

Ada User Journal Volume 30, Number 4, December 2009

ADA
USER
JOURNAL

Volume 30
Number 4

December 2009

Contents
Page

Editorial Policy for Ada User Journal 202

Editorial 203

News 205

Conference Calendar 230

Forthcoming Events 236

T. Vardanega
“Book review: Ada for Software Engineers, by Mordechai Ben-Ari” 241

Articles

 M. Sobczak
“Experiences in Evaluating Ada with a Pilot Project” 243

Articles from the Industrial Track of Ada-Europe 2009

 M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, T. Quinot,
J. Delange, J. Hugues, L. Pautet
“Couverture: an Innovative Open Framework
for Coverage Analysis of Safety Critical Applications” 248

 T. Vergnaud, F. Gilliers, H. Balp
“Generating Component-based AADL Applications with MyCCM-HI and Ocarina” 256

M. Aldea Rivas, M. González-Harbour
Ada User Guide on MaRTE OS 264

Ada-Europe Associate Members (National Ada Organizations) 272

Ada-Europe 2009 Sponsors Inside Back Cover

202

Volume 30, Number 4, December 2009 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 203

Ada User Journal Volume 30, Number 4, December 2009

Editorial

Browsing the contents of Volume 30 of the Ada User Journal, which closes with this issue, the reader will surely understand
if I note that the Journal is demonstrating its vitality and, more important, the vitality of the Ada community.

In this Volume of four issues and 272 pages, fifteen articles were published; seven derived from the Ada-Europe conference
Industrial and Tutorial tracks, five in the Proceedings of the Software Vulnerabilities Workshop, and three directly provided
to the Journal. At the same time the Journal published eight Ada Gems, and inumerous news and event information. And we
end the year inaugurating a new section: the Ada User Guides, which will provide to our readers hands-on guides of
interesting Ada technologies, sharing the Journal with the Ada Gems section.

It is my pleasure to say that the Journal is very much alive, as is the Ada community.

As for this last issue of 2009, the first paper is by Maciej Sobczak, from CERN, Switzerland, and presents the author’s
experience in using the Ada language for a distributed directory and name service. We also finalize the publication of
material derived from the Ada-Europe 2009 conference, with two papers from the conference’s industrial track. The first,
from a set of authors coming from AdaCore and Télécom ParisTech, both in France, presents a framework for coverage
analysis of high-integrity applications. The second, from authors coming from Thales Communications, France, provides the
results of combining Lightweight CCM and AADL for the development of real-time applications.

In the new Ada User Guides section, we are happy to provide the Ada User Guide on MaRTE OS, by Mario Aldea and
Michael González-Harbour, of the University of Cantabria, Spain. I am sure that you will all appreciate, and use, this guide.
Concerning the Guides section, Please feel free to write to us presenting or proposing other guides for us to publish.

Also in the issue, Tullio Vardanega provides an interesting Book Review of the second edition of Mordechai Ben-Ari’s Ada
for Software Engineers. And finally, I would like also to point out the, as usual, richness of the news, calendar and
forthcoming events sections.

Luís Miguel Pinho
Porto

December 2009
Email: lmp@isep.ipp.pt

 205

Ada User Journal Volume 30, Number 4, December 2009

News
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Contents

Ada-related Oraganizations 205
Ada-related Events 206
Ada-related Tools 207
Ada-related Products 209
Ada and GNU/Linux 212
Ada and Microsoft 212
References to Publications 214
Ada Inside 214
Ada in Context 216

Ada-related
Organizations
Ada-France — Status of the
Association
From: Jérôme Hugues <hugues@telecom-

paristech.fr>
Date: Mon, 7 Sep 2009 16:24:00 CEST
Subject: [ada-france] Assemblée

