Murphy's Law.
What I did to work-around this was to
replace the calls to the vendor's mutex
functions (which were built atop the OS'

mutex functionality) protecting this
particular sequence of code with a quick
little native Ada mutex package, using
that to control mutex access to the
relevant area.
I put this into the code and reran the test.
Seven hours later it was still running.
My mutex package code was given to
Rational who compiled and disassembled
it and verified that it was not using the
same approach that the problematic mutex
functions were using.
I then had the most well attended code
inspection of my career :-) There were
nearly a dozen engineers and managers in
the room with me, and at least another
dozen dialed in from all over the country,
all to inspect about 20 lines of code.
It passed, the new executables were
formally built, and it was handed over to
the test organization for formal regression
testing. A couple weeks later the missile
countdown proceeded flawlessly and
away it went.
It's a good think I like cold turkey.

Okay, this is all well and fine, but what's
really the point of a coding war story?
This was a nasty, nasty problem. There
was concurrency, over a dozen
communicating processes, hundreds of
KSLOCs, poor design, poor
implementation, interfaces to embedded
systems, and millions of dollars riding on
the effort. No pressure, eh?
I wasn't the only developer working on
this problem, though having done the
original port I was of course the primary
focus. But even though I did the porting,
that doesn't mean I had intimate
knowledge of hundreds of thousands of
lines of code—or even a decent overview
of it. Other engineers around the country
were looking through the code and the
logs as well, but I found that when they
proposed a hypothesis to me about a root
cause, it never took more than 30 seconds
on my part to dismiss it, likewise when I
was requested to provide various analyses
I would shove it off on to someone else
because it was clear to me they were on
the wrong track. Sound like arrogance on
my part? Well, yeah, it does, but that's not
why I dismissed these hypotheses and
requests.
It was because I knew what the nature of
the problem was. I didn't know exactly
where it was occurring, nor why it was
occurring, but I did know what was
happening.
I've built up a lot of experience and
knowledge over the years—I was an early
adopter of Ada, understand concurrency
and its pitfalls, I know how Ada runtime
libraries handle tasking and concurrency,
and I understand low-level programming
at the level of raw memory, registers, and

22 Ada in Context

Volume 29, Number 1, March 2008 Ada User Journal

assembly language. In other words, I have
deep knowledge of my niche of the
industry. All of that was brought to bear
in successfully tracking down this
problem—not just working around the
bug, but understanding how to put
together an approach to finding the bug in
a very sensitive execution environment.
The specifics of a coding war story
probably aren't all that interesting to those
who aren't familiar with the particulars of
its nature and environment, but they are
useful for gleaning an understanding of
what it takes to solve really difficult
problems.
To solve the really difficult problems you
need to be more than a coder, you have to
understand the “fate” of that code, how it
interacts with its environment, and how
its environment itself operates.
Then you too can get your Thanksgiving
holiday all messed up.
Marc A. Criley

Command line in DOS
From: Charles H. Sampson

<csampson@inetworld.net>
Date: Tue, 4 Dec 2007 19:34:26 −0800
Subject: DOS Options
Newsgroups: comp.lang.ada
I've been using GNAT 3.15p for a long
time to write DOS-like project utilities to
run on my Wintel desktop. I've just come
up with a case where I'd like to implement
optional parameters. Since the utility is
DOS-like, I want to use the DOS form of
optional parameters: attached to the name
of the command, separated by the '/'
character. [...]
From: Jeffrey Creem

<jeff@thecreems.com>
Newsgroups: comp.lang.ada
Subject: Re: DOS Options
Date: Wed, 05 Dec 2007 05:15:01 GMT
Ada.Command_Line.Argument(1)
certainly returns the first argument to the
program regardless of whether it is DOS,
Unix, etc. It even appears to handle the
degenerate case of no space between the
command and the argument. [...] Since
 my_command /option_1 /option_2
and even
 my_command/option_1 /option_2
work such that
Ada.Command_Line.Argument(1) returns
/option_1 and
Ada.Command_Line.Argument(2) returns
/option_2
[...]
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Wed, 19 Dec 2007 20:40:36 +0100
Subject: Re: DOS Options
Newsgroups: comp.lang.ada

> [...] I found out that, for the GNAT
3.15p version of Ada.Command_Line,
if the command name is followed
immediately by a '/', that slash and
everything following it up to the first
blank is presented as Argument (1).
From that point on, blanks act as
separators between parameters.
This has the effect that it's still
necessary to write a parser for
Argument (1), something I thought
Ada.Command_Line might be taking
care of. I'm talking about the case of
multiple slash-headed options jammed
against the command:
 command/x/y/z
I was hoping that Ada.Command_Line
would return “/x” as Argument (1), “/y”
as Argument (2), etc.

[...] ACT doesn't support DOS since
version 3.07p or maybe even before. The
last on-purpose packaged version of
GNAT (specifically as a GNAT Public
version, not a GCC version) for DOS is
3.10p.
Your 3.15p is certainly the Windows
version, and what you are seeing is a
Win32 console output. Indeed, you need
to congratulate Microsoft which decided
to parse and separate the arguments in
Win32 in a fashion consistent with DOS
— adding the parsing of filenames
containing spaces, enclosed by "".
Ada.Command_Line.Argument (i) just
gives the “ith” argument from the system,
as the system wants to give it, that's it.
Running the following Turbo Pascal
(authentic DOS) code:
VAR i:Word;BEGIN FOR i:=1 TO
paramcount DO
WriteLn(i,':',paramstr(i))END.
you get exactly the same (expected, even
if not ideal) behaviour:
C:\TEMP>show_cmd/x/y/z /a/b/c
1:/x/y/z
2:/a/b/c
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: DOS Options
Date: Wed, 19 Dec 2007 16:47:14 −0600
Ada.Command_Line is a thinly-veiled
wrapper on the normal C “argv/argc”
mechanism. I think most Ada compilers
simply copy that mechanism (that's pretty
much a requirement on Unix, and it is
better for portability on all platforms).
The fact that that mechanism isn't very
useful is not considered relevant. (And
yes, for the record, Janus/Ada does
exactly that for Ada.Command_Line. We
don't even bother to use
Ada.Command_Line for the command
line processing of our compiler and tools;
it is just as easy to process starting from
the original string.)

From: Randy Brukardt
<randy@rrsoftware.com>

Newsgroups: comp.lang.ada
Subject: Re: DOS Options
Date: Wed, 19 Dec 2007 16:59:25 −0600
[...] Both MS-DOS and Win32 only
provide a single string as the result of the
command line — the system provides no
parsing whatsoever. For Win32, the
function is GetCommandLine. In DOS,
you had to grab the string from the
memory of your executable process —
there isn't even a function to get it.
Parsing is something that was provided by
C compilers on both of those platforms.
The was generally defined to be
compatible with the Unix C
implementations (since that is how C was
originally defined). Janus/Ada never did
any parsing at all (just returning a single
string, even on Unix); if we had done
some, it would have separated the options
out as the original OP suggested. But that
would be fairly complex to do, we never
figured out a good way to encapsulate it
for our products, so we didn't make that
library available to our customers.
I'm a little stunned that Turbo Pascal
would have copied this useless parsing
definition, given that they had to write all
of the code themselves. But perhaps it is
the same reason that we ended up doing
so for Ada.Command_Line: to be
compatible with C compilers and/or
(possible) Unix versions of your product.
In any event, Microsoft's OSes have had
nothing whatsoever to do the the parsing
of command lines. All of the code to
parse the command line appears inside of
Ada.Command_Line for a Windows
implementation (or perhaps some lower-
level library intended to emulate Unix
behavior).
From: Randy Brukardt

<randy@rrsoftware.com>
Newsgroups: comp.lang.ada
Subject: Re: DOS Options
Date: Thu, 20 Dec 2007 16:15:42 −0600
> Windows does appear to have a

CommandLineToArgvW function that
parses the command line (or whatever
string you give it). I don't know
whether GNAT uses it. I'm pretty sure
that not all C compilers use it—the
MINGW32 version, I believe, does its
own parsing, in whatever startup
routine is linked into the program
before main() is called.

Fascinating; never noticed that one. I
doubt anything much uses it, though,
because it isn't supported on Windows
95/98/ME, so any compiler runtime that
used it would have to be almost brand-
new. (It would have been nasty to make
programs that don't run on older Windows
systems just to use a function that is easy
to write yourself. Not as big of an issue
today, but I doubt compiler vendors are

Ada in Context 23

Ada User Journal Volume 29, Number 1, March 2008

rewriting their runtime to purposely break
something that previously worked!)

Fixing bugs in GCC
From: Chris <echancrure@gmail.com>
Date: Mon, 25 Feb 2008 13:55:38 −0800

(PST)
Subject: bug report being ignored
Newsgroups: comp.lang.ada
[...] I am just ignorant of the gcc/ gnat
process/effort involved. I filled a bug
report for gnat on bugzilla [...] and so far
it has remained unconfirmed, never mind
looked into in view to be fixed.
It's not always easy to ask question like
this without offending gcc/ gnat people
who are doing a tremendous job.
It is an annoying bug for me as it has an
impact on gnatxref that I use a lot.
Is there anything that I can do to try to get
that bug fixed?
From: Samuel Tardieu <sam@rfc1149.net>
Date: Mon, 25 Feb 2008 23:33:32 +0100
Subject: Re: bug report being ignored
Newsgroups: comp.lang.ada
As far as I'm concerned, I take no offense,
but I will try to explain the current
situation of bug reports against the FSF
GNAT tree.
You're not doing anything wrong... except
that you expect non-paid volunteers to do
the job in a short time window. As one of
the (very few) people who fix GNAT
bugs in the FSF version, I choose the
issues to address according to:
- the time I have (I do this on my free
time, and I have a full-time job and many
other computer-related and computer-
unrelated activities);
- the tools I use (I've never needed
gnatxref for my Ada development);
- the severity of the bugs according to my
own ratings (an internal compiler error is
high on the list, especially when it is
triggered by valid real-world Ada code, a
problem on a specially-crafted example
concerning an obscure RM rule is low on
my list).
The main issue is the first one I describe,
i.e. the time to work on GNAT. A few
months ago, I started fixing the bugs one
after another, in the hope that more people
would join the effort. Some of them (in
particular Ludovic Brenta and Duncan
Sands) do a tremendous job for the
community, but we really lack manpower.
AdaCore is also very helpful with
volunteers working on the public version
of GCC; we *need* to find more people
to work on FSF GNAT.
So unless someone gets excited by your
bug report, you would better try to fix it
yourself if you have the needed expertise
and time, or wait until it gets fixed by
AdaCore because one of their clients has
reported it.

The main point is: when people work on
Free Software as a hobby, they will set
their own agenda. And when there aren't
many people, not many topics are
addressed at once.
Anyway, thanks for your bug report.
Properly reporting issues is already an
important way to contribute back to Free
Software you use.

Happy Birthday Ada
Lovelace
From: John McCormick

<mccormick@cs.uni.edu>
Date: Mon, 10 Dec 2007 13:10:10 −0800

(PST)
Subject: Happy Birthday Ada Lovelace
Newsgroups: comp.lang.ada
On December 10, 1815, Anna Isabella
(Annabella) Byron, whose husband was
Lord Byron, gave birth to a daughter,
Augusta Ada. Ada's father was a
romantic poet whose fame derived not
only from his works but also from his
wild and scandalous behavior. His
marriage to Annabella was strained from
the beginning, and Annabella left Byron
just a little more than a month after Ada
was born. By April of that year,
Annabella and Byron signed separation
papers, and Byron left England, never to
return.
Byron's writings show that he greatly
regretted that he was unable to see his
daughter. In one poem, for example, he
wrote of Ada,
 I see thee not.
 I hear thee not.
 But none can be so rapt in thee.
Byron died in Greece at the age of 36, and
one of the last things he said was,
 Oh my poor dear child! My dear
Ada! My God, could I but have seen her!
Meanwhile, Annabella, who was
eventually to become a baroness in her
own right, and who was herself educated
as both a mathematician and a poet,
carried on with Ada's upbringing and
education. Annabella gave Ada her first
instruction in mathematics, but it soon
became clear that Ada's gift for the
subject was such that it required more
extensive tutoring. Ada received further
training in mathematics from Augustus
DeMorgan, who is today famous for one
of the basic theorems of Boolean algebra,
which forms the basis for modern
computers. By the age of eight, Ada also
had demonstrated an interest in
mechanical devices and was building
detailed model boats.
When she was 18, Ada visited the
Mechanics Institute to hear Dr. Dionysius
Lardner's lectures on the “difference
engine,” a mechanical calculating
machine being built by Charles Babbage.
She became so interested in the device

that she arranged to be introduced to
Babbage. It was said that, upon seeing
Babbage's machine, Ada was the only
person in the room to understand
immediately how it worked and to
appreciate its significance.
Ada and Babbage became good friends
and she worked with him for the rest of
her life, helping to document his designs,
translating writings about his work, and
developing programs to be used on his
machines. Unfortunately, Babbage never
completed construction of any of his
designs. Even so, today Ada is
recognized as being the first computer
programmer in history. That title,
however, does not do full justice to her
genius.
Around the time that Babbage met Ada,
he began the design for an even more
ambitious machine called the “analytical
engine,” which we now recognize was the
first programmable computer. Ada
instantly grasped the implications of the
device and foresaw its application in ways
that even Babbage did not imagine. Ada
believed that mathematics eventually
would develop into a system of symbols
that could be used to represent anything in
the universe. From her notes, it is clear
that Ada saw that the analytical engine
could go beyond arithmetic computations
and become a general manipulator of
symbols, and thus it would be capable of
almost anything. She even suggested that
such a device could eventually be
programmed with rules of harmony and
composition so that it could produce
“scientific” music. In effect, Ada foresaw
the field of artificial intelligence over 150
years ago.
In 1842, Babbage went to Turin, Italy,
and gave a series of lectures on his
analytical engine. One of the attendees
was Luigi Menabrea, who was so
impressed that he wrote an account of
Babbage's lectures. At age 27, Ada
decided to translate the account into
English, with the intent to add a few of
her own notes about the machine. In the
end, her notes were twice as long as the
original material, and the document, “The
Sketch of the Analytical Engine,” became
the definitive work on the subject.
It is obvious from Ada's letters that her
“notes” were entirely her own and that
Babbage was acting as a sometimes
unappreciated editor. At one point, Ada
wrote to him,
“I am much annoyed at your having
altered my Note. You know I am always
willing to make any required alterations
myself, but that I cannot endure another
person to meddle with my sentences.”
Ada gained the title Countess of Lovelace
when she married Lord William Lovelace.
The couple had three children, but Ada
was so consumed by her love of
mathematics that she left their upbringing

24 Ada in Context

Volume 29, Number 1, March 2008 Ada User Journal

to her mother. For a woman of that day,
such behavior was considered almost as
scandalous as some of her father's
exploits, but her husband was actually
quite supportive of her work.
In 1852, Ada died from cancer. Sadly, if
she had lived just one year longer, she
would have witnessed the unveiling of a
working difference engine built from one
of Babbage's designs by George and
Edward Scheutz in Sweden. Like her

father, Ada lived only until she was 36,
and, even though they led much different
lives, she undoubtedly admired Byron and
took inspiration from his unconventional
and rebellious nature. At the end, Ada
asked to be buried beside him at the
family's estate.
Ada Lovelace biography material
excerpted from “Programming and
Problem Solving with Ada” by Dale,

Weems, and McCormick. Jones &
Bartlett Publishers, 2000.
The film “To Dream Tomorrow” from
Flare Productions, www.flarefilms.org,
tells the story of Ada Lovelace and her
contributions to computing. I recommend
it to all comp.lang.ada subscribers. See if
you can find the error on her tomb.

26 Conference Calendar

Volume 29, Number 1, March 2008 Ada User Journal

Conference Calendar
This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2008

April 2 ICECCS2008 - 3rd Workshop on UML and AADL (UML&AADL'2008), Belfast, Northern Ireland,

UK. Topics include: code generation from a high-level specification, architecture model verification,
modeling Distributed Real-time Embedded systems with an MDA approach, etc.

April 09-11 2nd International Conference on Tests And Proofs (TAP'2008), Prato (near Florence), Italy.

April 14-17 21st Conference on Software Engineering Education and Training (CSEET'2008), Charleston,
South Carolina, USA.

☺ April 14-18 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'2008), Miami,
Florida, USA. Topics include: all areas of parallel and distributed processing, such as Applications of
parallel and distributed computing; Parallel and distributed software, including parallel programming
languages and compilers, runtime systems, middleware, libraries, and programming environments and
tools, etc.

☺ April 14-18 9th International Workshop on Parallel and Distributed Scientific and Engineering
Computing (PDSEC-08). Topics include: parallel and distributed computing techniques
and codes, practical experiences using various parallel and distributed systems, task
parallelism, compiler issues for scientific and engineering computing, applications, etc.

April 29 – May 02 Systems and Software Technology Conference (SSTC'2008), Las Vegas, Nevada, USA.

☺ May 05-07 11th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2008), Orlando, Florida, USA. Topics include: Programming and system
engineering (ORC paradigms, languages, RT Corba, UML, model-driven development of high integrity
applications, specification, design, verification, validation, testing, maintenance, system of systems,
etc.); System software (real-time kernels, middleware support for ORC, extensibility, synchronization,
scheduling, fault tolerance, security, etc.); Applications (embedded systems (automotive, avionics,
consumer electronics, etc), real-time object-oriented simulations, etc.); System evaluation (timeliness,
worst-case execution time, dependability, fault detection and recovery time, etc.); ...

May 07-09 7th European Dependable Computing Conference (EDCC-7), Kaunas, Lithuania. Topics include:
Architectures for dependable systems; Fault tolerant distributed systems; Fault tolerance in real-time
systems; Hardware and software testing, verification, and validation; Formal methods for dependability;
Safety-critical systems; Software reliability engineering; Software engineering for dependability; etc.

☺ May 10-18 30th International Conference on Software Engineering (ICSE'2008), Leipzig, Germany. Topics
include: Software components and reuse, Theory and formal methods, Engineering secure software,
Software dependability, safety and reliability, Reverse engineering and maintenance, Software
economics and metrics, Empirical software engineering, Engineering of distributed/parallel software
systems, Engineering of embedded and real-time software, Software tools and development
environments, Programming languages, etc. Deadline for early registration: April 1, 2008.

☺ May 11 International Workshop on Multicore Software Engineering (IWMSE'2008). Topics
include: Modeling techniques for multicore software; Software components and
composition; Programming languages/models for multicore software; Compilers for
parallelism; Testing and debugging parallel applications; Software reengineering for
parallelism; Operating system support, scheduling; Development environments for
multicore software; Experience reports from research or industrial projects; etc.
Deadline for early registration: April 1, 2008.

Conference Calendar 27

Ada User Journal Volume 29, Number 1, March 2008

May 20 ICRA2008 - 3rd Workshop on Software Development and Integration in Robotics (SDIR-III), San
Diego, CA, USA. Topics include: Analysis of issues and challenges in robotic software development;
Architectural models that lead to reusable robotic software design; Middleware services and reusable
components for real time robot software systems; Description of state-of-the art research projects,
innovative ideas, field-based studies; Identifying real-time requirements for robotic applications;
Comparing existing development approaches for real-time applications; etc.

May 25-29 10th International Conference on Software Reuse (ICSR'2008), Beijing, China. Topics include:
Confidence Ensuring and Evaluating Methods; Processes to identify and select OTS components;
Software integration and evolution problems; Software variability management; Software generators
and domain-specific languages; Component-based software engineering; Evolution of component-based
software systems; Lightweight approaches to software reuse; Benefit and risk analysis of reuse
investments; Generation of non-code artifacts; Quality aspects of reuse, e.g. security and reliability;
Success and failure stories of reuse approaches from industrial context; etc.

May 26-30 15th International Symposium on Formal Methods (FM'2008), Turku, Finland. Topics include: all
aspects of formal methods research, both theoretical and practical, in particular the experience of
applying formal methods in practice.

☺ May 27-30 DAta Systems In Aerospace (DASIA'2008), Palma de Majorca, Spain.

June 04-06 10th IFIP International Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'2008), Oslo, Norway. Topics include: Semantics and implementation of object-
oriented programming and (visual) modelling languages; Formal techniques for specification, design,
analysis, verification, validation and testing; Model checking, theorem proving and deductive
verification; Model transformations and refactorings; Applications of formal methods; Experience report
on best practices and tools; etc.

June 04-06 8th IFIP International Conference on Distributed Applications and Interoperable Systems
(DAIS'2008), Oslo, Norway. Topics include: innovative distributed applications; models and concepts
supporting distributed applications; middleware supporting distributed applications; software
engineering of distributed applications; etc.

☺ June 07 Programming Language Approaches to Concurrency and Communication-centric Software
(PLACES'2008), Oslo, Norway. Topics include: the general area of foundations of programming
languages for concurrency and distribution, such as multicore and network-on-chip programming,
integration of sequential and concurrent programming, program analysis, concurrent data types, etc.

☺ June 09-11 8th International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP'2008), Cyprus. Topics include: Multi-core Programming and Software Tools, Parallel
Programming Paradigms, Tools & Environments for Parallel & Distributed Software Development, etc.

June 09-12 4th European Conference on Model Driven Architecture Foundations and Applications
(ECMDA'2008), Berlin, Germany. Topics include: Model Transformation - languages and tools;
Reverse Engineering; MDA for Complex Systems and Systems of Systems; MDA for Embedded
Systems and Real-Time Systems; MDA for High-Integrity Systems, Safety-Critical, and Security-
Critical Systems; MDA in the Automotive, Aerospace, Telecommunications, Electronics Industries;
MDA for Legacy Systems; MDA and Component-Based Software Engineering; etc. Deadline for
submissions: April 7, 2008 (tools and posters).

♦ June 16-20 13th International Conference on Reliable Software Technologies – Ada-
Europe 2008, Venice, Italy. Organized and sponsored by Ada-Europe, in cooperation
with ACM SIGAda. Deadline for early registration: May 31, 2008.

June 17-19 2nd IEEE International Symposium on Theoretical Aspects of Software Engineering (TASE'2008),
Nanjing, China. Topics include: Specification and Validation, Component-based Development, Model
Checking for Software, Software Architectures and Design, Software safety and reliability, Reverse
Engineering and Software Maintenance, Embedded and Real-time Software, Model-driven
Development, Parallel and Distributed Computing, Program Analysis, Semantics and Design of
Programming Languages, etc.

June 17-20 28th International Conference on Distributed Computing Systems (ICDCS'2008), Beijing, China.
Topics include: theoretical foundations, reliability and dependability, security, middleware, etc.

28 Conference Calendar

Volume 29, Number 1, March 2008 Ada User Journal

June 25-27 Code Generation 2008, Cambridge, UK. Topics include: Tool and technology adoption, Defining and
implementing modelling languages, Language evolution and modularization, Runtime virtual machines
versus direct code generation, etc.

☺ June 27 DSN2008 - Workshop on Architecting Dependable Systems (WADS'2008), Anchorage, Alaska,
USA. Topics include: everything related to software architectures for dependable systems, such as:
Rigorous design: architectural description languages, formal development, ...; Verification & validation:
theorem proving, type checking, ...; Fault tolerance; System evaluation; Enabling technologies;
Application areas: safety-critical systems, embedded systems, ...; etc.

June 30 – July 02 13th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2008), Madrid, Spain.

☺ June 30 – July 04 Technology of Object-Oriented Languages and Systems (TOOLS Europe'2008), Zurich, Switzerland.
Topics include: all modern approaches to software development, with a special but not exclusive
emphasis on O-O and components.

July 01 ECRTS'08 - 8th International Workshop on Worst-Case Execution Time Analysis (WCET'2008),
Prague, Czech Republic. In conjunction with the 20th ECRTS conference. Topics include: any issue
related to timing analysis, such as Tools for timing analysis, Design for timing predictability, Integration
of WCET analysis into the development process, etc. Deadline for paper submissions: April 14, 2008.

☺ July 01-05 7th International Symposium on Parallel and Distributed Computing (ISPDC'2008), Krakow,
Poland. Topics include: Parallel Computing; New Parallel System Concepts and Architectures;
Distributed Systems Methodology and Networking; Parallel Programming Paradigms and APIs; Tools
and Environments for Parallel Program Analysis; Task Scheduling and Load Balancing; Performance
Management in Parallel and Distributed Systems; Distributed Software Components; Real-time
Distributed and Parallel Systems; Security in Parallel and Distributed Systems; Fault Tolerance in
Parallel and Distributed Systems; Parallel Scientific Computing and Large Scale Simulations; Parallel
and Distributed Applications; etc.

July 06-13 35th International Colloquium on Automata, Languages and Programming (ICALP'2008),
Reykjavik, Iceland. Topics include: Principles of Programming Languages; Formal Methods and Model
Checking; Models of Concurrent and Distributed Systems; Models of Reactive Systems; Program
Analysis and Transformation; Specification, Refinement and Verification; Type Systems and Theory;
Foundations of Secure Systems and Architectures; Specifications, Verifications and Secure
Programming; etc.

☺ July 06 1st Interaction and Concurrency Experience (ICE'2008). Topics include:
Synchronous and Asynchronous Interactions in Concurrent Distributed Systems;
models, logic and types for interactions; synchronous/asynchronous mechanisms;
expressiveness results; timed and hybrid interactions; verification, analysis and tools;
programming primitives for interactions. Deadline for submissions: April 14, 2008
(abstracts), April 18, 2008 (papers).

☺ July 07-10 2008 International Conference on Software Engineering Theory and Practice (SETP'2008),
Orlando, FL, USA. Topics include: Case studies, Component-based software engineering, Critical
software engineering, Distributed and parallel software architectures, Education aspects of software
engineering, Embedded software engineering, Model Driven Architecture (MDA), Model-oriented
software engineering, Object-oriented methodologies, Program understanding, Programming languages,
Quality issues, Real-time software engineering, Real-time software systems, Reliability, Reverse
engineering, Software design patterns, Software maintenance, Software reuse, Software safety and
reliability, Software security, Software specification, Software tools, Verification and validation of
software, etc.

☺ July 07-11 22nd European Conference on Object Oriented Programming (ECOOP'2008), Paphos, Cyprus.
Topics include: analysis, design methods and design patterns; concurrent, real-time or parallel systems;
distributed systems; language design and implementation; programming environments and tools; type
systems, formal methods; compatibility, software evolution; components, modularity; etc. Deadline for
early registration: June 1, 2008.

☺ July 07 18th Doctoral Symposium and PhD Students Workshop. Topics include: Design
methods and design patterns; Concurrent, real-time or parallel systems; Distributed

Conference Calendar 29

Ada User Journal Volume 29, Number 1, March 2008

systems; Language design and implementation; Programming environments and tools;
Type systems, formal methods; Software evolution; Components, Modularity; etc.
Deadline for submissions: May 1, 2008.

☺ July 07 7th Workshop on Parallel/High-Performance Object-Oriented Scientific
Computing (POOSC'2006). Topics include: tried or proposed programming language
alternatives to C++; issues specific to handling or abstracting parallelism, including the
handling or abstraction of heterogeneous architectures; existing, developing, or proposed
software; grand visions (of relevance); etc. Deadline for submissions: May 14, 2008.

☺ July 07 International Workshop on Advanced Software Development Tools and
Techniques (WASDeTT'2008). Topics include: What features in object-oriented
languages make them easier to build tools for/with? Deadline for submissions: April 30,
2008.

☺ July 07 International Workshop on Object-Oriented Software Development for the
Embedded World (OOSDEW'2008). Topics include: object-oriented language features
for embedded devices; software techniques and tools for optimizing code for embedded
devices; etc. Deadline for submissions: May 4, 2008.

☺ July 07 3rd Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2008). Topics include: Topics
include: implementation of fundamental OOL features: inheritance (object layout, late
binding, subtype test, ...), genericity (parametric types), memory management; runtime
systems: compilers, linkers, etc; optimizations: static and dynamic analyses, threads and
synchronization, etc; resource constraints: real-time systems, embedded systems;
relevant choices and tradeoffs: separate compilation vs. global compilation, dynamic
checking vs. proof-carrying code, annotations vs. no annotations, etc. Deadline for
submissions: May 4, 2008.

July 07-13 20th International Conference on Computer Aided Verification (CAV'2008), Princeton, USA.
Topics include: Algorithms and tools for verifying models and implementations, Program analysis and
software verification, Modeling and specification formalisms, Applications and case studies,
Verification in industrial practice, etc.

☺ July 07-08 Workshop on Exploiting Concurrency Efficiently and Correctly ((EC)^2). Topics
include: advances in programming languages and tools for developing concurrent
software; programming constructs for concurrency; formalization of concurrency
libraries; verification tools; introducing concurrency in education; etc. Deadline for
position paper submissions: April 10, 2008.

July 15-18 9th International Conference on Mathematics of Program Construction (MPC'2008), Marseille
(Luminy), France. Topics of interest range from algorithmics to support for program construction in
programming languages and systems, such as type systems, program analysis and transformation,
programming-language semantics, etc.

July 16-18 Static Analysis Symposium (SAS'2008), Valencia, Spain. Topics include: abstract interpretation,
compiler optimizations, control flow analysis, data flow analysis, model checking, program
specialization, security analysis, type based analysis, verification systems, etc.

July 20-24 International Symposium on Software Testing and Analysis (ISSTA'2008), Seattle, Washington.

☺ July 20 International Workshop on Defects in Large Software Systems (DEFECTS'2008).
Topics include: Techniques to detect, locate, or predict defects; Empirical studies of
defects; Types of defects that occur in software; Evolution of defects over time; Tools
for post-deployment defect detection and reporting; Experience using certain techniques
to identify or predict defects; etc. Deadline for position paper submissions: April 10,
2008.

☺ August 04-06 International Workshop on Concurrent Programming Environment (CoPE'2008), Hsinchu,
Taiwan. Topics include: the foundations, tools and techniques, and experiences in practice for the
development of concurrent software for embedded, real-time, multi-threaded, multi-core,
multiprocessor, cluster, distributed, mobile, ubiquitous, or grid systems.

30 Conference Calendar

Volume 29, Number 1, March 2008 Ada User Journal

☺ August 26-29 14th European Conference on Parallel and Distributed Computing (Euro-Par'2008), Las Palmas de
Gran Canaria, Spain. Topics include: all aspects of parallel and distributed computing, such as Support
tools and environments, High performance architectures and compilers, Parallel and distributed
programming, Theory and algorithms for parallel computation, etc.

☺ August 26 EuroPar2008 - 2nd Workshop on Highly Parallel Processing on a Chip (HPPC'2008).
Topics include: programming models; languages and software libraries; implementation
techniques (e.g. multi-threading, work-stealing); support and performance tools,
performance evaluation; parallel algorithms and applications; etc.; for/on highly parallel
multi-core systems. Deadline for submissions: June 6, 2008.

☺ August 27-29 12th Brazilian Symposium on Programming Languages (SBLP'2008), Fortaleza, Ceara, Brazil.
Topics include: Programming language design and implementation; Design and implementation of
programming language environments; Object-oriented programming languages; New programming
models; Program transformations; Program analysis and verification; Compilation and interpretation
techniques; etc. Deadline for submissions: April 4, 2008 (papers).

☺ September 03-05 7th International Conference on Distributed and Parallel Systems (DAPSYS'2008), Debrecen,
Hungary. Topics include: Distributed and Grid middleware, Parallel and distributed programming
languages and algorithms, Formal models for parallel and distributed computing, Software engineering
and development tools, etc. Deadline for paper submissions: April 1, 2008. Deadline for early
registration: May 8, 2008.

☺ September 07-10 9th Conference on Communicating Process Architectures (CPA'2008), York, UK. Topics include:
Theoretical approaches to concurrency, and formal languages supporting these approaches, including
the integration of existing formal notations; Modelling of, and model-driven development of concurrent
software architectures; Verification and analysis of concurrent systems; Model-checking techniques and
tools for development and analysis; Tools and languages for hardware-software co-design;
Programming languages and environments for concurrent systems; Programming and implementation
issues for concurrent languages, such as deadlock-freedom by design, starvation, and efficient inter-
process communication architectures; System issues for programming languages supporting
concurrency, such as multithreading kernels and interrupt architectures; Applications that exploit, or rely
on, concurrency; etc. Deadline for paper submissions: April 25, 2008. Deadline for early registration:
June 30, 2008.

☺ September 08-12 International Conference on Parallel Processing (ICPP'2008), Portland, Oregon, USA. Topics
include: Compilers and Languages, Software Systems and Tools, etc.

☺ October 06-08 27th IEEE International Symposium on Reliable Distributed Systems (SRDS'2008), Napoli, Italy.
Topics include: High-confidence systems, Critical infrastructures, Distributed embedded systems,
Formal methods and foundations for dependable distributed computing, etc. Deadline for submissions:
April 20, 2008 (abstracts), April 28, 2008 (papers).

October 06-10 2nd IFIP Working Conference on Verified Software: Theories, Tools, Experiments (VSTTE'2008),
Toronto, Canada. Topics include: all aspects of verified software, theoretical as well as experimental,
such as specification languages and case-studies, programming languages, language semantics, software
design methods, automatic code generation, type systems, verification tools (static analysis, dynamic
analysis, model checking, theorem proving, satisfiability), integrated verification environments, etc.
Deadline for submissions: April 30, 2008.

October 15-17 7th International Conference on Software Methodologies, Tools, and Techniques (SoMeT'2008),
Sharjah, UAE. Topics include: Software methodologies, and tools for robust, reliable, non- fragile
software design; Automatic software generation versus reuse, and legacy systems, source code analysis
and manipulation; Intelligent software systems design, and software evolution techniques; Software
optimization and formal methods for software design; Software security tools and techniques, and
related Software Engineering models; End-user programming environment; etc.

☺ October 16-17 16th International Conference on Real-Time and Network Systems (RTNS'2008), Rennes, France.
Topics include: Real-time system design and analysis (task and message scheduling, verification, formal
methods, model-driven development, worst-case execution time estimation, distributed systems, fault-
tolerance, security, ...); Software technologies for real-time systems (compilers, programming
languages, middleware and component-based technologies, ...); Applications (automotive, avionics,

Conference Calendar 31

Ada User Journal Volume 29, Number 1, March 2008

telecommunications, process control, multimedia, inhouse entertainment, robotics); etc. Deadline for
paper submissions: April 26, 2008.

☺ October 19-23 23rd Annual Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA'2008), Nashville, USA. Topics include: new and better programming and
design paradigms as well as practices. Deadline for submissions: July 2, 2008 (Development Program
Proposals, Student Research Competition, Onward! short papers and films, Doctoral Symposium and
Student Volunteers).

☺ October 19-24 Embedded Systems Week 2008 (ESWEEK'2008), Atlanta, Georgia, USA. Includes CASES'2008
(International Conference on Compilers, Architecture, and Synthesis for Embedded Systems),
CODES+ISSS'2008 (International Conference on Hardware/Software Codesign and System Synthesis),
EMSOFT'2008 (International Conference on Embedded Software). Deadline for submissions: April 7,
2008 (abstracts), April 14, 2008 (full papers).

♦ Oct 26-30 2008 ACM SIGAda Annual International Conference (SIGAda'2008), Portland,
Oregon, USA. Sponsored by ACM SIGAda. Topics include: Transitioning to Ada 2005;
Educational challenges for developing reliable, safe, secure software; Ada and SPARK
in the classroom and student laboratory; Language selection for a high reliability
system; Use of high reliability subsets or profiles such as MISRA C, Ravenscar,
SPARK; High reliability standards and their issues; Software process and quality
metrics; Analysis, testing, and validation; Use of ASIS for new Ada tool development;
Mixed-language development; High-reliability development experience reports; Static
analysis of code; Integrating COTS software components; System Architecture &
Design; Information Assurance; Ada products certified against Common Criteria /
Common Evaluation Methodology; etc. Deadline for submissions: May 12, 2008
(technical articles, extended abstracts, experience reports, workshops, panel sessions,
and tutorials).

☺ November 10-12 10th International Symposium on Distributed Objects, Middleware and Applications (DOA'2008),
Monterrey, Mexico. Topics include: Application case studies of distribution technologies; Development
methodologies for distributed applications; Interoperability with other technologies; Reliability, fault
tolerance, quality-of-service, and real time support; Scalability and adaptivity of distributed
architectures; Software engineering for distributed middleware systems; etc. Deadline for submissions:
June 8, 2008 (abstracts), June 15, 2008 (papers).

☺ December 01-04 9th International Conference on Parallel and Distributed Computing, Applications, and
Techniques (PDCAT'2008), Dunedin, New Zealand. Topics include: Parallel/distributed architectures;
Multi-core related technologies; Reliability, and fault-tolerance; Formal methods and programming
languages; Software tools and environments; Parallelizing compilers; Component-based and OO
Technology; Parallel/distributed algorithms; Task mapping and job scheduling; Security and privacy;
etc. Deadline for submissions: April 15, 2008 (workshops), June 1, 2008 (papers), June 30, 2008
(tutorials).

December 01-05 ACM/IFIP/USENIX 9th International Middleware Conference (Middleware'2008), Leuven, Belgium.
Topics include: design, implementation, deployment, and evaluation of distributed system platforms and
architectures for future computing and communication environments. Deadline for submissions: April
23, 2008 (abstracts), April 30, 2008 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

☺ December 10-12 6th International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2008), Sydney, Australia. Topics include: all aspects of Parallel/Distributed Computing and
Networking, and their applications, such as Parallel/distributed system architectures, Tools and
environments for software development, Distributed systems and applications, Reliability, fault-
tolerance, and security, etc. Deadline for submissions: June 1, 2008 (papers)

Forthcoming Events 33

Ada User Journal Volume 29, Number 1, March 2008

Preliminary Call for Participation

13th International Conference on Reliable
Software Technologies – Ada-Europe 2008

16-20 June 2008, Venice, Italy
http://www.ada-europe.org/conference2008.html

The Conference
The 13th International Conference on Reliable Software Technologies – Ada-Europe 2008 will take place in Venice, Italy, on 16-20
June 2008. Following its consolidated tradition, the conference will span a full week, with at its centre from Tuesday to Thursday a
three-day technical program accompanied by vendor exhibitions, and at either end on Monday and Friday a string of parallel tutorials.
The previous twelve editions in this conference series were held at Montreux, Switzerland (‘96), London, UK (‘97), Uppsala, Sweden
(‘98), Santander, Spain (‘99), Potsdam, Germany (‘00), Leuven, Belgium (‘01), Vienna, Austria (‘02), Toulouse, France (‘03), Palma de
Mallorca, Spain (‘04), York, UK (‘05), Porto, Portugal (‘06) and Geneva, Switzerland (‘07).

The conference has established itself as an international forum for providers, practitioners and researchers into reliable software
technologies. The conference presentations will illustrate current work in the theory and practice of the analysis, design, programming,
verification and maintenance of long-lived, high-integrity software systems for a variety of application domains. The program also
features outstanding keynotes and a robust track of industrial presentations. As usual, the conference provides ample time for Q&A
sessions, panel discussions and social events. Participants include practitioners and researchers from industry, academia and
government organizations interested in the promotion and development of reliable software technologies.