extraordinaire le 21/09 à 18h30, à
l'ENST

Mailing list: ada-france.org
[…]
As you know, this summer we launched a
call for volunteers to continue the
Association.
We also convened an Assembly on
August 31 2009, to discuss the future of
the Association.
That meeting effectively took place, but
with very low attendance. Besides the
members of the Board of Directors
(Fabrice Kordon, Laurent Pautet, Frank
Singhoff and myself), only one member
(Jean-Pierre Rosen) was present. We
reminded of the reasons why the current
team (Yvon Kermarrec, Frank and
myself) does not wish to continue
anymore.
Formally, there is a lack of time to
properly manage the Association.
As I indicated at the meeting, the
Association can continue to provide
certain basic services. However this can
not happen without a team which will
take over.
That is why we are convening a new
Assembly with the dissolution of the
Association as the single item on the
agenda.
If a team would be formed by then to take
over some of the activities of the
Association, it is obviously welcome.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 23 Sep 2009 17:55:00 CEST
Subject: [ada-france] Résultat de l'AG
Mailing list:ada-france.org
With a unanimous vote of present and
represented members, the General
Assembly rejected the proposal to disband
the Association.
 A new Board of Directors was elected,
composed of:
- Thomas De Contes
- Xavier Grave
- Laurent Guerby
- Jean-Pierre Rosen
- Samuel Tardieu
The Board of Directors will now get
organized to form the Executive Board,
prepare the official paperwork, and
resume activities. Of course, we will keep
the list informed, but it will nevertheless
take some time.
Stay tuned!
From: Jérôme Hugues <hugues@telecom-

paristech.fr>
Date: Mon, 5 Oct 2009 9:11:00 CEST
Subject: [ada-france] CR de l'Assemblée

Générale d'AdaFrance du 21/09/2009
Mailing list:ada-france.org
[…]
Enclosed, you find the minutes of the
General Assembly held on 21/09/2009.
Good reading and good luck to the new
Board.

Minutes of the General Assembly of Ada-
France, convened on September 21, 2009
at the École Nationale Supérieure des
Télécommunications.
Present:
- Jérome Hugues
- Fabrice Kordon
- Jean-Pierre Rosen
- Claude Simon, non member
- Samuel Tardieu
Represented with a valid proxy, including
by e-mail:
- Michel Gauthier
- Laurent Guerby
- Claude Kaiser
- Patrick de Bondeli
- Philippe Tarroux

- Guillaume Foliard
as well as Agusti Canals, who
communicated via mail his wish to see
the Association continue.
Total: 6 members present or represented.
The President, noting that the General
Assembly was properly convened in
conformance with Article 14 of the
statutes, opened the meeting at 18:30.
The secretary for the meeting is Jérôme
Hugues.
The single item on the agenda is the
dissolution of the Association.
The current team has recalled the past
activities (the Ada-France day, the
organization of RST'2009 [sic] in Brest),
and the follow-up of daily business. The
lack of involvement in the Association
has motivated the current team to want to
hand over.
Jean-Pierre Rosen pointed out to have
gathered a team, consisting of:
- Thomas De Contes
- Xavier Grave
- Laurent Guerby
- Jean-Pierre Rosen
- Samuel Tardieu
This newly formed team will focus more
on the promotion of the Ada language in
France.
This new team being presented, the
members present or represented have
unanimously rejected the proposal to
dissolve the Association, and have
unanimously voted in favor of this new
team.
There being no other items on the agenda,
the meeting was closed at 19:15.
Good luck to the new Board.
[The whole thread was translated from
French —mp]

Ada in Denmark
From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 07 Sep 2009 13:52:35 +0200
Subject: Ada in Denmark and a Wiki article
Newsgroups: comp.lang.ada
[…]
For the past few years, Ada in Denmark
has been without a website. This is no
longer the case, as http://ada-dk.org
relaunched a few months ago.
Hopefully we will be able to attract more
danish Ada programmers, now that we're

206 Ada-related Events

Volume 30, Number 4, December 2009 Ada User Journal

online again.
If you're a danish Ada programmer,
please consider joining Ada in Denmark:
http://ada-dk.org/?page=join
We'd love to have more members.
The new website comes with a Wiki. It is
our goal to add beginner-friendly articles
to this Wiki, as time permits. The first
article is online and can be found at
http://wiki.ada-dk.org/index.php/
Ada.Containers.Vectors
In case it isn't obvious from the above
URL, this article is about the
Ada.Containers.Vectors package. The
goal of the article is to *show*, with
actual code, beginners how the various
procedures/functions in the Vectors
package work.
If there are any glaring mistakes in the
article, please let me know, and I'll fix
them ASAP. Or you can just sign up, and
add/remove/alter the page as you wish. It
is a Wiki after all. :o)
Please bear in mind, that the article is still
being edited by someone with a much
higher degree of proficiency in the
English language (thanks Dwight!) than
me. My first language, naturally, is
Danish, so there's bound to be quite a few
errors in the text, as I struggle along with
the English language. Hopefully Dwight
will have most of the errors cleared away
"soon".
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 7 Sep 2009 06:53:20 -0700 PDT
Subject: Re: Ada in Denmark and a Wiki