Overall Program
The conference program altogether features 10 tutorials, a technical program of 20 thoroughly refereed papers, a collection of 12
industrial presentations reflecting current practice and challenges in real-life software projects, a special track on software engineering
education, three eminent invited speakers, a rich exhibition, and an especially attractive social program. Springer will publish the
proceedings of the regular program of conference as Volume 5026 of the LNCS. The Ada User Journal will publish the proceedings of
the other tracks of the program.

Keynote Addresses
Three eminent keynote speakers have been selected to open each day of the core conference program:

� Alberto Sangiovanni-Vincentelli (University of California at Berkeley, USA), a most authoritative member of the embedded
systems community, will deliver a talk entitled: Embedded Software Design: Art or Science?

� Robert Dewar (New York University, USA), a worldwide expert in programming technologies, will discuss where programming
languages are expected to go next in a talk evocatively entitled: Lost in Translation.

� Christian Queinnec (Lip6 Paris, France), a leading researcher in reliable software technologies, will explore the inner heart of the
Service-Oriented Architecture in a talk entitled: Three ways to improve SOA reliability.

34 Forthcoming Events

Volume 29, Number 1, March 2008 Ada User Journal

Tutorial Program
The two days at either side of the core conference program include a rich selection of tutorials delivered by domain experts who will
cover a variety of topics of interest to the conference community:

� AADL: Architecture Analysis and Design Language, Jean-Pierre Rosen (Adalog, France)

� The best of Ada 2005, John Barnes (John Barnes Informatics, UK)

� Object-Oriented Programming in Ada 2005, Matthew Heaney (On2 Technologies, USA)

� Preserving Model-Asserted Real-Time Properties at Execution Level for High-Integrity Systems, Tullio Vardanega (University of
Padua, Italy), Juan Antonio de la Puente (Technical University of Madrid, Spain)

� Technical Basis of Model Driven Engineering and
Verification Techniques for Dependable Systems, both by William Bail (The MITRE Corporation, USA)

� A Practical Introduction to Model-Driven Software Development using Eclipse, Cristina Vicente-Chicote and Diego Alonso-Cáceres
(Universidad Politécnica de Cartagena, Spain)

� Languages for Safety-Critical Software: Issues and Assessment, Benjamin Brosgol (AdaCore, USA)

� Service-Oriented Architecture Concepts and Implementations, Ricky Sward (The MITRE Corporation, USA)

� About Real-Time Scheduling Analysis of Ada Applications, Frank Singhoff (University of Brest, France).

Technical Program
The technical program of the conference includes 20 thoroughly peer-refereed papers on a wealth of subjects pertinent to the
conference themes, from submissions coming from over 20 countries worldwide. The program also features a day-long collection of 12
industrial presentations of challenges faced and solutions devised in real-life projects, a half-day track focusing on software engineering
education and a half-day vendor-presentation session.

Exhibition
The exhibition will open in the mid-morning break on Tuesday and run continuously until the end of the afternoon break on Thursday.
Coffee breaks and exhibitions will both be held in a spectacular cloister area in the inner heart of the conference centre. Breaks will last
one full hour to allow attendees comfortable time to visit the exhibition.

Conference Venue
Venice is a marvel that words can’t explain. You really want to wander its alleys and enjoy the experience of its floating on the water.
We are truly fortunate at being able to host the first coming of the conference in Italy, at a 10-minute walk from piazza San Marco, the
most renowned centre of Venetian urban architecture, which still bears the signs of amazingly thriving cultural and commercial life
when the Venetian republic was the gateway of Europe to the Far East. The conference centre, built on a fully-refurbished and
modernly equipped restoration of a XVI-century convent, is located at the “Zattere” overlooking the Giudecca island, on the South-
South-East angle of Venice, just behind the Accademia, which holds treasures of art.

Venice has the third most visited airport in Italy, directly connected to all capital cities in Europe, and to some major cities in the USA
and Asia. The airport location offers a majestic view of the lagoon on many landing and take-off routes. Venice is connected to the
airport via both water and land transport.

Social Program
The social program of the conference will open with a welcome reception at Palazzo Loredan-Franchetti, a three-storied patrician villa
overlooking the Grand Canal, which hosts the historic premise of the regional institute for science, literature and art. The reception will
be accompanied by musical entertainment offered by distinguished members of the conference community.

The conference banquet will take place in the island of Torcello, the farthest island of the lagoon, just past picturesque Burano. The
Torcello island which used to be vastly populated at the time of the Venetian republic has lost almost all of its population but kept its
beauty and natural, cultural and historical attraction. The conference participants will ride on a private boat along the Grand Canal to
the renowned “Osteria del Diavolo” restaurant at Torcello. The journey will be accompanied by appetizers and musical entertainment,
as well as by the spectacular scenery of the lagoon itself viewed first at sunset and then in the fullness of night on the return leg.

In cooperation with SIGAda

For the latest information on the conference consult: http://www.ada-europe.org/conference2008.html

Forthcoming Events 35

Ada User Journal Volume 29, Number 1, March 2008

Call for Technical Contributions
Submission Due Date: May 12, 2008

SIGAda Annual International Conference: Toward Safe, Secure, Reliable Software
October 26-30, 2008

University Place Hotel and Conference Center, Portland, Oregon, USA
http://www.acm.org/sigada/conf/sigada2008/

(ACM Approval Pending)

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary software. The
application of software engineering methods, tools, and languages all interrelate to affect how and whether these
requirements are met.
Such software is in operation in many domains of application. Much has been accomplished in recent years, but much
remains to be done. Our tools, methods, and languages must be continually refined; our management process must remain
focused on the importance of reliability, safety, and security; our educational institutions must fully integrate these concerns
into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers interested in
developing, analyzing, and certifying reliable, safe, secure software. We are soliciting technical papers and experience reports
with a focus on, or comparison with, Ada. We are especially interested in experience in integrating these concepts into the
instructional process at all levels.
CONFERENCE LOCATION: Portland is the attractive, livable “City of Roses” in the Pacific Northwest. The weather in
October is usually cool and often beautiful. University Place is a modern and reasonably-priced hotel located within walking
distance of the central business district, the lively riverfront area, and the Portland State University campus.
HOW YOU CAN CONTRIBUTE: SIGAda 2008 solicits contributions in six major categories: Technical Articles,
Extended Abstracts, Experience Reports, Workshops, Panel Sessions, and Tutorials. Contributions from students and faculty
are actively solicited. Final acceptance will be contingent on a commitment to present the contribution at the Conference.
POSSIBLE TOPICS include but are not limited to:
• Transitioning to Ada 2005
• Educational challenges for developing reliable, safe,

secure software
• Ada and SPARK in the classroom and student

laboratory
• Language selection for highly reliable systems
• Mixed-language development
• Use of high reliability subsets or profiles such as

MISRA C, Ravenscar, SPARK
• High-reliability standards and their issues

• Software process and quality metrics
• Analysis, testing, and validation
• Use of ASIS for new Ada tool development
• High-reliability development experience reports
• Static analysis of code
• Integrating COTS software components
• System Architecture & Design
• Information Assurance
• Ada products certified against Common Criteria /

Common Evaluation Methodology

TECHNICAL ARTICLES present significant results in research, practice, or education. These papers will be double-blind
refereed and published in the Conference Proceedings and in Ada Letters. Articles are typically 10-20 pages in length.
Through the widely-consulted ACM Digital Library, the Proceedings will be accessible online, to university campuses and to
ACM's 80,000 members.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If your
abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings. Extended abstracts
will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work by
you and others (with bibliographic references), results to date, and future directions.
EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a 1-2 page
description of the project and the key points of interest of project experiences. Descriptions will be published in the final
program or proceedings, but a paper will not be required.

36 Forthcoming Events

Volume 29, Number 1, March 2008 Ada User Journal

PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange views with
each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic, coordinator, and potential
panelists.
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore issues,
exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and requirements for
participation will be published in the Advance Program. Workshop proposals, up to 5 pages in length, will be selected by the
Program Committee based on their applicability to the conference and potential for attracting participants.
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling technologies
which make the engineering of Ada applications more effective. Submissions will be evaluated based on relevance, suitability
for presentation in tutorial format, and presenter’s expertise. Tutorial proposals should include the expected level of
experience of participants, an abstract or outline, the qualifications of the instructor(s), and the length of the tutorial (half-day
or full-day). Tutorial presenters receive complimentary registration to the other tutorials and the conference.
HOW TO SUBMIT:
Send contributions by May 12, 2008, in Word, PDF, or text format as follows:
Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals: Program Chair, Leemon C.
Baird III (leemon.baird@usafa.edu).
Workshop proposals: Workshops Chair, Bill Thomas (Bthomas@MITRE.org).
Tutorial proposals: Tutorials Chair, David A. Cook (Dcook@AEgisTG.Com).
OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper selected by
the program committee as the outstanding student contribution to the conference.
SPONSORS AND EXHIBITORS: Please contact S. Ron Oliver (SROliver@CSC.CalPoly.Edu) or Greg Gicca
(gicca@adacore.com) for information about becoming a sponsor and/or exhibitor at SIGAda 2008.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS:
General Visa Information: The sites http://www.UnitedStatesVisas.gov and http://travel.state.gov have information about
obtaining a visa for those traveling to the United States. Both sites have links to websites for U.S. embassies and consulates
worldwide. The embassy and consulate websites have helpful information about procedures, timelines, communities served,
required documentation, and fees.
Letters from ACM: International registrants should be particularly aware and careful about visa requirements, and should plan
travel well in advance. All visa inquiries must be handled by ACM Headquarters. Please send your request for a letter in
support of a visa application to Ashley Cozzi (acozzi@acm.org), and include your name, mailing address, and fax number, as
well as the name of the conference you are attending. Authors should also include the title of their contribution. Please note
that ACM does not issue formal “letters of invitation” to any of its conferences.
Please submit any questions on the conference to the Conference Chair, Michael Feldman (mfeldman@gwu.edu).
CONFERENCE COMMITTEE:
Conference Chair
Michael Feldman
George Washington Univ. (retired)

Program Chair
Leemon C. Baird III
US Air Force Academy

Exhibits and Sponsors
S. Ron Oliver
caress Corporation

Publicity
Ron Price
Consultant

Treasurer
Martin C. Carlisle
US Air Force Academy

Exhibits and Sponsors
Greg Gicca
AdaCore

Workshops
Bill Thomas
The MITRE Corporation

Proceedings and Webmaster
Clyde Roby
Institute for Defense Analyses

Local Arrangements
Elizabeth Adams
James Madison University

Registration
Thomas A. Panfil
US Department of Defense

Tutorials
David A. Cook
AEgis Technologies Group, Inc

Local Arrangements
Geoff Smith
Lightfleet Corporation

SIGAda Chair
John W. McCormick
University of Northern Iowa

SIGAda Vice Chair, Mtgs & Confs
Ricky E. Sward
The MITRE Corporation

38

Volume 29, Number 1, March 2008 Ada User Journal

Practical Application of Static Analysis for
Embedded Systems
David N. Kleidermacher
Green Hills Software, Inc.; email: davek@ghs.com.

Abstract
Static analysis is a promising technique for improving
reliability and security of software and systems. Static
analysis tools analyze software to find flaws that may
go undetected using traditional techniques, such as
compilers, human code reviews, and testing. A
number of limitations, however, have prevented
widespread adoption in everyday embedded software
development. Static analysis tools often take too long
to execute, are not well integrated into the software
development environment, and are expensive to
procure. In addition, static analysis tools have not
been effectively applied to problems, such as multi-
thread synchronization and stack overflow errors,
that are specific to embedded systems. Furthermore,
static analysis techniques should be extended to
include enforcement of coding standards that are
commonly used in high reliability embedded software
development processes. This paper will introduce a
new approach to static analysis that solves many of
these problems. Specific metrics will be provided to
demonstrate how the new approach makes the use of
static analysis tools practical and effective for
everyday embedded software development.

1 Introduction
Static source code analyzers attempt to find code sequences
that when executed could result in buffer overflows,
resource leaks, or many other security and reliability
problems. Source code analyzers are effective at locating a
significant class of flaws that are not detected by compilers
during standard builds and often go undetected during run-
time testing as well.

Earlier is Better
A number of studies over the years have shown that the
cost of detecting and correcting a software flaw increases
dramatically as a project moves through the development,
integration, quality assurance, and deployment cycle [1], as
depicted in figure 1. This reality matches common sense: a
software developer who finds his own bug soon after
adding it has recent context in which to quickly understand
and fix the problem. As a project enters integration and test
phases, a flaw is often discovered by someone other than
the developer who added it and often much later than the
flaw was introduced. This of course makes it more difficult
to trace the flaw back to its source and for developers to
infer the cause and determine the optimal solution to the
problem. Once a product has been deployed, the cost of a

serious flaw is bloated by customer service resource usage,
patching protocols, recalls, and returns.

From the cost perspective, static analysis is one of the most
powerful tools in the software developer’s arsenal because
it enables flaws to be cheaply discovered and fixed well
before even a single line of code is ever executed.

Figure 1 Cost of software flaws

Software Complexity
Many of the problems relating to loss in quality and safety
in software can be attributed to the growth of complexity
that cannot be effectively managed [2]. For instance,
desktop operating system code bases have been increasing
at a staggering rate. Microsoft Windows went from 6M
lines of code in 1993, to 29M in 2000, to 50M in 2005.
Debian Linux increased even more rapidly: over 55M loc
in 2000, to 104M in 2002, to 215M in 2005 [3].

Embedded systems are suffering widely from this
complexity boom, as faster microprocessors and customer
demand provide a fertile ground for software-based
multimedia, connectivity, and overall intelligence
enhancement. Security flaws are yet another example of the
loss in quality resulting from complexity; according to
CERT statistics, the number of documented vulnerabilities
has been increasing almost exponentially, from
approximately 400 in 1999, to more than 4000 in 2002, and
more than 8000 in 2006 [4].

Complexity strains traditional reliability techniques such as
code reviews and implies a growing necessity for
automated static analysis tools.

Common Features of Static Analysis Tools
Most source code analyzers perform a full program
analysis, finding bugs caused by complex interactions

D. Kleidermacher 39

Ada User Journal Volume 29, Number 1, March 2008

between pieces of code that may not even be in the same
source file.

The analyzer determines potential execution paths through
code, including paths into and across subroutine calls, and
how the values of program objects (such as standalone
variables or fields within aggregates) could change across
these paths. The objects could reside in memory or in
machine registers.

The analyzer looks for many types of flaws. It looks for
bugs that would normally compile without error or
warning. The following is a list of some of the more
common errors that an analyzer will detect:

• Potential NULL pointer dereferences

• Access beyond an allocated area (e.g. array or
dynamically allocated buffer); otherwise known as a
buffer overflow

• Writes to potentially read-only memory

• Reads of potentially uninitialized objects

• Resource leaks (e.g. memory leaks and file descriptor
leaks)

• Use of memory that has already been deallocated

• Out of scope memory usage (e.g. returning the address
of an automatic variable from a subroutine)

• Failure to set a return value from a subroutine

• Buffer and array underflows

The analyzer often has knowledge about how many
standard runtime library functions behave. For example it
knows that subroutines like free should be passed pointers
to memory allocated by subroutines like malloc. The
analyzer uses this information to detect errors in code that
calls or uses the result of a call to these functions.

The analyzer can also be taught about properties of user-
defined subroutines. For example if a custom memory
allocation system is used, the analyzer can be taught to look
for misuses of this system. By teaching the analyzer about
properties of subroutines, users can reduce the number of
false positives. A false positive is a potential flaw identified
by the analyzer that could not actually occur during
program execution. Of course, one of the major design
goals of static analyzers is to limit the number of false
positives so that developers can minimize time looking at
them. If an analyzer generates too many false positives, it
will become irrelevant because the output will be ignored
by engineers. However, since an analyzer is not able to
understand complete program semantics, it is not possible
to totally eliminate false positives. In some cases, a flaw
found by the analyzer may not result in a fatal program
fault, but could point to a questionable construct that should
be fixed to improve code clarity. A good example of this is
a write to a variable that is never subsequently read.

A common output format of a static analysis tool is a set of
web pages hosted by a web server. Green Hills Software’s
DoubleCheck™ analyzer is also capable of emitting errors

Figure 2 Web page flaw summary

as part of the build process. The web interface enables the
user to browse high level summaries of the different flaws
found by the analyzer (Figure 2) and then click on
hyperlinks to investigate specific problems. Within a
specific problem display, the error is usually displayed
inline with the surrounding code, making it easy to
understand (Figure 3). Function names and other objects
are hyperlinked for convenient browsing of the source
code. Since the web pages are running under a web server,
the results can easily be shared and browsed by any
member of the development team.

Open Source Static Analysis
As a later example will show, current generation open
source static analysis tools such as lint and splint suffer
from high false positive rates, making them impractical for
use on complex software projects. The analysis time
required to sift through the false positives often far

40 Pract ical Appl icat ion of Stat ic Analys is for Embedded Systems

Volume 29, Number 1, March 2008 Ada User Journal

Figure 3 Context-sensitive flaw display

outweighs the cost of more accurate commercial static
analysis tools.

2 Barriers to Widespread Adoption
A recent survey found that less than 5% of embedded
systems engineers make regular use of static analysis tools
[5]. Engineers cited several barriers to adoption: poor
integrated development environment (IDE) integration;
prohibitive execution time; lack of features specific to
embedded systems; and cost.

IDE Integration
Commercial static analyzers often run as separate tools,
distinct from the tool chain used to develop and build
application software. Thus, users must separately install,
license, and configure the analyzer. Configuration can often
be time consuming, requiring days of customization in
order to cajole the analyzer into processing the user’s
particular dialect of source code.

Green Hills Software’s DoubleCheck™ analyzer introduces
a new approach in which the static analysis is performed
within the same compiler used to build software. This
approach brings with it several advantages, including the
obvious benefit of reducing the time to effective usage.
Since static analysis is performed by the compiler, it
doesn’t need to make guesses regarding the proper
application of build options, location of include header files
and directories, or the definitions of preprocessor macros.
Flaws discovered by the static analyzer can be interleaved
with the other standard diagnostics output by the compiler
(figure 4). Furthermore, common IDE integrations between
the project builder and the editor augment the usability of
the static analysis tool: when a static analysis flaw is
reported during the build process, the user can hyperlink
from the builder’s output window back to the source code
quickly, rectify the error, and then return to building the
program.

Figure 4 Integration of static analysis with project builder

With proper builder integration, static analysis becomes
merely another option that any developer can easily enable
or disable from the options menu.

Execution Time
Many commercial static analyzers require orders of
magnitude more execution time than a regular compile.
Large software projects may require hours or even days of
analysis time. This execution cost presents a barrier to
adoption. Static analysis, if used at all, will only be
employed periodically or during test phases. Knowing that
software development cost and time to market decrease
when flaws are detected earlier in the project cycle, it
follows that static analysis tools could enjoy improved
adoption if execution time can be reduced to a level that
encourages constant use; developers can detect flaws while
software is first written and before it is ever committed to a
configuration management system.

Here again is where the integrated compiler approach
proves beneficial. DoubleCheck’s analysis engine takes
advantage of dataflow analysis, constant propagation, and
path pruning algorithms, developed and tuned for execution
time efficiency over many years to perform complex code
optimizations. The result is that the integrated analyzer
performs much better than traditional standalone analyzers.

Secondly, the total time to build and analyze software is
reduced since the compiler uses a single parsing pass of the
code to perform both compilation and analysis.

Thirdly, the integration with the IDE enables the analyzer
to take advantage of the IDE’s existing distributed build
mechanism. The parsing pass for the project’s source code
is distributed across idle workstation assets on a user’s
network, dramatically reducing the total analysis time.

Finally, the compiler and project builder’s dependency
analysis system monitors which sources have changed
since the last build to analyze only those functions that
matter, thereby reducing analysis time throughout the
project development cycle.

D. Kleidermacher 41

Ada User Journal Volume 29, Number 1, March 2008

Studies have shown that the integrated compiler approach
to static analysis yields analysis times comparable with
traditional compilation times, thereby removing an
important barrier to adoption.

Lack of Focus for Embedded Systems
Many static analyzers were designed for enterprise
software development projects and therefore ignore some
of the thorny problems, such as run-time stack overflow
and multi-thread synchronization problems that plague
embedded software developers.

Stack overflow detection presents another problem
addressed by the integrated compiler approach: when the
tool generates code, the stack sizes are known for each
subroutine, enabling the analyzer to compute worst case
stack size requirements and warn the user when these
requirements exceed the programmer’s per-thread
allocations.

Since embedded systems often employ real-time operating
systems (RTOS), the static analysis tools should
incorporate RTOS-awareness. For example, the static
analysis tool should understand the RTOS application
programming interface (API) so that thread creation
functions and their parameters (e.g. entry point, stack size)
are parsed and used to automatically detect stack overflows
without requiring any special user customization. RTOS-
specific resources, such as mutexes, message queues, and
I/O devices, can be automatically tracked to avoid improper
deallocations and leaks. RTOS awareness enables a static
analyzer to address important, and often subtle, flaws that
plague embedded system reliability.

3 Case Study
According to apache.org, the Apache open source hypertext
transfer protocol (HTTP) server is the most popular web
server in the world, powering more than 70% of the web
sites on the Internet [6]. Given the ubiquity of Apache and
the world’s dependence on the Internet, the reliability and
security of Apache represent an important concern for all of
us. A serious flaw in Apache could cause widespread
inconvenience, financial loss, or worse.

The Apache web server consists of approximately 150,000
lines of code. This code has been analyzed by a number of
static analysis tools. Coverity recently published results of
their analysis, showing 22 errors and 10 minutes of analysis
time [7].

Apache Flaws Found
Green Hills Software’s DoubleCheck analyzer reported a
larger number of flaws: 140. DoubleCheck found a
significant number (126) of potential NULL dereferences
such as the following from line 120 in Apache source file
scoreboard.c:

 ap_scoreboard_image = calloc(1, sizeof(scoreboard) +
 server_limit * sizeof(worker_score *) +
 server_limit * lb_limit * sizeof(lb_score *));

Clearly, this allocation of memory could be substantial. It
would be a good idea to make sure that the allocation

succeeds before referencing the contents of
ap_scoreboard_image. However, soon after the allocation
statement, we have this use:

 ap_score_board_image->global =
 (global_score *) more_storage;

The dereference is unguarded, making the application
susceptible to a fatal crash. Another example can be found
at line 765 in the file mod_auth_digest.c:

 entry = client_list->table[idx];
 prev = NULL;
 while (entry->next){ /* find last entry */
 prev = entry;
 entry = entry->next;
 …
 }

Note that the variable entry is unconditionally dereferenced
at the beginning of the loop. This alone would not cause the
analyzer to report an error. At this point in the execution
path, the analyzer has no specific evidence or hint that entry
could be NULL or otherwise invalid. However, the
following statement occurs after the loop:

 if (entry) {
 …
 }

By checking for a NULL entry pointer, the programmer has
indicated that entry could be NULL. Tracing backwards, the
analyzer now sees that the previous dereference to entry at
the top of the loop is a possible NULL reference.

Apache Analysis Time
Executing on the same hardware platform documented in
the Coverity report, DoubleCheck required less than two
minutes of execution time, approximately a factor of five
faster. When the distributed analysis feature was enabled,
analysis time was further reduced to approximately 30
seconds.

As part of this research project, Green Hills Software
engineers also ran the standard Linux-hosted splint analysis
tool on the Apache web server source base, resulting in a
report of 19197 errors, a false positive rate beyond practical
use.

4 Conclusion
Most high reliability development processes espouse the
use of a coding standard that governs how developers write
code [8]. The goal of the coding standard is to increase
reliability by promulgating intelligent coding practices. For
example, a coding standard may contain rules that help
developers avoid dangerous language constructs, limit
complexity of functions, and use a consistent syntactical
and commenting style. These rules can drastically reduce
the occurrence of flaws, make software easier to test, and
improve long term maintainability.

Static analysis represents the next major ingredient to be
added to high quality coding standards. The integrated
compiler approach makes it easy and efficient to

42 Pract ical Appl icat ion of Stat ic Analys is for Embedded Systems

Volume 29, Number 1, March 2008 Ada User Journal

incorporate automated static source code checking into the
everyday software development process.

References
[1] The Economic Impacts of Inadequate Infrastructure for

Software Testing, NIST, May 2002, p. 1-13.

[2] Parker, R., Are Vendors Doing Enough To Improve
Software?, Optimize Magazine. Available at:
http://www.optimizemag.com/issue/009/squareoff.htm

[3] Wikipedia - Source lines of code. Available at:
http://en.wikipedia.org/wiki/Source_lines_of_code

[4] CERT Statistics. Available at: http://www.cert.org/stats

[5] Informal survey of 100 engineers at Embedded World
2006, Nuremberg, Germany.

[6] http://httpd.apache.org

[7] Chelf, B., Measuring Software Quality: A Study of
Open Source Software, February 2007.

[8] DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, RTCA inc,
1992.

Contact
David Kleidermacher is Chief Technology Officer at Green
Hills Software where he has been designing compilers,
software development environments, and operating systems
for the past sixteen years. David is responsible for the
company’s product planning, development, deployment,
and technical support. David holds a bachelor of science in
computer science from Cornell University. Contact David
at davek@ghs.com.

 43

Ada User Journal Volume 29, Number 1, March 2008

* The complete Proceedings of the 13th International Real-Time Ada Workshop previously appeared in ACM Ada Letters, Volume XXVII, Number 2,
August 2007; reprinted with permission.

13th International Real-Time Ada Workshop

17-19 April 2007

Woodstock, Vermont
USA

Session: Programming Patterns and Libraries

from the Proceedings* edited by: Juan Antonio de la Puente

Program Committee
Alan Burns Javier Miranda José F. Ruiz
Ben Brosgol b Luis Miguel Pinho Tullio Vardanega
Michael González Harbour Juan Antonio de la Puente a Andy Wellings
Stephen Michell Jorge Real

a Program Chair b Local Chair

Workshop Participants

Name Institution
Mario Aldea Rivas Universidad de Cantabria, Spain
Neil Audsley University of York, UK
Ben Brosgol AdaCore, USA
Alan Burns University of York, UK
Michael González-Harbour Universidad de Cantabria, Spain
J. Javier Gutiérrez Universidad de Cantabria, Spain
Stephen Michell Maurya Systems, Canada
Brad Moore General Dynamics, Canada
Juan Antonio de la Puente Universidad Politécnica de Madrid (UPM), Spain
Jorge Real Universidad Politécnica de Valencia, Spain
José F. Ruiz AdaCore, France
J.C. Smart Department of Defense, USA
Santiago Urueña Universidad Politécnica de Madrid (UPM), Spain
Tullio Vardanega University of Padua , Italy
Andy Wellings University of York, UK
Rod White MBDA, UK
Curtis Winters Aonix, USA
Juan Zamorano Universidad Politécnica de Madrid (UPM), Spain

Sponsors

44

Volume 29, Number 1, March 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Session: Programming Patterns and Libraries
Chair: Michael González Harbour
Rapporteur: J. Javier Gutiérrez

1 Session Goals
The chairman introduced the session pointing out its main
goals, which were to:

• discuss different visions of architectural frameworks
and coding patterns with Ada 2005

• and formulate proposals and roadmaps to facilitate
adoption or secondary standards.

Afterwards, the three papers [1][2][3] included in this
session were briefly introduced by their authors followed
by the discussion on the issues proposed in them.

2 Real-Time Utilities
Andy Wellings introduced the topic included in paper [1]
by showing how real-time utilities can be provided as
extensions to Ada, looking at previous experiences coming
for example from Real-Time Java, which has a lot of
available utilities. It was stated that, from the beginning,
Ada 83 provided good and relatively simple low-level
mechanisms for programming those kinds of systems, but
considering the complexity of the new mechanisms
introduced in the Ada 2005 and the requirements of modern
applications it is desirable to provide higher-level utilities.
Modern programming languages follow this path so there is
a need for having this support also in Ada, perhaps through
a secondary standard or some other dissemination process.

Once the initial position was set, Andy talked about the
following issues that an application may require: templates
(for periodic, sporadic or aperiodic tasks), to limit the
amount of CPU-time that a task can receive by its
association to an execution-time server, what happens in
the case of a deadline miss or an execution time overrun,
and the nature of the mode changes.

The proposed approach splits the support for the task into
four components, each one encapsulated in a package: the
application functionality (Real_Time_Task_State package),
the mechanisms needed to control the release of real-time
tasks and to detect the deadline missed or execution time
overruns (Release_Mechanisms package), the response of
tasks to deadline misses or execution time overruns
(Real_Time_Tasks package), and the mechanisms to ensure
that a subsystem is only given a certain amount of the CPU
resource (Execution_Server package).

The specification of the Real_Time_Task_State package
defines the Task_State type as the root of a class with
operations to execute on each release of the task and when
a deadline miss or an execution time overrun occurs. Then
the inherited classes for periodic, sporadic and aperiodic

tasks can be derived (see the position paper [1] for details).
The main idea is that this structure is provided to the
application developer as a ready-to-use infrastructure so
that he or she can just concentrate on the functionality. An
initial comment was made to propose the usage of
interfaces to implement the state of a task. The difficulty of
having public data attributes in the specification could be
solved by adding set/get operations to manage these
attributes.

The implementation of the release mechanisms specifies
every release mechanism as a synchronized interface
derived from the root type and separated in child packages
for only deadline miss notification, only overrun detection,
or both. The execution time servers were briefly introduced
as the mechanisms capable of guaranteeing the usage of a
fixed amount of the CPU resource for periodic, aperiodic or
sporadic tasks. Finally, the action tasks for this framework
are implemented via task templates; an example of a real-
time task with deadline termination was shown. This
finished the presentation of the position paper and led to an
initial discussion.

The following topics were pointed out as part of this
discussion:

• A question about whether it is possible or not to pass
some data on the release.

• The possibility of addressing mode changes.
Information on the current mode might be included in
the release code, or could be added as an additional
parameter to the operation Inform_Of_a_Deadline_Miss,
although this could allow extensions in ways other than
expected and become more complex.

• The possibility of having several kinds of notification. It
was stated that with the individual handling of
notifications and their possible combinations, adding
more kinds in the future would make the framework
become much more complex.

• A question on whether a pattern such as x over y times
of deadline misses can be constructed into this
framework.

• The possibility of having a matrix of pending
notifications or some hierarchy on the notification
treatment.

At this point it was suggested to go to other presentations
and come back later to a more general discussion.

3 Programming Servers in Ada 2005
Alan Burns presented the second position paper [2], which
deals with the issue of programming execution-time servers

M. González Harbour, J . J . Gut iérrez 45

Ada User Journal Volume 29, Number 1, March 2008

in Ada 2005. He introduced the new features of Ada 2005
to control the execution time of a group of tasks managed
together and to stop all of them if some budget is
exhausted, and showed an example for a deferrable server
running all client tasks (previously registered) at the same
fixed priority.

Afterwards, he set the aim of their proposal to classify
different types of servers that programmers might wish to
use, in order to produce a library of these servers. The types
of server should be classified according to the following
characteristics:

• Dispatching: all clients have the same priority (serial),
servers have a unique range of priorities (concurrent), or
each client has a priority (similar to the Java model with
processing groups, which is difficult to analyze). A
comment was made to take into account the possibility
of having only one client per server.

• Scheduling: Fixed Priorities, EDF, and perhaps mixed
schemes.

• Replenishment: periodic, or related to usage (limiting or
not the level of concurrency).

• Identifying sessions: to know if a client is active or not
in the server, or to notify the server when a client is
active, when it blocks, and when it ends its execution
for the current instance. It should be useful for soft real-
time.

• Whether a client should be informed or not when the
budget is exhausted.

• Client binding: whether the client should follow the
behaviour of the server or not.

• Different models for capacity sharing.
As a conclusion, the motivation is to see if Ada 2005 is
useful for programming these issues, and to identify
different server types in addition to deferrable, sporadic,
periodic, constant bandwidth preserving, etc.

Once the presentation was finished, it was asked if the
servers could be integrated into the previously discussed
framework. The answer was that it could be addressed once
the mechanism for session control is defined and the details
of its integration with the framework are solved. It was
suggested that priority bands could emulate a server by
attaching the task to a band. Finally, it was expressed that
the main idea is to put together different types of
dispatching and scheduling policies, and that the same
reasons that move people to use Ada, could move them to
use the frameworks.

4 Ada 2005 Code Patterns for MDA
The third position paper [3] was presented by Tullio
Vardanega, who talked about a 4-view MDA (Model
Driven Architecture) design space. The notion is quite
similar to that presented in [1], i.e., to propose templates
and a framework that programmers can follow. This
framework has been designed to support the usage of Ada
in applications oriented to the Ravenscar profile. The main
goal is to allow the designer of an application to

concentrate on its functional parts, i.e., the designer only
needs to worry about the sequential parts of the code, and
not about other aspects like concurrency for example.

The framework gives an interface of a model to build the
application. This is made via the Application-Level
Containers which hold the functional modeling of the
application. These containers are not executable but they
are all that the designer needs to work with. The framework
has other types of containers, called Virtual Machine-Level
Containers, into which the Application-Level ones are
mapped, and that support the execution aspects of the
framework. The idea is to show if the whole process is
correct, i.e., if the original structure corresponds to the final
application.

Tullio showed an example about how concurrency can be
overlaid. In this example the designer only has to write an
operation corresponding to the functional view of the
framework, while the rest of the views are offered as
templates where nothing has to be coded. This way, the
operation is a method inserted into a complex framework
(very similar to a components framework). Again, the main
idea is not to involve the user in the structural Ravenscar or
real-time part. The proposed framework is currently
working on an UML and Eclipse environment, fully
automated and producing Ravenscar code. Another idea is
to explore the use of Ada interfaces instead of generics.

5 Discussion
Following the introduction of the three position papers
made by their authors, a main discussion started with an
initial question by the chair of the session related to how to
proceed, i.e., if some kind of standard should be produced.
The idea is to produce a unique framework probably
proposed as a secondary standard. The comments that this
question arisen can be summarized as follows:

• The question is whether or not we can do it and how it
can be funded.

• A comment to focus on paradigms and not only on the
language.

• To find funding for the different developments, it would
be a good idea to have an initial comparison, looking at
similar efforts such as those by the companies exploring
Java. It was suggested that this would be a second step
and before having a full implementation, people could
contribute by implementing parts of the framework (as
student projects or things like that).

• It was expressed that it was early to propose the
frameworks as a secondary standard.

• It was asked if anybody was familiar with the Container
Library, and the process by which it had been
standardized. We could follow the same path as a
second step, and perhaps ARTIST could give support to
the first step.

• It was suggested to use the framework proposed in [1],
perhaps borrowing ideas from the framework proposed in
[3], and trying to integrate the servers presented in [2].

46 Session: Programming Patterns and Librar ies

Volume 29, Number 1, March 2008 Ada User Journal

• It was suggested there was a need for minimal
documentation in order for other people to contribute to
the project with new servers or components, and to be
familiar with the framework.

The discussion then focused on Andy’s slides to dwelve
deeper into the use of an interface for the definition of the
Task_State in the Real_Time_Task_State package instead
of an object with attributes and methods. The issue brought
up a lot of comments and questions that can be summarized
as follows:

• A reason to have an interface is to be able to add other
concepts in the future, for example, fault tolerance.

• It was asked if Any_Task_State could be an access to an
interface.

• An alternative was proposed to do the type Task_State
a tagged private type and provide get and set methods
for the attributes.

• It was suggested to add a Task_ID attribute to the state,
with only a get operation.

• It was discussed where to put the initial priority.
Suggestions to put it in the creation of the task, or to
pass it as a discriminant (with the deadline) in order to
avoid set operations (for initial priority and initial
relative deadline). It was stated that having dynamic
priorities is more useful, so finally set and get methods
are needed.

• It was addressed what happened if a change on the
relative deadline occurs, and when does it take effect. It
was suggested to be at the next release of the task.

• Mode changes were also discussed with the meaning of
having a task executing a different code for each mode
and with different parameters (deadline, priority, etc.)
for each mode. Solutions proposed were: derive a root
type from Task_State with a collection of modes, or an
array of Task_State so as to be able to change from
periodic to sporadic for example, or allow a different
task for each mode. The mode change issue is by itself
very complex, so it was decided to focus the discussion
on other issues, and leave the mode change aside, as
future work.

At that point, the discussion turned onto the release
mechanisms proposed in the framework [1]. The release
mechanism is based on two operations
Wait_For_Next_Release and Inform_Of (a deadline miss, an
overrun, or both), and it is thought to build real-time task
patterns using the select-then-abort statement. It was
suggested to create a general abstract mechanism for
notification. After a long discussion on that issue, it was
agreed to implement the notification object (which consists
of a set of events) with a synchronized interface as follows:

 type Notification_Object
 is synchronized interface;
 procedure Add (N: Notification_Object;
 E: Event_Ptr) is abstract;
 procedure Trigger (N: Notification_Object;
 E: Event_Ptr) is abstract;

 procedure Wait (N: Notification_Object;
 E: out Event_Ptr) is abstract;
 -- Wait should be implemented with an entry
 -- A function to delete events is also necessary

where the event is implemented as a tagged type without
operations:

 type Event_Kind is tagged with null record;
 type Event_Ptr is access Event_Kind'class;

So it is possible to create deadline miss, overrun or other
events by extending Event_Kind.

It was discussed whether the parameter for Wait should be
an array of Event_Ptr, but it was decided that it was simpler
to notify a single event each time Wait was called.

Another issue is how often the set of events to be notified is
changed. If the set changes often, the Add operation would
be eliminated and the set of events would be passed to the
Wait operation at each call. It was considered however that
the set of events is rather static and therefore separating the
Add operation from the Wait operation is more convenient.

In addition, it would be necessary for the release
mechanism to create an operation to add a reference to a
notification object.

After finishing the discussion on the framework [1] and
coming back to the framework proposed for Ravenscar [3],
it was identified that the first one did not have the ability to
pass parameters to sporadic tasks while the latter had.
Tullio was asked to contribute to the framework [1] by
integrating this ability.

6 Conclusions
The main conclusion is that some progress had been made
but much more work is needed. The chair of the session
suggested to propose a work plan:

• Alan Burns proposed to address the collaborative work
needed to enhance a common framework via ARTIST
meetings.

• Andy Wellings proposed some specific plans:
o To change the notification object.
o To work a little bit more on the framework before

organizing a meeting to show the progress.
o To ask for cooperation in specific topics of the

implementation.

References
[1] Wellings, A.J., Burns, A. A Framework for Real-Time

Utilities for Ada 2005. (this issue).

[2] Burns, A., Wellings, A.J. Programming Execution-
Time Servers in Ada 2005. (this issue).

[3] Pulido, J., de la Puente, J.A., Bordin, M., Vardanega,
T., Hugues, J. Ada 2005 Code Patterns for Metamodel-
Based Code Generation. (this issue).

 47

Ada User Journal Volume 29, Number 1, March 2008

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* An extended version of this paper also appeared in the proceedings of

the Ada Europe 2007 conference. This work has been undertaken
within the context of the EU ARTIST2 project.