article
Newsgroups: comp.lang.ada
> The new website comes with a Wiki. It

is our goal to add beginner-friendly
articles to this Wiki, as time permits.
The first article is online and can be
found at http://wiki.ada-dk.org/
index.php/Ada.Containers.Vectors

Nice but I think it would be better if the
Ada in Denmark web site would
concentrate on subjects that are
specifically Danish (and quite possibly
written in Danish, too; there is nothing
wrong with that); your nice page about
Vectors is relevant to users of Ada outside
Denmark and is written in English, so I
think this page should be in the Ada
Programming wikibook.
Anyway, you have my sympathy if that
matters to you :)
From: Thomas Løcke <tl@ada-dk.org>
Date: Mon, 07 Sep 2009 16:27:41 +0200
Subject: Re: Ada in Denmark and a Wiki

article
Newsgroups: comp.lang.ada
[…]
We talked about doing the website in
danish, but decided on English, as all
danish programmers are fairly proficient

in English, and if the site is in English,
other people can benefit from the content
also. It's a win/win situation. Had we done
the website in danish, only very few
people would benefit from the content.
> your nice page about Vectors is relevant

to users of Ada outside Denmark and is
written in English, so I think this page
should be in the Ada Programming
wikibook.

When we planned the new website, we
did discuss whether a new wiki was
necessary or if we should just link directly
to, for example, the Ada Programming
wikibook, but we decided on going with
our own, as we wanted freedom to do
whatever we liked, and we guessed
(maybe wrongly) that such freedom
would not be possible, if we were to
intrude on an already active wiki.
With our own wiki, we can write
whatever we want, however we want.
And if other people feel some of our
content is good enough to be added to for
example the Ada Programming wikibook,
then they are more than welcome to grab
the content in question and add it. Copy it,
modify it, use it. All content on the ada-
dk.org wiki is made available under the
GFDL 1.3 license.
[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 7 Sep 2009 08:49:48 -0700 PDT
Subject: Re: Ada in Denmark and a Wiki

article
Newsgroups: comp.lang.ada
[…]
Yes, you guessed wrongly. Everyone is
welcome to contribute to the Ada
Programming wikibook. The existing
page about Vectors[1] is very short and
would benefit greatly from your work.
Meanwhile, your page is probably not the
first place newbies would find when
looking for information whereas, even a
few minutes ago, someone posted a
question right here on comp.lang.ada after
reading the now well-known Wikibook.
[1] http://en.wikibooks.org/wiki/
Ada_Programming/Libraries/
Ada.Containers.Vectors
> if we were to intrude on an already

active wiki.
You have two people's sympathy already.
You're not an intruder. And the Ada
Programming wiki is never active enough.
:)
> With our own wiki, we can write

whatever we want, however we want.
And if other people feel some of our
content is good enough to be added to
for example the Ada Programming
wikibook, then they are more than
welcome to grab the content in question
and add it. Copy it, modify it, use it. All

content on the ada-dk.org wiki is made
available under the GFDL 1.3 license.

That's called "duplication of effort" and
"maintenance nightmare". Ada was
designed to maximize reuse and minimize
the maintenance burden. Heed her advice
:)
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Mon, 07 Sep 2009 18:05:55 +0200
Subject: Re: Ada in Denmark and a Wiki

article
Newsgroups: comp.lang.ada
[…]
Duplication of efforts is a waste, but
duplication of web sites makes Ada more
visible…

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—mp]

Ada at FOSDEM 2010 —
Call for Interest
From: Dirk Craeynest

<dirk@cs.kuleuven.be>
Date: Mon, 2 Nov 2009 05:09:25 +0100

CEST
Subject: Ada at FOSDEM 2010 - Call for

Interest
Newsgroups: comp.lang.ada,

fr.comp.lang.ada

Call for Interest

A d a at F O S D E M 2 0 1 0

6-7 February 2010, Brussels, Belgium

--
FOSDEM [1], the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
event organized each February in
Brussels, Belgium.
The goal is to provide Free Software and
Open Source developers and communities
a place to meet with other developers and
projects, to be informed about the latest
developments in the Free Software and
Open Source world, to attend interesting
talks and presentations by Free Software
and Open Source project leaders and
committers on various topics, and to
promote the development and the benefits
of Free Software and Open Source
solutions.

Ada-related Tools 207

Ada User Journal Volume 30, Number 4, December 2009

At previous FOSDEM events, Ada-
Belgium [2] has organized some very well
attended Ada Developer Rooms, offering
a full day program in 2006 [3] and a two-
day program earlier this year [4].
Each year the number of applications for
DevRooms outnumbers the available
space, presenting the organizers with a
difficult selection[5]. For 2010, the
conditions specify "a preference for
requests with a general topic, e.g. from
projects with similar goals/domains" and
"be involved in Free or Open Source
Software (the projects produce and
release software under an open source
license or otherwise contribute to open
source activities and communities)".
Many Ada-related topics and projects fit
those conditions very well, so we are
considering to submit a proposal for
FOSDEM 2010, and thus need to show
that this would attract sufficient interest.
To increase our chances to be allocated a
DevRoom, we'd like to have a proposal
with the full schedule of all presentations
ready by the deadline for DevRoom
requests.
Therefore, Ada-Belgium calls on you to:
- Inform us at ada-belgium-

board@cs.kuleuven.be about specific
presentations you would like to hear in
an Ada DevRoom.

- For bonus points, subscribe to the Ada-
FOSDEM mailing list [6] to discuss and
help organize the details.

- For more bonus points, be a speaker:
the Ada-FOSDEM mailing list is the
place to be!

We look forward to lots of feedback!
Please act ASAP and definitely before
November 9.
The FOSDEM Team of Ada-Belgium
PS: This Call for Interest is also available
online [7], including versions in PDF
format suitable for printing (72 KB) and
in plain text format for further distribution
(4 KB).
[1] http://www.fosdem.org
[2] http://www.cs.kuleuven.be/~dirk/

 ada-belgium
[3] http://www.cs.kuleuven.be/~dirk/
 ada-belgium/events/06/
 060226-fosdem.html
[4] http://www.cs.kuleuven.be/~dirk/
 ada-belgium/events/09/
 090207-fosdem.html
[5] http://www.fosdem.org/2010/
 call-developer-rooms
[6] http://listserv.cc.kuleuven.be/archives/
 adafosdem.html
[7] http://www.cs.kuleuven.be/~dirk/
 ada-belgium/events/10/
 100206-fosdem.html
[…]

Review of Ada Issues
From: Dirk Craeynest

<Dirk.Craeynest@cs.kuleuven.be>
Date: Mon, 19 Oct 2009, 22:22 GMT
Subject: Review of Ada Issues for November

2009 SC22/WG9 meeting (fwd)
Mailing list: ada-belgium-info@

cs.kuleuven.ac.be
Dear Ada-Belgium friend,
The following message was just posted to
the Ada-Belgium members'mailing list
and is reposted here for your information.
[…]