A Framework for Real-Time Utilities for
Ada 2005*
A.J. Wellings, A. Burns
Department of Computer Science, University of York, UK; email: {andy,burns}@cs.york.ac.uk

Abstract
Modern large real-time systems are becoming more
complex. Whilst Ada 2005 provides a comprehensive
set of programming mechanisms that allow these
systems to be implemented, the abstractions are low
level. This paper argues that there is a need for a
standardised library of real-time utilities that address
common real-time problems

1 Introduction
Ada has comprehensive support for priority-based real-time
systems. The approach has been to provide a set of low-
level mechanisms that enable the programmer to construct
systems solving common real-time problems. Whilst
eminently flexible, this approach requires the programmer
to re-implement common paradigms in each new system. In
the past, these structures have been quite straightforward,
perhaps just involving simply periodic or sporadic tasks
communicating via protected data. However, modern large
real-time systems are much more complex and include
hard, soft and non real-time components. The
resultingparadigmsare similarly more involved, and require
activities like deadline miss detection, CPU budget overrun
detection, the sharing of CPU budgets between aperiodic
threads etc. Ada 2005 has responded admirably, expanding
its set of low-level mechanisms. However, the common
problems are now much more complex, and it is no longer
appropriate to require the programmer to reconstruct the
algorithms in each new system. Instead, what is required is
a library of reusable real-time utilities; indeed, ideally such
a library should become a de facto secondary standard –
perhaps in the same way that Java has developed a set of
concurrency utilities over the years that have now been
incorporated into the Java 1.5 distribution.

The goal of this paper is to initiate a discussion in the Ada
community to both confirm the need for a library of
common real-time utilities and to propose (as a starting
point) a framework for their construction. In section 2, an
overview of the framework is given that also serves to
indicate the scope of the utilities presented in this paper.
Section 3 then presents the detailed design of the
framework and shows how it can be used. Conclusions are
drawn in section 4.

2 Real-Time Utilities – Framework
Overview
In the field of real-time programming, real-time tasks are
often classified as being periodic, sporadic or aperiodic.
Simple real-time periodic tasks are easy to program but
once more complicated ones are needed (such as those that
detect deadline misses, execution time (budget) overruns,
minimum inter-arrival violations etc), the paradigms
become more complex. Hence, there is a need to package
up some of these and provide them as real-time tasking
utilities.

A programmer wanting to use a real-time tasking
abstraction will want to indicate (for example):

• whether the abstraction is periodic, sporadic or
aperiodic (each task is “released” in response to a
release event, which is usually time triggered for
periodic tasks and event triggered for sporadic and
aperiodic tasks);

• in the event of a deadline miss, either to terminate the
current release of the task or to simply inform the
program that this event has occurred (in which case,
the programmer can choose to react or ignore the
event);

• in the event of an execution time overrun, either to
terminate the current release of the task or to simply
inform the program that this event has occurred (in
which case, the program can choose to react or ignore
the event);

• whether a task is associated with an execution-time
server that can limit the amount of CPU-time it re-
ceives.

• whether a task can operate in one or more modes, and
if so, the nature of the mode change.

This section illustrates how real-time task abstractions,
supporting some of these variations, can be developed in
Ada2005.

The approach that has been taken is to divide the support
for the tasks into four components.

1. The functionality of the task – this is encapsulated by
the Real_Time_Task_State package. Its goal is to
define a structure for the application code of the tasks.
It is here that code is provided: to execute on each
release of the task, to execute when deadline misses

48 A Framework for Real-Time Ut i l i t ies for Ada 2005

Volume 29, Number 1, March 2008 Ada User Journal

occur and when execution time overruns occurs. In this
paper, it is assumed that the task only wishes to operate
in a single mode.

2. The mechanisms need to control the release of the real-
time tasks and to detect the deadline misses and
execution time overruns – this is encapsulated in the
Release_Mechanisms package. Each mechanism is
implemented using a combinations of protected objects
and the new Ada 2005 timer and execution time
control features.

3. The various idioms of how the task should respond to
deadline misses and execution time overruns – this is
encapsulated in the Real_Time_Tasks package. It is
here that the actual Ada tasks are provided.

4. The mechanisms needed to encapsulate subsystems
and ensure that they are only given a fixed amount of
the CPU resource (often called temporal firewalling) –
this is the responsibility of the Execution_Servers
package. This paper focuses on using these
mechanisms to support aperiodic task execution.

Figure 1 illustrates the top level packages that make up the
abstractions. The details are discussed in the following
section.

3 Framework Design
This section describes the details of the design of the
framework introduced in Section 2. It assumes fixed
priority scheduling and that the deadlines of allperiodic
tasks are less than or equal to their associated periods.

3.1 RealTime Task State
First, it is necessary to provide a structure within which the
programmer can express the code that the real-time task
wishes to execute, along with its associated state variables.
This is achieved, in the usual Ada object-oriented fashion,
by defining the state within a tagged type, and providing
operations to execute on the state. The following package
shows the state and operations that all real-time tasks need.

 --with and use clauses omitted
 package Real_Time_Task_State is
 type Task_State is abstract tagged record
 Relative_Deadline : Time_Span;
 Execution_Time : Time_Span := Time_Span_Last;
 Pri : Priority := Default_Priority;
 end record;
 procedure Initialize(S: in out Task_State)
 is abstract;
 procedure Code(S: in out Task_State) is abstract;
 procedure Deadline_Miss(S: in out Task_State)
 is null;
 procedure Overrun(S: in out Task_State) is null;
 type Any_Task_State is access all Task_State’Class;
 end Real_Time_Task_State;

Every real-time task has a deadline, an execution time and
a priority. Here, these fields are made public, but they
could have just as well been made private and procedures
to ‘get’ and ‘set’ them provided. No additional assumptions

Figure 1 Top Level Packages

have been made about the values of these attributes. For
example, the execution time could be worst-case or
average.

The operations to be performed on a task’s state are
represented by the four procedures:

• Initialize –this code is used to initialize the real-time
task’s state when the task is created;

• Code – this is the code that is executed on each release
of the task;

• Deadline_Miss – this is the code that is executed if a
deadline is missed.

• Overrun – this is the code that is executed if an
execution time overrun occurs.

Note, all real-time code must provide the Initialize and the
Code procedures. There are default null actions on a missed
deadline and on an execution time overrun.

Child packages of Real Time Task State provide support
for periodic, aperiodic and sporadic task execution (as
illustrated in Figure 2).

A periodic task’s state includes that of a real-time task with
the addition of its period of execution. In other words, it
has regular time-triggered releases.

 package Real_Time_Task_State.Periodic is
 type Periodic_Task_State is abstract new Task_State
 with record Period : Time_Span; end record;
 procedure Initialize(S: in out Periodic_Task_State)
 is abstract;
 procedure Code(S: in out Periodic_Task_State)
 is abstract;
 type Any_Periodic_Task_State is access all
 Periodic_Task_State’Class;
 end Real_Time_Task_State.Periodic;

There is more than one model of a sporadic task; here, it is
assumed that the task must have an enforced minimum
inter-arrival time between releases (another approach
would be to enforce a maximum arrival frequency). Hence,
the state includes this value.

 package Real_Time_Task_State.Sporadic is
 type Sporadic_Task_State is abstract new Task_State
 with record MIT : Time_Span; end record;
 procedure Initialize(S: in out Sporadic_Task_State)
 is abstract;

A.J. Wel l ings, A. Burns 49

Ada User Journal Volume 29, Number 1, March 2008

Figure 2 Task States

 procedure Code(S: in out Sporadic_Task_State)
 is abstract;
 type Any_Sporadic_Task_State is access all
 Sporadic_Task_State’Class;
 end Real_Time_Task_State.Sporadic;

The state for aperiodic tasks has no new fields over the
normal Task_State, but for uniformity, a new type can be
created.

Application real-time tasks choose the appropriate real-time
state to extend, and add their own state variables. For
example, the following shows the application code to be
used with the declaration of a periodic real-time task that is
not interested in any missed deadlines or execution-time
overruns.

 type My_State is new Periodic_Task_State with
 record
 --state variables
 end record;
 procedure Initialize(S: in out My_State);
 procedure Code(S: in out My_State);

 Example_State: aliased My_State := (
 Pri=> System.Default_Priority + 1);

3.2 Real-Time Task Mechanism
Real-time tasks can be released by the passage of time or
via a software/hardware event. The following package
(Release_Mechanisms) provides the common interfaces for
all mechanisms (illustrated in Figure 3).

The root of the interface hierarchy (Release_Mechanisms)
simply supports the facility for a real-time task to wait for
notification of its next release to occur (be it a time or an
event triggered release). Release_Mechanism_With_-
Deadline_Miss is provided for the case where the real-time
task wishes to be informed when it has missed a deadline.
Similarly, Release_Mechanism_With_Overrun is provided
for the case where the real-time task wishes to be informed
when it has overrun its execution time. Finally,
Release_Mechanism_With_Deadline_Miss_And_Overrun
allows both detection of deadline misses and execution
time overruns. The Ada code is shown below for some of
the above.

 package Release_Mechanisms is
 type Release_Mechanism is synchronized interface;
 procedure Wait_For_Next_Release(R: in out
 Release_Mechanism) is abstract;
 type Any_Release_Mechanism is access all
 Release_Mechanism’Class;

50 A Framework for Real-Time Ut i l i t ies for Ada 2005

Volume 29, Number 1, March 2008 Ada User Journal

Figure 3 Release Mechanim Interfaces

 type Release_Mechanism_With_Deadline_Miss is
 synchronized interface and Release_Mechanism;
 procedure Wait_For_Next_Release(R : in out
 Release_Mechanism_With_Deadline_Miss)
 is abstract;
 procedure Inform_Of_A_Deadline_Miss(R : in out
 Release_Mechanism_With_Deadline_Miss)
 is abstract;
 type Any_Release_Mechanism_With_Deadline_Miss
 is access all
 Release_Mechanism_With_Deadline_Miss’Class;
 ...
 end Release_Mechanisms;

Child packages provide the actual release mechanisms. For
example, Figure 4 shows the mechanisms for periodic real-
time tasks.

For example, the following shows the structure of a
protected type that implements a periodic release
mechanisms. The period of the task is obtained from the
task’s state, which is passed in as an access discriminant.
The application code simply calls the Wait_For_Next_-
Release entry.

 --with and use clauses omitted
 package Release_Mechanisms.Periodic is
 protected type Periodic_Release(
 S: Any_Periodic_Task_State) is
 new Release_Mechanism with
 entry Wait_For_Next_Release;
 pragma Priority(System.Interrupt_Priority’Last);

 private
 ...
 end Periodic_Release;
 end Release_Mechanisms.Periodic;

Another protected type can support deadline miss detection

 protected type Periodic_Release_With_DM(
 S: Any_Periodic_Task_State;
 Termination : Boolean) is
 new Release_Mechanism_With_Deadline_Miss with
 entry Wait_For_Next_Release;
 entry Inform_Of_A_Deadline_Miss;
 pragma Priority(System.Interrupt_Priority’Last);
 private
 ...
 end Periodic_Release_With_DM;

Here, a boolean indicates whether the application requires
notification or termination of a deadline miss. If
termination is required, the Inform_Of_A_Deadline_Miss
entry can be used by theframeworkin a select-then-abort
statement.

3.3 Aperiodic release mechanisms and execution
servers
The final type of release mechanism is that for handling
aperiodic releases. Typically, the CPU time allocated to
aperiodic tasks must be constrained as they potentially can
have unbounded resource requirements. The Ada 2005
group budget facility can be used to implement the various
approaches.

A.J. Wel l ings, A. Burns 51

Ada User Journal Volume 29, Number 1, March 2008

Figure 4 Release Mechanism Classes

Before the release mechanism can be programmed, it is
necessary to consider how it interacts with the execution
severs. This paper will only consider periodic execution
servers. The following package specification defines the
common interface.

 package Execution_Servers is
 type Server_Parameters is tagged record
 Period : Time_Span; Budget : Time_Span;
 end record;

 type Execution_Server is synchronized interface;
 procedure Register(ES: in out Execution_Server;
 T : Task_Id) is abstract;
 ...
 type Any_Execution_Server is access
 all Execution_Server’Class;
 end Execution_Servers;

All servers have parameters that determine the servers
characteristics. They include:

• the budget – how much CPU time has been allocated
to the server;

• the period – this relates to how often the server’s
budget is replenished.

Two of the main servers found in the literature (the
deferrable [1] and sporadic servers [2]) also require their
clients to have foreground and background priorities, but in
the general case this may not be the situation. Some servers
suspend their clients when their execution time expires, and
other servers allow their clients to have different priorities.

All execution servers require their clients to register. Here,
any task can register any other task. Some types of
execution servers will also want to know when the client
tasks are executable. These periods of execution are called
sessions. The associated procedures have default null
values.

To facilitate the use of execution servers, it is necessary to
modify the release mechanism to allow the actual server to
be passed as a discriminant. The approach is illustrated by
considering aperiodic releases (although, the same
approach could be applied to the periodic or sporadic
release mechanisms).

 package Release_Mechanisms.Aperiodic is
 protected type Aperiodic_Release(
 S: Any_Aperiodic_Task_State;
 ES: Any_Execution_Server) is
 new Release_Mechanism with
 entry Wait_For_Next_Release;

52 A Framework for Real-Time Ut i l i t ies for Ada 2005

Volume 29, Number 1, March 2008 Ada User Journal

 procedure Release;
 pragma Priority(Interrupt_Priority’Last);
 private
 ...
 end Aperiodic_Release;
 end Release_Mechanisms.Aperiodic;

3.4 RealTime Tasks
The Real Time Tasks package provides the code that
integrates the task states with the release mechanisms to
provide the required application abstraction. Several task
types are shown in the following package specification.

 -- with and use clauses omitted
 package Real_Time_Tasks is
 task type Simple_RT_Task(
 S : Any_Task_State;
 R : Any_Release_Mechanism;
 Init_Prio : Priority) is
 pragma Priority(Init_Prio);
 end Simple_RT_Task;
 task type RT_Task_With_Deadline_Termination(
 S : Any_Task_State;
 R : Any_Release_Mechanism_With_DM;
 Init_Prio : Priority) is
 pragma Priority(Init_Prio);
 end RT_Task_With_Deadline_Termination;
 ...;
 end Real_Time_Tasks;

Others can be designed; for example, for the cases where
the current release of the task must be immediately
terminated if the execution time is exceeded.

Note that the priority at which the task activates can be
given as a discriminant (this can be changed in the
application initialization code for the execution phase of the
task).

Note also that if the Simple_RT_Task is used with one of
the release mechanisms that support deadline miss or
execution-time overrun detection, it should set the
Termination discriminant to false. This will allow the task
to be notified using a direct call to the Deadline_Miss_-
and_Overrun operations via the Task_State.

The body of this package shows the various structures.
Note the use of the ‘select-then-abort’ statement to achieve
the termination semantics.

 package body Real_Time_Tasks is
 task body Simple_RT_Task is
 begin
 S.Initialize;
 loop
 R.Wait_For_Next_Release;
 S.code;
 end loop;
 end Simple_RT_Task;
 task body RT_Task_With_Deadline_ Termination is
 begin
 S.Initialize;

 loop
 R.Wait_For_Next_Release;
 select
 R.Inform_Of_A_Deadline_Miss; S.Deadline_Miss;
 then abort
 S.code;
 end select;
 end loop;
 end RT_Task_With_Deadline_ Termination;
 -- similar structures for the other task types
 end Real_Time_Tasks;

3.5 A simple example

Consider a simple example of two identical periodic tasks
that wish to detect deadline misses: one requires
termination semantics, the other just wishes to be notified.
First, the application code is defined

 type My_State is new Periodic_Task_State with record
 I : Integer;
 end record;

 procedure Initialize(S: in out My_State);
 procedure Code(S: in out My_State);
 procedure Deadline_Miss(S: in out My_State);

 Example_State1: aliased My_State;
 Example_State2: aliased My_State;

 Releaser1 : aliased Periodic_Release_With_DM(
 Example_State1’Access, Termination => True);
 Releaser2 : aliased Periodic_Release_With_DM(
 Example_State2’Access,
 Termination => False);

In the above, two instances of the state are created, one for
each real-time task. There are twoprotected objects for the
release mechanisms: Release1 supportsthe termination
model, and Release2 supportsthe notification model

Now, the real-time tasks can be declared:

 T1 : RT_Task_With_Deadline_Termination(
 Example_State1’Access, Releaser1’Access,
 Default_Priority);
 T2 : Simple_RT_Task (
 Example_State2’Access, Releaser2’Access,
 Default_Priority);

Here, T1 uses the real-time task type that supports the
termination semantics, and T2 uses the simple real-time
task type.

For completeness, the code of the tasks are given (they are
identical, in this example and simply manipulate an integer
state variable).

 procedure Initialize(S: in out My_State) is
 begin
 S.I := 2; S.Pri := Default_Priority + 2;
 S.Relative_Deadline := To_Time_Span(0.1);
 end Initialize;

A.J. Wel l ings, A. Burns 53

Ada User Journal Volume 29, Number 1, March 2008

 procedure Code(S: in out My_State) is
 begin
 S.I := S.I * 2;
 end Code;

 procedure Deadline_Miss(S: in out My_State) is
 begin
 S.I := 2;
 end Deadline_Miss;

The body initializes the state, sets the priority and the
deadline; it then squares the state value on each periodic
release. On a deadline miss, the value is reset to2.

4 Conclusions
The Ada designers have learned well the lesson of trying to
support too higher level abstractions for real-time
programming, that was evident in Ada 83. That version was
heavily criticised. Ada 95 responded to those criticisms and
is an efficient language for high-reliable long-lived real-
time applications. Ada 2005 has continued the recovery,
and the language now provides a comprehensive set of

mechanisms that can support the development of modern
large real-time systems.

However, the complexity of modern real-time systems
means that there is now the need to provide high-level real-
time programming abstractions in the form of standardised
library utilities. The goal of this paper has been to start the
debate on how the Ada community should respond to this
challenge. The initial focus has been on the construction of
a framework that allows the provision of real-time tasking
utilities. The framework has been implemented using the
evolving Ada 2005 compiler from AdaCore along with a
local simulation facilities for the new Ada 2005 real-time
mechanisms.

References
[1] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced

aperiodic responsiveness in a hard real-time
environment. In 8th IEEE RTSS, pages 261–270, 1987.

[2] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused
periodic time for aperiodic service using the extended
priority exchange algorithm. In 9th IEEE RTSS, pages
251–258, 1988.

54

Volume 29, Number 1, March 2008 Ada User Journal

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

Programming Execution-Time Servers in Ada 2005

A. Burns, A. J. Wellings
Real-Time Systems Research Group, Department of Computer Science, University of York, UK.

Abstract
Much of the research on scheduling schemes is
prevented from being used in practice by the lack of
implementation sthat provide the necessary
abstractions. An example of this lack of provision is
the support of execution-time servers, these important
building blocks are not generally available to the
system developer. In this paper, we show how new
Ada 2005 mechanisms can be used to construct
various execution-time servers. We also outline the
different server types that could form part of a library
of real-time utilities for Ada.

1 Introduction
One of the key building blocks for delivering flexible
scheduling is the use of execution-time servers [10, 11, 9,
2, 1] – we will refer to these as just servers in the following
discussions. Server are in some senses virtual processors,
they provide their clients with a budget that has a defined
‘shelf life’ and a means of replenishing the budget in a pre-
dictable and analysable way. The servers collectively must
manage their budgets (i.e. allow the budget to be available
to clients), whilst the clients must ensure that the budget is
sufficient for their needs. A number of papers have ad-
dressed the scheduling issues associated with server-based
systems. In this paper we are concerned with programming
servers.

The paper is organised as follows. First two examples of
the expressive power of Ada 2005 are illustrated: the pro-
gramming of the Deferrable and then the Sporadic server.
The code in these examples comes from a recent publica-
tion [6]. This is followed in Section 4 by a discussion of the
various properties servers can have. This discussion is in-
tended to lead to the definition of reusable real-time
utilities that could form part of a library or secondary
standard [12].

2 Deferrable Server
In this section we illustrate how the Deferrable Server can
be constructed. Space considerations mean that the Ada
2005 facilities are not described. Here, the server has a
fixed priority (i.e. all client tasks execute with the same
priority), and when the budget is exhausted the tasks are
moved to a background priority. A client task first registers
with its server, after that, in this simple example, it has no
direct interactions with the server. The server itself needs a
high interrupt priority level as it handles timing events.

 -- with clauses are omitted for brevity
 package Deferrable is
 type Deferrable_Server_Parameters is
 record
 Period : Time_Span;
 Budget : Time_Span;
 Foreground_Pri : Priority;
 Background_Pri : Priority;
 end record;

 protected type Deferrable_Server(
 Params : access Deferrable_Server_Parameters)
 procedure Register(T : Task_Id := Current_Task);
 pragma Priority(System.Priority’Last);
 private
 procedure Timer_Handler(E : in out Timing_Event);
 -- fired when replenishment is due
 procedure Group_Handler(G : in out Group_Budget);
 -- fired when budget exhausted
 T_Event : Timing_Event;
 G_Budget : Group_Budget;
 First : Boolean := True;
 end Deferrable_Server;
 end Deferrable;

A single timing event is used to replenish the budget at
regular timing intervals. A group budget is employed to
take the necessary actions when the current budget is
exhausted. In the following code the first client task to
register sets up the server; this could have been done by a
separate routine called when the server is created.

 package body Deferrable is
 protected body Deferrable_Server is
 procedure Register(T : Task_Id := Current_Task) is
 begin
 if First then

First := False;
 G_Budget.Add(Params.Budget);
 T_Event.Set_Handler(Params.Period,
 Timer_Handler’Access);
 G_Budget.Set_Handler(Group_Handler’Access);
 end if;
 Add_Task(G_Budget, T);
 if G_Budget.Budget_Has_Expired then
 Set_Priority(Params.Background_Pri);
 -- sets client task to background priority
 else
 Set_Priority(Params.Foreground_Pri);
 -- sets client task to servers ’priority’

A. Burns, A. J . Wel l ings 55

Ada User Journal Volume 29, Number 1, March 2008

 end if;
 end Register;
 procedure Timer_Handler(E : in out Timing_Event) is
 T_Array : Task_Array := G_Budget.Members;
 begin
 G_Budget.Replenish(Params.Budget);
 for ID in T_Array’Range loop
 Set_Priority(Params.Foreground_Pri,T_Array(ID));
 end loop;
 E.Set_Handler(Params.Period,
 Timer_Handler’Access);
 end Timer_Handler;

 procedure Group_Handler(
 G : in out Group_Budget) is
 T_Array : Task_Array := G_Budget.Members;
 begin
 if G_Budget.Budget_Has_Expired then
 -- test needed to cover race condition
 -- with timer handler
 for ID in T_Array’Range loop
 Set_Priority(Params.Background_Pri,
 T_Array(ID));
 end loop;
 end if;
 end Group_Handler;
 end Deferrable_Server;
 end Deferrable;

3 Banded Sporadic Server
To programme the Sporadic Server also requires the use of
timing events and a group budget. In the following, tasks
are suspended if there is no budget, and a finite set of reused
timing budgets is employed. If this number if exhausted,
the POSIX scheme of concatenating two replenishments into one
is employed [8].

The client is assumed to request the use of the budget by
bracketing (non-blocking) application code in the following
way:

 BSS.Register;
 ...
 loop
 BSS.Start_Session;
 -- where BSS is of the server type below

 -- non-blocking code
 BSS.Complete_Session;
 end loop;
The Sporadic Server allows its clients to preempt each
other by supporting a range of priority levels (hence the
term banded sporadic server). All clients must have a pri-
ority within this range. With the sporadic server a client
that arrives at time t and uses budget b, results in the re-
plenishment of b at time t+T –where T is the period of the
server. To program this, the timing event must know how
much budget to return. This is accommodated by extending
the timing event type.

 package Banded_Sporadic is

 Priority_Out_Of_Range : exception;
 Already_Member_Of_A_Group_Budget: exception;
 type Banded_Sporadic_Server_Parameters is record
 Period : Time_Span;
 Budget : Time_Span;
 Low_Priority : Priority; -- of the band
 High_Priority : Priority; -- of the band
 end record;

 type Budget_Event is new Timing_Event with
 record
 Bud : Time_Span;
 end record;

 type Bud_Event is access Budget_Event;
 type Bud_Events is array(Natural range <>)
 of Budget_Event;

 protected type Banded_Sporadic_Server
 (Params : access
 Banded_Sporadic_Server_Parameters;
 No_Timing_Events : Positive) is
 pragma Interrupt_Priority (Interrupt_Priority’Last);
 procedure Start_Session(
 T : Task_Id := Current_Task);
 procedure Complete_Session(
 T : Task_Id := Current_Task);
 procedure Register(T : Task_Id := Current_Task);
 private
 procedure Timer_Handler(E : in out Timing_Event);
 procedure Group_Handler(
 G : in out Group_Budget);
 G_Budget : Group_Budget;
 B_Events : Bud_Events(1 .. No_Timing_Events);
 Next : Natural := No_Timing_Events;
 Number : Natural := 0;
 Start_Budget : Time_Span;
 Release_Time : Time;
 Tasks_Executing : Natural := 0;
 First : Boolean := True;
 end Banded_Sporadic_Server;
 end Execution_Servers.Banded_Sporadic;

The only real complexity in this code comes from the reuse
of a finite collection of timing events. The procedure
Set_Timing_Events is used to manage this.

 with Ada.Asynchronous_Task_Control;
 use Ada.Asynchronous_Task_Control;
 package body Execution_Servers.Banded_Sporadic is
 protected body Banded_Sporadic_Server is
 procedure Set_Timing_Events(B : Time_Span;
 T : Time) is
 begin
 if Number < No_Timing_Events then
 Next := Next mod No_Timing_Events + 1;
 B_Events(Next).Bud := B;
 B_Events(Next).Set_Handler(T,
 Timer_Handler’Access);
 Number := Number + 1;
 else

56 Programming Execut ion-Time Servers in Ada 2005

Volume 29, Number 1, March 2008 Ada User Journal

 B_Events(Next).Bud := B_Events(Next).Bud + B;
 B_Events(Next).Set_Handler(T,
 Timer_Handler’Access);
 end if;
 end Set_Timing_Events;
 procedure Register(T : Task_Id := Current_Task) is
 begin
 if not (Get_Priority(T) in Params.Low_Priority ..
 Params.High_Priority) then
 raise Priority_Out_Of_Range;
 end if;
 if First then
 First := False;
 G_Budget.Add(Params.Budget);
 G_Budget.Set_Handler(Group_Handler’Access);
 end if;
 G _Budget.Add_Task(T);
 exception
 when Group_Budget_Error =>
 raise Already_Member_Of_A_Group_Budget;
 end Register;

 procedure Start_Session(T : Task_Id) is
 begin
 if Tasks_Executing = 0 then
 Release_Time := Clock;
 Start_Budget := G_Budget.Budget_Remaining;
 end if;
 Tasks_Executing := Tasks_Executing + 1;
 if G_Budget.Budget_Has_Expired then
 Hold(T);
 end if;
 end Start_Session;

 procedure Complete_Session(T : Task_Id) is
 begin
 -- work out how much budget used, construct
 -- timing event and set the handler
 Tasks_Executing := Tasks_Executing - 1;
 if Tasks_Executing = 0 then
 Set_Timing_Events(
 Start_Budget - G_Budget.Budget_Remaining,
 Release_Time + Params.Period);
 end if;
 end Complete_Session;

 procedure Timer_Handler(
 E : in out Timing_Event) is
 Bud : Time_Span;
 T_Array : Task_Array := G_Budget.Members;
 begin
 Number := Number - 1;
 Bud := Budget_Event(Timing_Event’Class(E)).Bud;
 if G_Budget.Budget_Has_Expired then
 G_Budget.Replenish(Bud);
 for I in T_Array’range loop
 Continue(T_Array(I));
 end loop;
 Release_Time := Clock;
 Start_Budget := Bud;

 else
 G_Budget.Add(Bud);
 Start_Budget := Start_Budget+Bud;
 end if;
 end Timer_Handler;

 procedure Group_Handler(
 G : in out Group_Budget) is
 T_Array : Task_Array := G_Budget.Members;
 begin
 if G_Budget.Budget_Has_Expired then
 -- a replenish event required for the
 -- budget used so far
 Set_Timing_Events(Start_Budget, Release_Time +
 Params.Period);
 for I in T_Array’range loop
 Hold(T_Array(I));
 end loop;
 end if;
 end Group_Handler;
 end Banded_Sporadic_Server;
 end Execution_Servers.Banded_Sporadic;

A replenishment event is set up either when the current
budget is exhausted or, at the end of a client’s session, if
there are no longer any active clients.

4 Different Server Characteristics
In this section a number of server characteristics are con-
sidered. In many instances these characteristics are orthog-
onal and hence gives rise to a wide range of possible struc-
ures. In all of this discussion fixed priority scheduling is
assumed. The use of servers and other scheduling policies
such as EDF is not considered in this paper.

4.1 Dispatching
Here two characteristics are identified: concurrency within
the server, and the behaviour of the tasks when the server
capacity is exhausted. With the former there are three
possibilities:

1. All client tasks have the same priority and hence
their use of the server’s budget is serialised.

2. Client task have distinct priorities but the range of
priorities for each server is disjoint. Client tasks can now
preempt each other and thereby exhibit a more
responsive behaviour.

3. Client task have distinct priorities, and there are no
constraints on the priorities. This is the general
model supported by Java’s (RTSJ) processing
groups [4] – but the resulting system is not easily
amenable to scheduling analysis [5].

The code for the Deferrable and Sporadic servers have
illustrated the first two of these schemes. They have also
used alternative policies for dealing with tasks when there
is no budget available:

1. Run the client tasks at a background (low) priority.
2. Suspend the tasks.

A. Burns, A. J . Wel l ings 57

Ada User Journal Volume 29, Number 1, March 2008

The suspension of the tasks can make certain aspects of the
implementation easier (as the client tasks cannot have
executed during the time the server has no capacity). Also
with a large system with many servers, there may be little
likelihood of spare capacity been available at the
background level, and hence the use of suspension is not as
inefficient as it might seem.

4.2 Binding
Here a task coordinates its release with the replenishment
of the server (either a Deferrable or Periodic server – see
below). The task is described as being bound to the server.
The advantage of this scheme is that it makes the
scheduling analysis of these bound tasks less pessimistic
[7]. One means of achieving this binding is to introduce
into the server a start session entry that the client task calls
as their ‘wait for next invocation’ event.

 entry Start_Session(T : Task_Id := Current_Task)
 when Released is
 begin
 Released := Start_Session’Count > 0;
 end Start_Session;

With the boolean barrier being set in the timing event
handler:

 Released := Start_Session’Count > 0;

4.3 Stop on Exhaustion of the Budget
The above illustrates a coordination between the replen-
ishment of a budget and the release of a task. Another form
of coordination is between the exhaustion of the budget and
the performance of some ‘non-terminating’ algorithm that
is ‘stopped’ when there is no longer any budget. To
implement this, the server would have an entry (e.g.
Exhausted) that has a barrier variable that is set to true
when the group budget event is fired. The application code
will call this entry from an ATC structure:

 loop
 Some_Server.Start_Session;
 select
 Some_Server.Exhausted;
 -- Place result in some appropriate object
 then abort
 code
 end select;
 end loop;

This server does not change the priority of the client when
the budget is exhausted but a Start_Session entry is
used that is only open when there is budget available. The
two entries, Exhausted and Start_Session could easily
be added to the Deferrable Server’s specification.

4.4 Budget Sharing
There are a number of schemes described in the literature
(eg. [3, 1]) that allow the budget in one server to be passed
to another server if there are no local clients requiring ser-
vice. A collection of fixed priority Deferrable Servers (for
example) could be constructed so that each server always
knows its ‘neighbour’. This is the server with the next high-

est priority. If this neighbour had active clients they would
be executing; as it isn’t executing it must have either no
such clients or have no current budget. The following
scheme is based on the premise that when a budget is
exhausted (i.e. the group budget event is fired) an attempt is
made to pull capacity down from its neighbour. Only if this
fails are the client tasks demoted. The neighbour will pass
on a gift of its current budget if it has one – if not, it will
attempt to pull down budget from its neighbour.

To implement this scheme, a new function is added to the
interface of the Deferrable Server (Extract). The group
handler can now be executed when either one of its own
clients was active and the budget was exhausted or the
remaining budget was gifted away. In the latter case no
attempt is made to extract extra budget from the servers’
neighbour. A new boolean variable Gift_Aid is used to
distinguish between these two cases. The overall approach
is sketched below.

 package body Deferrable is
 protected body Deferrable_Server is
 procedure Register(T : Task_Id := Current_Task)
 is ...
 procedure Timer_Handler(E : in out Timing_Event)
 is ...
 procedure Group_Handler(
 G : in out Group_Budget) is
 T_Array : Task_Array := G_Budget.Members;
 Gift : Time_Span := Time_Span_Zero;
 begin
 if G_Budget.Budget_Has_Expired then
 if Gift_Aid then
 Gift := Time_Span_Zero;
 else
 Gift := Neighbour.Extract;
 end if;
 if Gift = Time_Span_Zero then
 for ID in T_Array’Range loop
 Set_Priority(Params.Background_Pri,
 T_Array(ID));
 end loop;
 else
 G_Budget.Replenish(Gift);
 end if;
 Gift_Aid := False;
 end if;
 end Group_Handler;

 function Extract return Time_Span is
 Gift : Time_Span;
 begin
 if G.Budget.Budget_Has_Expired then
 return Neighbour.Extract;
 -- if highest priority server then no neighbour
 -- so return Time_Span_Zero
 end if;
 Gift_Aid := True;
 Gift := G_Budget.Budget_Remaining;
 G_Budget.Replenish{Time_Span_Zero);
 return Gift;

58 Programming Execut ion-Time Servers in Ada 2005

Volume 29, Number 1, March 2008 Ada User Journal

 end Extract;
 end Deferrable_Server;
 end Deferrable;

Obviously the use of capacity sharing must meet the re-
uirements of the application. A client may have to wait un-
til the next replenishment in order to execute – as its server’s
capacity has been given away. Hence, it is best to use this
technique with servers that have bound tasks (see section 4.2). If
the technique is too extreme, the scheme can be restricted so that
only a proportion of the server’s capacity is gifted away.

Other kinds of capacity sharing are also possible. There is a need
to characterise these and show how they can be implemented in
Ada 2005.

4.5. Server Types
In addition to Deferrable and Sporadic servers there are a
number of other schemes discussed in the literature. The
main additional one is the Periodic Server. This behaves
like a Deferrable Server except that its capacity is not pre-
served during the server’s period; it is only available to
clients who are ready to execute at the time the budget is
replenished. This has the advantage that the Periodic Server
behaves just like a periodic task - in terms of its impact on
lower priority tasks and servers. This is not the case for a
Deferrable Server that can have an increased impact due to
its clients arriving late one period and early the next. There
are two distinct means of providing the required behaviour
for a Periodic Server:

1. Each server has a looping client that has the lowest
priority of all users of the server but which executes
a non-blocking busy loop. It will always be
available to execute and will use up all the available
capacity.

2. When there are no current clients left to execute,
reduce the budget to zero. If budget sharing is to be
employed then the remaining budget could be
passed on by adding it to the available budget of
another server.

The latter clearly is less wasteful and can be easily intro-
duced by again using a start and end session interface. The
server keeps a count of the number of active agents; when
this value goes to zero the remaining budget is removed (or
re-assigned).

5 Conclusion
The focus of this paper has been on the construction of
server abstractions using the new facilities of Ada 2005.
Simple servers such as the Deferrable Server are straight-
forward and need just a simple timing event and a group
budget. The Sporadic Server by contrast is quite compli-
cated and its implementation is a testament to the
expressive power of the language.

One of the motivations of this paper is to start to define a
collections of useful server abstractions, and to facilitate

the use of these abstractions via a library of tested
components, and/or a secondary standard.

Acknowledgements
The work reported in the paper is funded, in part, by the EU
project ARTIST.

References
[1] G. Bernat, I. Broster, and A. Burns. Rewriting history

to exploit gain time. In Proceedings Real-time Systems
Symposium, pages 328–335, Lisbon, Portugal, 2004.
Computer Society, IEEE.

[2] G. Bernat and A. Burns. New results on fixed priority
aperiodic servers. In Proceedings 20th IEEE Real-
Time Systems Symposium, pages 68–78, 1999.

[3] G. Bernat and A. Burns. Multiple servers and capacity
sharing for implementing flexible scheduling. Real-
Time Systems Journal, 22:49–75, 2002.

[4] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specifi-
cation for Java. Addison-Wesley, 2000.

[5] A. Burns and A. J. Wellings. Processing group
parameters and the real-time specification for java. In
On the Move to Meaningfull Internet Systems 2003:
Workshop on Java Technologies for Real-Time and
Embedded Systems, volume LNCS 2889, pages 360–
370. Springer, 2003.

[6] A. Burns and A.J. Wellings. Programming execution-
time servers in ada 2005. In Proceedings of the 27th
IEEE Real- Time Systems Symposium, pages 47–56,
2006.

[7] R. Davis and A. Burns. Hierarchical fixed priority
preemptive scheduling. In IEEE Real-Time Systems
Symposium, pages 389–398, 2005.

[8] IEEE Std.1003.1c-1995. Information Technology –
Portable Operating System Interface (POSIX): Part 1 :
System Application program interface (API) –
Amendment 2: Threads Extension [CLanguage], 1995.

[9] J.P. Lehoczky and S. Ramos-Thuel. An optimal
algorithm for scheduling soft-aperiodic tasks fixed-
priority preemptive systems. In Proceedings 13th IEEE
Real-Time Systems Symposium, pages 110–123, 1992.

[10] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced
aperiodic responsiveness in a hard real-time
environment. In Proceedings 8th IEEE Real-Time
Systems Symposium, pages 261–270, 1987.

[11] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time
Systems, 1:27–69, 1989.

[12] A.J. Wellings and A. Burns. A framework for real-time
utilities for Ada 2005. (this issue).

 59

Ada User Journal Volume 29, Number 1, March 2008

This paper previously appeared in ACM Ada Letters, Volume XXVII, Number 2, August 2007; reprinted with permission.

* This work has been funded in part by the IST Programme of the

European Comission under project IST-004033 (ASSERT)

Ada 2005 Code Patterns for Metamodel-Based
Code Generation*
José A. Pulido, Juan A. de la Puente
Universidad Politécnica de Madrid (UPM), Spain; email: {pulido,jpuente}@dit.upm.es

Jérôme Hugues
GET-Télécom Paris – LTCI-UMR 5141 CNRS (ENST), Paris, France; email: hugues@infres.enst.fr

Matteo Bordin, Tullio Vardanega
Università di Padova, Italy; email: {mbordin, tullio.vardanega}@math.unipd.it

Abstract
In this paper we discuss the issues we have explored,
as part of the ASSERT project, in the definition and
implementation of Ada coding patterns for the support
of the automated code generation stage of a
comprehensive approach to model-driven develop-
ment for high-integrity systems.