Dear Ada-Belgium member,
As you may know, there is an upcoming
meeting of ISO's Ada language working
group (ISO/IEC JTC1/SC22/WG9)
scheduled at the end of the ACM SIGAda
2009 conference next June in Tampa,
Florida, USA
The Chairman of the Ada Rapporteur
Group (ARG) of WG9 informed the
Heads of Delegation that the Ada Issues
(AIs) listed below have entered Editorial
Review, and are intended to be submitted
to WG9 for approval at the above
mentioned meeting.
The AIs can be found at <http://www.ada-
auth.org/AI05-SUMMARY.HTML>.
AI05-0001-1/07 2009-07-03 - Bounded
containers and other container issues
AI05-0102-1/03 2009-06-27 - Some
implicit conversions ought to be illegal
AI05-0107-1/03 2009-06-27 - A failed
allocator need not leak memory
AI05-0123-1/06 2009-06-29 -
Composability of equality
AI05-0130-1/03 2009-06-26 - Order of
initialization/finalization of record
extension components
AI05-0137-1/03 2009-06-30 - String
encoding package
AI05-0148-1/05 2009-06-25 -
Accessibility of anonymous access stand-
alone objects
AI05-0152-1/02 2009-06-25 - Restriction
No_Anonymous_Allocators
AI05-0156-1/02 2009-06-25 -
Elaborate_All applies to bodies imported
with limited with
Those AIs are now being circulated
within the Ada community for review,
with the intention to return comments to
the ARG in time to properly answer them
before the WG9 meeting.
Comments for the Belgian delegation
should be sent to me at
<Dirk.Craeynest@cs.kuleuven.be>. The
deadline is 18:00 GMT+2, Tuesday,
October 27th, 2009. Early comments are
encouraged.
Dirk Craeynest

ISO/IEC JTC1/SC22/WG9, Head of
Delegation, Belgium
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)
[…]
[see also "Review of Ada Issues" in AUJ
30-2 (Jun 2009), p.72 —mp]

Ada-related Tools
GtkAda Contributions v2.5
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 18 Nov 2009 22:21:37 +0100
Subject: ANN: GtkAda contributions v2.5
Newsgroups: comp.lang.ada
This library is proposed as a contribution
to GtkAda, an Ada bindings to GTK+. It
deals with the following issues:
1. Tasking support;
2. Custom models for tree view widget;
3. Custom cell renderers for tree view

widget;
4. Multi-columned derived model;
5. Extension derived model (to add

columns to an existing model);
6. Abstract caching model for directory-

like data;
7. Tree view and list view widgets for

navigational browsing of abstract
caching models;

8. File system navigation widgets with
wildcard filtering;

9. Resource styles;
10. Capturing resources of a widget;
11. Embeddable images;
12. Some missing subprograms and bug

fixes;
13. Measurement unit selection widget

and dialogs;
14. Improved hue-luminance-saturation

color model;
15. Simplified image buttons and buttons

customizable by style properties;
16. Controlled Ada types for GTK+

strong and weak references;
17. Simplified means to create lists of

strings;
18. Spawning processes synchronously

and asynchronously with pipes;
19. Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

20. Source view widget support.
http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
Focus of this release is advanced
debugging support including source
navigation from tracing dialog (via
communication with GPS)

208 Ada-related Tools

Volume 30, Number 4, December 2009 Ada User Journal

[see also "GTKAda Contributions v2.4"
in AUJ 30-3 (Sep 2009), p.144 —mp]

On the status of GNADE in
Debian
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Tue, 08 Sep 2009 07:18:36 -0400
Subject: users of GNADE MySQL binding?
Newsgroups: comp.lang.ada
I'm considering becomming the Debian
maintainer of GNADE.
In going over the code while preparing a
release, I realized that the C structs that
had been duplicated in Ada records in the
GNADE MySQL binding are now wrong;
they have changed significantly with each
MySQL release, and GNADE has not
kept up.
Therefore the MySQL binding in
GNADE 1.5.3 (currently in Debian
Lenny) most likely doesn't work, so I'm
thinking no one uses it.
Rather than fixing it now, I'm considering
dropping that library from the Debian
release. I'll still package the ODBC
binding, which does work with MySQL.
Any objections? Comments?
I still need to review the other GNADE
bindings, to Sqlite3 and Postgre, for
similar issues.
Previous versions of the GNADE Debian
package included the Sqlite binding; this
will be the first to include Sqlite3 instead.
Does anyone still use Sqlite (not Sqlite3)?
It would not be very hard to include both,
aside from the effort required to review
the C bindings.
From: Björn Persson <bjorn@xn--

rombobjrn-67a.se>
Date: Sun, 13 Sep 2009 01:55:07 +0200
Subject: Re: users of GNADE MySQL

binding?
Newsgroups: comp.lang.ada
[…]
> Any objections? Comments?
No objection from me, as I'm only using
the ODBC binding.
Have you seen my patch to the size
comparisons in the generic versions of
SQLBindCol and SQLBindParameter?
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Sun, 13 Sep 2009 06:54:51 -0400
Subject: Re: users of GNADE MySQL

binding?
Newsgroups: comp.lang.ada
[…]
Yes, it's in my current sources.