1 Introduction
In the ASSERT project we explored the feasibility, prac-
ticality and performance of a Model-Driven development
(MDA) approach targeted to high-integrity applications. A
crucial element of our vision relied on the definition and
exploratory implementation of a strategy for the automated
transformation of the system model down to source code
and to execution in a manner capable of warranting the
preservation of the properties stipulated at model level.

To support system modeling we introduced two types of
containers that are distinct for use but very strictly related
when it comes to applying model transformation. One type
of container, which we call “application level container”
addresses functional modeling, where the level of expres-
sion ought to be abstracted away from the intricacies of
hard real-time concurrency (much in keeping with the
platform-independent model, PIM, of MDA). The other
type of container, which we name “virtual machine level
container”, designates entities that exist at run time with an
intended semantics that must be actively preserved by the
execution platform. In the following we shall denote the
former by “APLC” and the latter by “VMLC”. We then use
the term “virtual machine” (VM) to express the kind of
execution platform we require to warrant property
preservation in the trajectory from model to execution.

In our vision, designers operate on APLC only. Such
containers however are not executable, while VMLC are.
There must therefore exist some logic that transforms the
former in the latter in a trustworthy manner, without any

semantic distortion and with active preservation and
enforcement of properties. Such a transformation takes the
model from a higher level of abstraction to a lower one,
closer to implementation and execution. Hence we regard it
as a “vertical transformation”, as opposed to other forms of
model transformation in which the representation formal-
ism changes while the level of abstraction need not. Our
principle of vertical transformation rests on the postulate
that the attributes set on APLC (which denote component
interfaces and relations among them) consistently map to
groups of interconnected VMLC endowed with the
required interfaces.

The platform must be rigidly inflexible (as opposed to
permissive) in hosting, executing and actively policing the
run-time behaviour of the container entities that may
legally exist at its level. In fact, our VM concept entails the
following characteristics:

1. it is a run-time environment that only accepts and
supports “legal” entities; the sole legal entities that
may be propagated down from model transformation
are VMLC; no other run-time entity is permitted to
exist and no other can thus be assumed in the model

2. it provides run-time services that assist containers in
actively preserving their designated properties;
mechanisms and services of interest may for
instance aid to:
• accurately measure the actual execution time

that can be attributed to individual threads of
control

• attach and replenish a monitored execution time
budget to a thread, and then prompt an alarm
(e.g.: an exception) when the thread should ex-
ceed its time budget

• segregate threads into distinct groups, attaching
a monitored budget to individual groups, to be
handled in the same way as for threads

• enforce the minimum inter-arrival time
stipulated for sporadic threads

60 Ada 2005 Code Patterns for Metamodel-Based Code Generat ion

Volume 29, Number 1, March 2008 Ada User Journal

Figure 1 Top-level VM architecture

• build fault containment regions around individual
threads and groups thereof

• attain distribution and replication transparency in
inter-thread communication.

3. it is bound to a compilation system that only
produces executable code for “legal” entities and
rejects the non-conforming ones; run-time checks
provided by the VM shall cover the extent of
enforcement that cannot be exhaustively achieved at
compile and link time

4. it realizes a concurrent computational model
provably amenable to static analysis; the model
must permit threads to interact with one another
(directly, by some form of synchronization, and
indirectly, by pre-emptive interference) in ways that
do not incur non-determinism.

2 Virtual Machine Architecture
To date, we consider that the ASSERT VM should be
constituted by the integration of the following key
elements, shown in figure 1.

• Real-Time kernel: it assigns CPU time to threads,
providing tasking and synchronization primitives. It
also supports some mechanisms for device drivers to
access the hardware elements of the targets;

• Middleware: it provides the necessary abstractions
to support communication between nodes of the
application. These abstractions are defined as part of
the ASSERT Distribution model.

• Communication subsystem: it provides low-level
support for inter-partition communications relying
on the deterministic SpaceWire protocol [6];

All of those elements are individually defined in full
compliance with both the Ravenscar profile and the re-
strictions set by the High-Integrity systems annex of Ada
2005 [11]. The key high-level restrictions that we placed on
them are as follows:

2.1 Real-time kernel
The real-time kernel component of the ASSERT VM is an
upgraded version of the Open Ravenscar Kernel (ORK) [2,
4]. It provides direct support for the Ravenscar profile [11,
D.13] and includes the following Ada 2005 extensions:

• global timing events;

• execution-time clocks;

• system-wide (fallback) teask termination handler.

The kernel also supports execution-time timers and group
budgets. Although not allowed in the Ravenscar profile,
those mechanisms help enforce temporal separation
between subsystems with possibly different levels of crit-
icality, which is a strong requirement for the kind of on-
board aerospace embedded systems envisaged in the AS-
SERT project. Execution-time timers and budgets are used
to implement hierarchical scheduling of subsystems as a
means to provide temporal isolation [9]. The kernel only
allows one execution-time timer per task, as suggested in
previous IRTAW discussions [5, 3].

The ASSERT VM kernel is integrated with the GNAT
compilation system.

2.2 Middleware
The distribution layer of the ASSERT VM (the “mid-
dleware”) is placed at the interface between the application
code and the underlying kernel. It maps high-level interac-
tions onto calls to low-level primitives that support distri-
bution in nearly-transparent manner. The subset of require-
ments of the Middleware that affects the kernel is well de-
fined. Those that most impact the design of the Middleware
component of the ASSERT VM are as follows:

• The middleware inherits and restricts the process
and data models of the real-time kernel and it is
therefore able to provide adequate support for
timeliness and predictability of service.

• Distribution transparency: the ASSERT VM should
rely on the process model and provide the
infrastructure and constructs required to provide for

J. A. Pul ido, J . A. de la Puente, J . Hugues, M. Bordin, T. Vardanega 61

Ada User Journal Volume 29, Number 1, March 2008

Figure 2 VM-level container meta-model

distribution transparency. As a result of this
provision, the ASSERT designer should not need to
modify source code to deploy different
configurations of the system.

The communication services that interact with the physical
interconnection might also impose some requirements to be
fulfilled by the middleware. The analysis of its full impact
is currently in progress, due to complete by Q3 2007. As an
adaptation layer, the middleware shall limit its weight to
avoid any unjustified overhead, while preserving structural
properties and proof preservation.

3 Code Patterns for local VM-Level
Containers
Local VMLC are run-time entities that provide direct
support for concurrent real-time behaviour based on the
Ravenscar computation model. They are directly imple-
mented by primitive services of the ASSERT VM, using
the above described extension of the Ada Ravenscar
profile. Four basic types of VMLC have been defined,
based on the hard real-time terminal objects of HRT-
HOOD [1]: cyclic, sporadic, protected, and passive
containers.

VMLC are implemented using some meta-model elements,
which are named after HRT-HOOD entities (figure 2):

• Provided and required interfaces,

• OPCS (operation control structure), embodying the
functional behaviour of the component;

• OBCS (object control structure), providing
synchronization mechanisms;

• Thread, providing the concurrent behaviour of the
component.

The real-time and synchronization behaviour of a VMLC is
provided by the OBCS and the thread. The OBCS is im-
plemented by an Ada protected object, while the thread is
implemented by an Ada task.

Code patterns that represent the common aspects of a class
of model elements are called archetypes. Examples of
archetypes are:

• Cyclic object, with or without deadline and overrun
detection;

• Sporadic object, with or without deadline and
overrun detection;

Appendix A includes some examples of such archetypes.
More complex archetypes can built by combining these
code patterns, e.g. a cyclic thread with both deadline miss
and WCET overrun detection.

A key issue is how to handle temporal faults. Possible fault
handling patterns include:

• Error logging. Although useful for testing or low
integrity applications, this pattern is not suited for
high-integrity tasks as it does not provide any kind
of resilience to faults.

• Second chance. If there is some slack time available,
the execution-time budget of the failing task can be
extended for the current job. This is seldom
acceptable in high-integrity systems, as it incurs
some degree of temporal indeterminacy.

• Mode change. This is the most flexible approach in
that it permits fault recovery to be performed as and
when required.

• Safe stop. This strategy is often the only course to
take for high-integrity systems.

A more extensive discussion of these schemes can be found
in an upcoming paper [8].

4 Extending Patterns for Distribution
In this section we review Ada coding patterns for VMLC in
the distributed case.

The support of distribution encompasses a variety issues
that range from high-level middleware architecture down to
implementation concerns. Some of those issues are al-ready
discussed from an Ada perspective in PolyORB [13]; GLADE
[7] and RT-GLADE projects. For the purposes of this
paper we focus on interaction patterns, which are the most
critical elements to warrant system analyzability.

We make the following hypotheses: a high-level model
describes the deployment of the system; this view is used to
build and dimension all tasks and buffers, in-place mar-
shallers are built; a deterministic protocol is used 1. Hence, we

1 Please refer to the authors bibliography for more details on these
hypotheses.

62 Ada 2005 Code Patterns for Metamodel-Based Code Generat ion

Volume 29, Number 1, March 2008 Ada User Journal

focus on how interaction patterns defined in the Ravenscar
profile can be mapped onto interaction suitable for
distribution.

We assume interactions are asynchronous and one-way,
which is a sensible choice for Distributed Real-Time systems for
it reduces global blocking time. Besides, this is compatible with
typical requirements from critical systems and typical scheduling
techniques such as [12] and its extensions. We assume that a one-
to-one relation exists between the priority of the request (the
message to be exchanged) and the priority of the processing
tasks.

The Ravenscar profile prescribes that inter-task communication
take place via protected objects. Extending this configuration to
distribution can be as simple as “splitting” the protected object in
two separate entities: one client-side activity that formats the
request and passes it to the communication subsystem; one server-
side activity that is notified a request is arriving. Depending on the
enforcement policies of choice, a task can be released from a
thread pool, or else a dedicated task is awakened. Let us briefly
review each configuration in isolation (figure 3):

• Client Side: this configuration is similar to the local
case: the client passes its request to the
communication subsystem that sends this request to
the remote node. Intermediate steps are required to
marshall the payload, and to build proper messages.
Depending on the protocol stack, an intermediate
protected object might be placed between client
code and the protocol-specific threads.

• Server Side: on the server side, the request is
received by the communication subsystem and
stored in some internal buffer. It is safe to assume
that this buffer is embodied in a protected object
(PO). Several scenarios are then possible:

- One PO per receiving task (1): this scenario is
similar to the local case where at most one task
is waiting per protected object;

- One PO plus a pool of tasks (2): this scenario
implies that a task is waiting for the next
request while some other tasks are either
processing jobs or idling, or else blocked on a
task-specific PO. This arrangement corres-
ponds to the Leader/Followers or Thread Pool
patterns [10]. In such a scenario it may be
convenient to use different priorities for I/O
and message sending as well as for request
processing tasks, for example to discriminate
between urgency and priority.

Furthermore, one must select patterns to dispatch to the
correct subprogram, with two strategies one PO per sub-
program, or one PO shared by several subprograms and
skeleton-like code to dispatch to the correct subprogram.
Each strategy has been implemented and made deterministic
separately by using local Ravenscar patterns and a transport
library. Those two elements can then be combined to form four
different configurations. The selection of one particular
configuration has to be made depending on two antonymous

Figure 3 Request Handling Strategies

criteria: footprint size of the system vs. ease of analysis. At the
time of this writing the ASSERT project team is still evaluating
the costs and trade-offs of each configuration in term of
pessimistic WCET and memory overhead.

5 Conclusions and future work
In this paper we have briefly outlined the motivations and
the strategy we have adopted for the definition of Ada 2005
coding patterns for the support of the code generation stage
of an advanced model-driven development infrastructure.
We are presently approaching the final implementation
stage of our vision and we shall soon have performance
figures useful to ascertain the viability of the approach we
pursue.

References
[1] A. Burns and A. Wellings. HRT-HOOD: A design

method for hard-real-time. Real-Time Sytsems,
6(1):73–114, 1994.

[2] J. A. de la Puente, J. F. Ruiz, and J. Zamorano. An
open Ravenscar real-time kernel for GNAT. In H. B.
Keller and E. Ploedereder, editors, Reliable Software
Technologies — Ada-Europe 2000, number 1845 in
LNCS, pages 5–15. Springer-Verlag, 2000.

[3] J. A. de la Puente and J. Zamorano. Execution-time
clocks and Ravenscar kernels. Ada Letters, XXIII(4):
82–86, December 2003. Proceedings of the 12th
International Ada Real-Time Workshop (IRTAW12).

[4] J. A. de la Puente, J. Zamorano, J. F. Ruiz, R.
Fernández, and R. García. The design and
implementation of the Open Ravenscar Kernel. Ada
Letters, XXI(1), 2001. Proceedings of the 10th
International Real-Time Ada Workshop.

[5] B. Dobbing and J. A. de la Puente. Session report:
Status and future of the Ravenscar profile. Ada Letters,
XXIII(4):55–57, December 2003. Proceedings of the
12th International Real-Time Ada Workshop (IRTAW
12).

[6] ESA/ESTEC. ECSS-E-50-12A SpaceWire - Links,
nodes, routers and networks. Technical report,
European Space Agency, 2003.

[7] L. Pautet and S. Tardieu. GLADE: a Framework for
Building Large Object-Oriented Real-Time Distributed

J. A. Pul ido, J . A. de la Puente, J . Hugues, M. Bordin, T. Vardanega 63

Ada User Journal Volume 29, Number 1, March 2008

Systems. In Proceedings of the 3rd IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC’00), Newport Beach, California,
USA, June 2000. IEEE Computer Society Press.

[8] J. A. Pulido, S. Urueña, J. Zamorano, and J. A. de la
Puente. Handling temporal faults in Ada 2005. In N.
Abdennadher and F. Kordon, editors, Reliable
Software Technologies— Ada-Europe 2007, number
4498 in LNCS, pages 15–28. Springer-Verlag, 2007.

[9] J. A. Pulido, S. Urueña, J. Zamorano, T. Vardanega,
and J. A. de la Puente. Hierarchical scheduling with
Ada 2005. In M. G. H. Lus Miguel Pinho, editor,
Reliable Software Technologies - Ada-Europe 2006,
volume 4006 of LNCS. Springer Berlin / Heidelberg,
2006. ISBN 3-540-34663-5.

[10] D. C. Schmidt and F. Buschmann. Patterns,
frameworks, and middleware: their synergistic
relationships. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering,
pages 694–704, Washington, DC, USA, 2003. IEEE
Computer Society.

[11] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Plöedereder,
and P. Leroy, editors. Ada 2005 Reference Manual.
Language and Standard Libraries. International
Standard ISO/IEC 8652/1995(E) with Technical
Corrigendum 1 and Amendment 1. Number 4348 in
Lecture Notes in Computer Science. Springer-Verlag,
2006.

[12] K. Tindell. Holistic schedulability analysis for
distributed hard real-time systems. Technical report,
University of York, 1993.

[13] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon.
PolyORB: a schizophrenic middleware to build
versatile reliable distributed applications. In
Proceedings of the 9th International Conference on
Reliable Software Techologies Ada-Europe 2004
(RST’04), volume LNCS 3063, pages 106 – 119,
Palma de Mallorca, Spain, June 2004. Springer Verlag.

A VM-level container archetypes
The code templates in the next pages illustrate the approach
use in building component archetypes. More complex
archetypes cab be built using this basic set.

64 Ada 2005 Code Patterns for Metamodel-Based Code Generat ion

Volume 29, Number 1, March 2008 Ada User Journal

Pattern 1. Cyclic thread archetype with deadline miss detection.

 Deadline_Miss : Timing_Event ;
 task type Cyclic_Thread(P : Priority; T : Time_Span ; D : Time_Span) is
 pragma Priority(P) ;
 end Cyclic_Thread;
 task body Cyclic_Thread is
 Next_Time : Time : = Clock ;
 Deadline_Missed : Boolean ;
 begin
 loop
 Deadline_Miss.Set_Handler (Next _Time + D, Deadline_Miss _Handler ’ Access) ;
 delay until Next _Time ;
 OPCS. Activity ; −− periodic job
 Next_Time : = Next_Time + T ;
 end loop ;
 end Cyclic_Thread;

Pattern 2. Cyclic thread archetype with WCET overrun detection.
 task type Cyclic_Thread(P : Priority; T : Time_Span ; D : Time_Span) is
 pragma Priority(P) ;
 end Cyclic_Thread;
 task body Cyclic_Thread is
 Next_Time : Time : = Clock ;
 Id : aliased constant Task_Id : = Current_Task ;
 WCET_Timer : Ada.Execution_Time.Timers .Timer (Id ’ Access) ;
 begin
 loop
 Set_Handler (WCET_Timer , C, Overrun_Handler ’ Access) ;
 delay until Next_Time ;
 OPCS. Activity ; −− periodic job
 Next_Time : = Next_Time + T ;
 end loop ;
 end Cyclic_Thread;

Pattern 3. Sporadic thread archetype with minimal inter-arrival time enforcement.
 OBCS : Sporadic_OBCS (C e i l i n g) ;
 task type Sporadic_Thread(P : Priority; T : Time_Span) is
 pragma Priority(P) ;
 end Sporadic_Thread;
 task body Sporadic_Thread is
 Next_Time : Time : = Clock ;
 begin
 loop
 delay until Next_Time ;
 OBCS. Get_Request ;
 OPCS. Activity ; −− sporadic job
 Next_Time : = Next_Time + T ;
 end loop ;
 end Cyclic_Thread;
 procedure Start is
 begin
 OBCS.Put_Request ;
 end Start ;

66

Volume 29, Number 1, March 2008 Ada User Journal

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Ada Gem -5: Key-Based Searching
In Set Containers
Matthew Heaney, On2 Technologies
Date: 11 June 2007

Abstract: Sets are containers of elements. Like all containers,
they are searchable, and given an element value you can find
the element in the set equivalent to that value. For some
applications, element equivalence is determined by just a part
of the element (its “key” part), and it is often necessary to find
an element given only a key value. A technique is presented
here for key-based searching of elements in set containers.

Let’s get started…
This example demonstrates how to use hashed set containers.
We are given the task of implementing a game in which a user
navigates among components in a maze. These map-sites
comprise walls, rooms, and doors. One of the features of the
game is the ability to find room objects given a room number,
and we implement that feature using a set container.
The map-site objects in our simulation are members of a
common class. We use a tagged type declared as follows:

 type Map_Site is abstract tagged limited null record;

The (abstract) type has a single (abstract) operation to provide
navigation to a site object:

 procedure Enter (Site : in out Map_Site) is abstract;

Next we implement concrete type Room, which derives from
Map_Site. The declaration of the Room type looks like this:

 type Room (<>) is limited new Map_Site with private;

The room type is limited and indefinite (because it has
“unknown discriminants”), which means that objects of the
type must be explicitly initialized by calling a constructor-style
function, declared as follows:

 not overriding
 function New_Room (Number : Positive) return not null
 access Room;

There is no way to create a room object other than to call
New_Room, which is where we insert new room objects into
the set used to find instances. Now we turn to the package
body and the instantiation of the set package. The generic
actual type is just a simple named access type (the same one
we use to allocate instances):

 type Room_Access is not null access Room;

To instantiate the (hashed) set package, we need both a hash
function and an equivalence function. The hash function for
sets is a mapping of element value to hash value. So how do
we make a hash value from a room object? The natural choice

is to use the room number as the hash value for a room object,
so our hash function for rooms looks like this:

 function Hash (R : Room_Access) return Hash_Type is
 begin
 return Hash_Type (R.Number);
 end;

For the equivalence function, we can just use the predefined
equality operator for type Room_Access, since set elements
are access values, and access values are unique for distinct
room objects.
We now have everything we need to instantiate the generic
hashed set container:

 package Room_Sets is new
 Ada.Containers.Hashed_Sets
 (Element_Type => Room_Access,
 Hash => Hash,
 Equivalent_Elements => “=”);

 Room_Set : Room_Sets.Set;

We are finally in a position to implement the Room
constructor function, which looks like this:

 function New_Room (Number : Natural)
 return not null access Room
 is
 R : constant Room_Access := new Room (Number);
 begin
 Room_Set.Insert (R);
 return R;
 end New_Room;

Now that we have implemented the necessary infrastructure
for creating room objects, we have to implement the function
for looking up room objects using the room number as the key.
Our function is declared as follows:

 function Find_Room (Number : Natural) return
 access Room;

Now comes the interesting part. The set records all Room
objects that have been created, so if a room with that number
exists, it will be in the set. Our problem is that we have no
immediate way to search for room objects given a room
number. Remember that this is a set of rooms (not a map with
room number as the key) and the search function for the
instantiation looks like this:

 function Find (Container : Set; Item : Room_Access)
 return Cursor;

The issue is that we have a room number, not a room object,
so how do we look up a room object according to its number?
The solution is to take advantange of the nested generic
package Generic_Keys provided by the sets, which allows
you to view a set element in terms of its key. It has generic
formals very similar to the set package itself, except that the

Ada Gems 67

Ada User Journal Volume 29, Number 1, March 2008

operations apply to a generic formal Key_Type instead of to
the element type.
One requirement for using that package is that the generic
actuals for keys must deliver the same values as the generic
actuals for elements. For example, the function to return the
hash value of a room number (the key) must return the same
value as the function that returns the hash value of the room
object (the element) with that room number. So we instantiate
the nested package as follows:

 function Get_Room_Number (R : Room_Access)
 return Natural is
 begin
 return R.Number;
 end;
 function Room_Number_Hash (N : Natural)
 return Hash_Type is
 begin
 return Hash_Type (N);
 end;

 package Room_Number_Keys is new
 Room_Sets.Generic_Keys
 (Key_Type => Natural,
 Key => Get_Room_Number,
 Hash => Room_Number_Hash,
 Equivalent_Keys => “=”);

We are now ready to implement the Find_Room function. The
package Room_Number_Keys provides a key-based search
function, so we call that to search the set for a room object
with the given room number:

 function Find_Room (Number : Natural)
 return access Room is
 C : constant Room_Sets.Cursor :=
 Room_Number_Keys.Find (Room_Set, Number);
 begin
 if Has_Element (C) then
 return Element (C);
 else
 return null;
 end if;
 end Find_Room;

The search function returns a cursor, and the cursor value
indicates whether the search was successful. If a room object
having that room number is in the set, Has_Element returns
True and so we return the Room object designated by the
cursor. If that number was not found (because no room object
having that number was in the set), we simply return null.
The package Generic_Keys has a few other interesting
features, including the ability to modify set elements, but we’ll
defer that discussion until a future time. In the meantime, have
fun with the containers!

Ada Gem -8: Factory Functions
Matthew Heaney, On2 Technologies
Date: 10 September 2007

Abstract: A factory function is a technique for constructing
an object from one class given only an object in some other

class. The technique is used to implement assignment for
objects having a class-wide type, such that tag-mismatch
exceptions cannot occur.

Let’s get started…
Suppose we have a generic package that declares a stack class.
The root of the hierarchy would be as follows:

 generic
 type Element_Type is private;
 package Stacks is
 type Stack is abstract tagged null record;

 procedure Push (Container : in out Stack;
 Item : in Element_Type) is abstract;
 …
 end Stacks;

Assume there are various concrete types in the class, say an
unbounded stack (that automatically grows as necessary) and a
bounded stack (implemented as a fixed-size array).
Now suppose we want to assign one stack to another,
irrespective of the specific stack type, something like this:

 procedure Op (T : in out Stack’Class; S : Stack’Class) is
 begin
 T := S; -- raises exception if tags don’t match
 …
 end;

This compiles, but isn’t very robust, since if the tag of the
target stack doesn’t match the tag of the source stack, then an
exception will occur. Our goal here is to figure out how to
assign stack objects (whose type is class-wide) in a manner
such that the assignment is guaranteed to work without raising
a tag-mismatch exception.
One way to do this is to make an assignment-style operation
that is primitive for the type, so that it will dispatch according
to the type of the target stack. If the type of the source stack is
class-wide, then there can’t be a tag mismatch (and hence no
exception) since there’s only one controlling parameter.
(Note that you could do it the other way too, by dispatching on
the tag of the source stack. You could even make the operation
class-wide, so that it doesn’t need to dispatch at all. The idea is
to avoid passing more than a single controlled operand.)
The assign operation would be declared like this:

 procedure Assign (Target : in out Stack;
 Source : Stack’Class) is abstract;

which would allow us to rewrite the above assignment
statement as:

 procedure Op (T : in out Stack’Class; S : Stack’Class) is
 begin
 T.Assign (S); -- dispatches according T’s tag
 …
 end;

Each type in the class will have to override Assign. As an
example, let’s follow the steps the necessary to implement the
operation for the bounded stack type. Its spec would look like
this:

 generic
 package Stacks.Bounded_G is

68 Ada Gems

Volume 29, Number 1, March 2008 Ada User Journal

 type Stack (Capacity : Natural) is
 new Stacks.Stack with private;

 procedure Assign
 (Target : in out Stack;
 Source : Stacks.Stack’Class);
 …
 private
 type Stack (Capacity : Natural) is
 new Stacks.Stack with
 record
 Elements : Element_Array (1 .. Capacity);
 Top_Index : Natural := 0;
 end record;
 end Stacks.Bounded_G;

This is just a canonical implementation of a bounded container
form, that uses a discriminent to control how much storage for
the object is allocated. The interesting part is implementing the
Assign operation, since we need some way to iterate over
items in the source stack. Here’s a skeleton of the
implementation:

 procedure Assign
 (Target : in out Stack; -- bounded form
 Source : Stacks.Stack’Class)
 is
 …
 begin
 …
 for I in reverse 1 .. Source.Length loop
 Target.Elements (I) := <get curr elem of source>
 <move to next elem of source>
 end loop;
 …
 end Assign;

Note carefully that, assuming we visit items of the source
stack in top-to-bottom order, it’s not a simple matter of
pushing items onto the target stack, since if we did that the
items would end up in reverse order. That’s the reason why we
populate the target stack array in reverse, starting from largest
index (the top of the stack) and working backwards (towards
the bottom of the stack).
The question is, how do you iterate over the source stack?
Assume that each specific type in the stack class has its own
iterator type, matched to that stacks’s particular representation
(similar to how the containers in the standard library are
implemented). The issue is that the type of the source stack
formal parameter is class-wide. How do we get an iterator for
the source stack actual parameter, if its specific type is not
known (not known statically, that is)?
The answer is, just ask the stack for one! A tagged type has
dispatching operations, some of which can be functions, so
here we just need a dispatching function to return an iterator
object. The idiom of dispatching on an object whose type is in
one class, to return an object whose type is in another class, is
called a “factory function” or “dispatching constructor.”
An operation can only be primitive for one tagged type, so if
the operation dispatches on the stack parameter then the
function return type must be class-wide. We now introduce
type Cursor, the root of the stack iterator hierarchy, and amend
the stack class with a factory function for cursors:

 type Cursor is abstract tagged null
 record; -- the iterator

 function Top_Cursor -- the factory function
 (Container : not null access constant Stack)
 return Cursor’Class is abstract;

 … -- primitive ops for the Cursor class

Each type in the stack class will override Top_Cursor, to
return a cursor that can be used to visit the items in that stack
object. We can now complete our implementation of the
Assign operation for bounded stacks as follows:

 procedure Assign (Target : in out Stack;
 Source : Stacks.Stack’Class)
 is
 C : Stacks.Cursor’Class :=
 Source.Top_Cursor; -- dispatches
 begin
 Target.Clear;

 for I in reverse 1 .. Source.Length loop
 Target.Elements (I) := C.Element; -- dispatches
 C.Next; -- dispatches
 end loop;

 Target.Top_Index := Source.Length;
 end Assign;

The Source parameter has a class-wide type, which means the
call to Top_Cursor dispatches (since Top_Cursor is primitive
for the type). This is exactly what we want, since different
stack types will have different representations, and will
therefore require different kinds of cursors. The cursor object
(here, C) returned by the factory function is itself class-wide,
which means that cursor operations also dispatch. The function
call C.Element returns the element of Source at the current
position of the cursor, and C.Next advances the cursor to the
next position (towards the bottom of the stack).

Ada Gem -9: Classwide Operations,
Iterators, and Generic Algorithms
Matthew Heaney, On2 Technologies
Date: 17 September 2007

Abstract: A generic algorithm manipulates container elements
in a way that is completely general, working with any
container (including arrays) that provides a way to iterate over
its elements. In this example we systematically alter an
operation for copying containers within a common class,
converting it to a generic algorithm that ultimately works for
any kind of container.

Let’s get started…
In the last gem, we used a stack class to demonstrate factory
functions (to construct iterator objects), and implemented an
assignment operation that dispatched on the type of the target
stack. We mentioned in passing that that operation could be
implemented by dispatching on the source stack, so let’s show
how to do that.

Ada Gems 69

Ada User Journal Volume 29, Number 1, March 2008

We reorder the parameters so that the Source stack is first in
the parameter list (so that it’s the “distinguished receiver” of a
prefix-style call), and change its type from classwide to
specific. We also change the name of the operation from
Assign to Copy, per convention. The new declaration is as
follows:

 procedure Copy (Source : Stack;
 Target : in out Stack’Class)

 is abstract;

In the earlier example, we had to populate the target stack in
reverse, so that the elements would be in the correct order. We
were able to do that because the operation was implemented
by the specific type, and hence it had direct access to the
representation of the (target) stack. Here the target type is
classwide, so the only way to populate it is in forward order,
using Push. That means we’ll have to iterate over the source
stack in reverse, so that the items are properly ordered in the
target.
The bounded stack type is implemented as an array, so
implementing Copy is easy because the bottom of the stack
begins at the beginning of the array:

 procedure Copy
 (Source : Stack; -- bounded stack (array-based)
 Target : in out Stacks.Stack’Class)
 is
 begin
 Target.Clear;

 for I in 1 .. Source.Top_Index loop -- from bottom
 -- to top
 Target.Push (Source.Elements (I)); -- Elements is
 -- the array
 end loop;
 end Copy;

We also said in the earlier gem that the operation need not be
primitive for the type. If we change the source stack’s type to
classwide, then the operation itself becomes classwide:

 procedure Copy2 -- classwide op, not primitive
 (Source : Stack’Class;
 Target : in out Stack’Class);

If we make the type of the source stack classwide, then we’ll
need a different way to iterate over items of the source stack in
reverse order, since we don’t have access to its representation
anymore.
To do that we’ll amend the cursor type to include some
additional operations. First we’ll add a new factory function,
to construct a cursor object that (initially) designates the
element at the bottom of the stack:

 function Bottom_Cursor
 (Container : not null access constant Stack)
 return Cursor’Class is abstract;

We’ll also need an operation to move the cursor to the element
that precedes the current item:

 procedure Previous (Position : in out Cursor)

 is abstract;

That gives us everything we need to turn Copy into a
classwide operation, so that it only needs to be implemented
once:

 procedure Copy2 (Source : Stack’Class;
 Target : in out Stack’Class)
 is
 C : Cursor’Class := Bottom_Cursor (Source’Access);
 begin
 Target.Clear;

 while C.Has_Element loop
 Target.Push (C.Element);
 C.Previous;
 end loop;
 end Copy2;

Note that we declared the classwide stack operation in the root
package (see stacks.ads), but it could have just as easily been
declared as a generic child procedure:

 generic
 procedure Stacks.Generic_Copy3
 (Source : Stack’Class;
 Target : in out Stack’Class);

Actually, we could move the operation out of the package
hierarchy entirely:

 with Stacks;
 generic
 with package Stack_Types is new Stacks (<>);
 use Stack_Types;
 procedure Generic_Stack_Copy4
 (Source : Stack’Class;
 Target : in out Stack’Class);

We can generalize this even more, such that the copy
algorithm works for any kind of stack:

 generic
 type Stack_Type (<>) is limited private;
 type Cursor_Type (<>) is private;
 type Element_Type (<>) is private;

 with function Bottom_Cursor (Stack : Stack_Type)
 return Cursor_Type is <>;
 with procedure Push (Stack : in out Stack_Type;
 Item : Element_Type) is <>;
 with procedure Previous
 (Cursor : in out Cursor_Type) is <>;
 …
 procedure Generic_Stack_Copy5
 (Source : Stack_Type;
 Target : in out Stack_Type);

This illustrates the difference between the dynamic
polymorphism of tagged types and the static polymorphism of
generics. There is no need for a stack class anymore (having a
dedicated copy operation that works only for types in that
class), since the generic algorithm works for any stack. (This is
exactly how the standard container library is designed.
Container types are tagged, but they are not members of a
common class.)
Instantiating this operation on our stack type is easy, since the
names of the generic actual operations match the names of the

70 Ada Gems

Volume 29, Number 1, March 2008 Ada User Journal

generic formal operations, so we don’t need to specify them
explicitly (since the generic formals are marked as accepting a
<> default):

 procedure Test_Copy5 (S : Stack) is
 procedure Copy5 is
 new Generic_Stack_Copy5
 (Stack,

 Cursor,
 Integer); -- default everything else

 T : Stack (S.Length);
 begin
 Copy5 (Source => S, Target => T);
 end;

But why stop there? We can write a generic copy algorithm for
any kind of container. We just need to generalize iteration a
little, to mean “visit these items in the way that makes sense
for this source container,” and generalizing insertion, to mean
“add this element in the way that makes sense for this target
container.” The declaration would be:

 generic
 type Container_Type (<>) is limited private;
 type Cursor_Type (<>) is private;
 type Element_Type (<>) is private;

 with function First (Container : Container_Type)
 return Cursor_Type is <>;
 with procedure Insert
 (Container : in out Container_Type;
 Item : Element_Type) is <>;
 with procedure Advance (Cursor : in out Cursor_Type)
 is <>;

 procedure Generic_Copy6
 (Source : Container_Type;
 Target : in out Container_Type);

We can instantiate this using our stack type, but note that the
generic actuals no longer match the generic formals, so we
need to specify them explicitly:

 procedure Test_Copy6 (S : Stack) is
 procedure Copy6 is
 new Generic_Copy6 (Stack, Cursor, Integer,
 First => Bottom_Cursor,
 Insert => Push,
 Advance => Previous);

 T : Stack (S.Length);

 begin
 Copy6 (Source => S, Target => T);
 end;

One assumption we’ve made here is that the source and target
containers have the same type. Suppose we would like to copy
the items in a stack to, say, an array. One approach would be
to introduce another generic formal container type (a “source
container” type that is distinct from the “target container”
type), but there’s another way. Consider the implementation of
the copy algorithm:

 procedure Generic_Copy6
 (Source : Container_Type;
 Target : in out Container_Type)
 is
 C : Cursor_Type := First (Source);
 begin
 Clear (Target);
 while Has_Element (C) loop
 Insert (Target, Element (C));
 Advance (C);
 end loop;
 end Generic_Copy6;

Notice that the only thing we do with the source container is to
use it to construct a cursor. If we pass in the cursor directly,
that eliminates any mention of the source stack, which in turn
allows the source and target containers to be different types.
Our algorithm now becomes:

 generic
 type Container_Type (<>) is limited private;
 type Cursor_Type (<>) is private;
 type Element_Type (<>) is private;
 …
 procedure Generic_Copy7
 (Source : Cursor_Type;
 Target : in out Container_Type);

We can now copy from an integer stack to an array like this:

 procedure Copy_From_Stack_To_Array
 (S : in out Stack)
 is
 T : Integer_Array (1 .. S.Length);
 I : Positive := T’First;

 procedure Insert
 (Container : in out Integer_Array;
 Item : Integer)
 is
 begin
 Container (I) := Item;
 I := I + 1;
 end;

 procedure Copy7 is
 new Generic_Copy7 (Integer_Array, Cursor,
 Integer,
 Advance => Next);
 begin
 Copy7 (Source => S.Top_Cursor, Target => T);
 end Copy_From_Stack_To_Array;

The target “container” is just an array. The only special thing
we need to do is synthesize an insertion operation, to pass as
the generic actual. We can also use the same algorithm to go
the other way, from an array to a stack:

 procedure Copy_From_Array_To_Stack
 (S: Integer_Array)
 is
 T : Stack (S’Length);

 function Has_Element (I : Natural) return Boolean is

Ada Gems 71

Ada User Journal Volume 29, Number 1, March 2008

 begin
 return I > 0;
 end;

 function Element (I : Natural) return Integer is
 begin
 return S (I);
 end;

 procedure Advance (I : in out Natural) is
 begin
 I := I - 1;
 end;

 procedure Copy7 is
 new Generic_Copy7 (Stack, Natural, Integer,
 Insert => Push);

 begin
 Copy7 (Source => S’Last, Target => T);
 end Copy_From_Array_To_Stack;

Now the source container is an array, and the “cursor” is just
the array index (an integer subtype). We have the familiar
problem of ensuring that the target stack is populated in the
correct order. As before, we simply iterate over the array in
reverse, by passing the index S’Last as the initial cursor value,
and then “advancing” the cursor by decrementing the index
value.
The algorithm can be generalized further still. In this final
version, we eliminate the generic formal element type. That
means we’ll need to modify the generic formal Insert
operation, by passing the source cursor as a parameter instead
of the source element. The declaration of the generic algorithm
now becomes:

 generic
 type Container_Type (<>) is limited private;
 type Cursor_Type (<>) is private;

 with procedure Insert
 (Target : in out Container_Type;
 Source : Cursor_Type) is <>;

 …
 procedure Generic_Copy8
 (Source : Cursor_Type;
 Target : in out Container_Type);

The algorithm is now agnostic about the mapping from cursor
to element (since it doesn’t even know about elements), which
is more flexible, since it allows the client to choose whatever
mechanism is the most efficient. To use the new algorithm, all
we need to do is make a slight change to the generic actual
Insert procedure, as follows:

 procedure Copy_From_Stack_To_Array
 (S : in out Stack)
 is
 T : Integer_Array (1 .. S.Length);
 I : Positive := T’First;

 procedure Insert
 (Target : in out Integer_Array;
 Source : Cursor) -- now a cursor instead of
 -- an element
 is
 begin
 Target (I) := Element (Source);
 I := I + 1;
 end;

 procedure Copy8 is
 new Generic_Copy8 (Integer_Array, Cursor,
 Advance => Next);
 begin
 Copy8 (Source => S.Top_Cursor, Target => T);
 end Copy_From_Stack_To_Array;

The basic idea is that a generic algorithm can be used over a
wide range of containers (including array types). A cursor
provides access to the elements in a container, but as we’ve
seen, once you have a cursor then the container itself sort of
disappears. From the point of view of a generic algorithm, a
container is merely a sequence of items.

72

Volume 29, Number 1, March 2008 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Association Ada-France
c/o Jérôme Hugues
Département Informatique et Réseau
École Nationale Supérieure des Télécomunications
46, rue Barrault
75634 Paris Cedex 135
France
Email: bureau@ada-france.org
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-i-sverige.se

Ada in Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	Practical Application of Static Analysis for Embedded Systems
	13th International Real-Time Ada Workshop
	Session: Programming Patterns and Libraries
	A Framework for Real-Time Utilities for Ada 2005
	Programming Execution-Time Servers in Ada 2005
	Ada 2005 Code Patterns for Metamodel-Based Code Generation
	Ada Gems