OpenToken 3.1a
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Tue, 08 Sep 2009 07:04:20 -0400

Subject: opentoken release
Newsgroups: comp.lang.ada
I've finished the opentoken release. 3.1a is
available at:
http://www.stephe-leake.org/
ada/opentoken.html
Reto Buerki is packaging it for Debian.
I have quite a bit of work done towards
the next release (probably numbered 4.0).
[see also "OpenToken" in AUJ 29-4 (Dec
2008), p.232 —mp]

Configuration file manager
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Tue, 8 Sep 2009 03:01:22 -0700 PDT
Subject: Ann: Configuration file manager,

v.02
Newsgroups: comp.lang.ada
Hi - this very useful lightweight package
from Rolf Ebert is on SourceForge for a
while but was not advertised here yet.
URL:
http://sourceforge.net/projects/ini-files/
Config is a package for parsing
configuration files (.ini, .inf, .cfg, ...) and
retrieving keys of various types. New
values for single keys can be set.
Standalone and unconditionally portable
code.

Ahven 1.7
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Fri, 18 Sep 2009 22:01:04 +0300
Subject: ANN: Ahven 1.7
Newsgroups: comp.lang.ada
[…]
I am pleased to announce Ahven 1.7. This
is mostly a bug fix release.
Ahven is a simple unit testing library for
Ada 95 programming language.
The changes include a fix for
Constraint_Error with long test names and
special character filtering from the test
names when generating XML results. In
addition, PDF report generation example
was added to the contrib directory and
some internal code cleanups were done.
The source code can be downloaded from:
http://sourceforge.net/projects/ahven/files/
[see also "Ahven — Unit Test Library " in
AUJ 30-1 (Mar 2009), p.11 —mp]

Zip-Ada
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Mon, 2 Nov 2009 13:17:51 -0800 PST
Subject: Ann: Zip-Ada v.35
Newsgroups: comp.lang.ada
[…]

A new version of the Zip-Ada library, @
http://unzip-ada.sf.net/ , is out. Latest
changes:
- major performance improvement:

decompression ~10x faster,
compression ~3x faster (GNAT)

- ReZip: HTML display improved
From: Gautier de Montmollin

<gdemont@hotmail.com>
Date: Sat, 21 Nov 2009 05:48:16 -0800 PST
Subject: Ann: Zip-Ada v.36
Newsgroups: comp.lang.ada
Again a new version of the Zip-Ada
library, @ http://unzip-ada.sf.net/, is out.
Latest changes:
- BZip2 method added for decompression
- Added Zip.Traverse_verbose
- Added an UnZip.Extract to extract all

files, using a Zip_Info variable (allows
any stream, not only file, for archive)

- Some more run-time library
performance bottlenecks removed (less
spectacular than for v.35)

- Some improvements around ReZip,
which now includes the BZip2 method

Zip-Ada is a library for handling,
decompressing and creating .zip archives.
Some features:
- decompression for all methods up to

BZip2 (new!)
- full sources are in Ada
- unconditionally portable
- input and output can be any stream (file,

buffer,...) for archive creation as well as
data extraction.

- task safe
- endian-neutral
URL: http://unzip-ada.sf.net/
The zipada36.zip archive contains:
- The full library sources inside one

directory, Zip_Lib, in pure Ada 95
- Some command-line demo / tools:
 o ZipAda, a zipping tool - only weak

compression available so far
 o UnZipAda, an unzipping utility
 o Comp_Zip, compares two zip files

(compare contents, check missing files)
 o Find_Zip, searches a text string

through contents of a zip file
 o ReZip.adb, recompresses Zip archives
[see also "Zip-Ada v.33" in AUJ 30-3
(Sep 2009), p.147 —mp]

Strings Edit for Ada v2.3
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Nov 2009 14:20:33 +0100
Subject: ANN: Strings Edit for Ada v 2.3
Newsgroups: comp.lang.ada
Provides string editing:

Ada-related Products 209

Ada User Journal Volume 30, Number 4, December 2009

1. Integer numbers (generic, package
Integer_Edit);

2. Integer sub- and superscript numbers;
3. Floating-point numbers (generic,

package Float_Edit);
4. Roman numbers (the type Roman);
5. Strings;
6. Ada-style quoted strings;
7. UTF-8 encoded strings;
8. Unicode maps and sets;
9. Wildcard pattern matching.
http://www.dmitry-kazakov.de/ada/
strings_edit.htm
Changes to the previous version:
1. An implementation of string streams

was added.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Sun, 15 Nov 2009 14:01:47 -0500
Subject: Re: ANN: Strings Edit for Ada v 2.3
Newsgroups: comp.lang.ada
[…]
Thank you for this instructive addition to
your library and your generous license
terms. The tests ran correctly using
GNAT 4.3.4 (FSF) on Mac OS X 10.5.8.
Permit me to ask two questions: Would it
be useful to a add a line to the file
test_strings_edit/readme_strings_edit.txt
for the stream test? For example,

gnatmake -I../ test_string_streams.adb

Regarding the cautionary note in section
10 of the documentation, would it be
correct to interpret the warning as "this
implementation requires that
Stream_Element'Size be a multiple of
Character'Size and that the latter be a
multiple of Storage_Element'Size."
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 15 Nov 2009 21:10:35 +0100
Subject: Re: ANN: Strings Edit for Ada v 2.3
Newsgroups: comp.lang.ada
[…]
> Thank you for this instructive addition

to your library and your generous
license terms. The tests ran correctly
using GNAT 4.3.4 (FSF) on Mac OS X
10.5.8.

 Permit me to ask two questions: Would
it be useful to a add a line to the file
test_strings_edit/readme_strings_edit.tx
t for the stream test? For example,

gnatmake -I../ test_string_streams.adb

Yes, I have changed the file. (I forgot to
add instructions for gnatmake. I became
lazy using GPS... (:-))
> Regarding the cautionary note in section

10 of the documentation, would it be
correct to interpret the warning as "this

implementation requires that
Stream_Element'Size be a multiple of
Character'Size and that the latter be a
multiple of Storage_Element'Size."

I have changed the wording.
Thank you for the feedback. The changes
will appear in the next version.

Ada-related Products
AdaCore — New Release of
GNATbench for Wind River
Workbench
From: AdaCore Press Center
Date: Fri, 18 Sep 2009
Subject: New Release of GNATbench for

Wind River Workbench
URL: http://www.adacore.com/2009/09/18/

gnatbench-2-3-1-2/
NEW YORK, PARIS and
FRAMINGHAM, Mass., September 17,
2009 - Wind River Aerospace and
Defense Regional Conference - AdaCore,
a leading supplier of Ada development
tools and support services, today
announced a new release of its Ada
Integrated Development Environment
(IDE) plug-in, GNATbench 2.3.1.
This new release supports Workbench 3.1
and VxWorks 6.7, the latest versions of
Wind River’s Eclipse-based IDE and real-
time operating system, offering real-
time/embedded systems developers a
sophisticated Ada programming
environment tightly integrated into the
Wind River Workbench development
suite.
It also supports Workbench 3.0 and
VxWorks 6.6, allowing projects that have
chosen those versions to upgrade to
GNATbench 2.3.1 and take advantage of
its new features.
The GNATbench plug-in provides
editing, browsing, and building features
for Ada development (including Ada
2005) using AdaCore’s GNAT Pro toolset
on the Eclipse platform. The builder
produces executables for native systems
and embedded processors (in the context
of Wind River Workbench), and likewise
the debugger supports both native and
embedded system debugging.
GNATbench 2.3.1 has introduced a
variety of enhancements that help Ada
software development run more smoothly.
Creating new Workbench projects for
Ada is now much simpler and more
robust; there is no need to duplicate the
use of new-project wizards in both
Workbench and GNATbench. Error
handling in the Import Wizard is
friendlier, since GNATbench parses an
imported project file for errors before
attempting the import. The sharing of
projects among multiple developers using
distinct Workbench (Eclipse) workspaces

is simplified, since the values of a
project’s scenario variables (when
changed from their defaults) are now
stored in workspace-persistent variables.
And as an open source project, the code
of the implementation has been
reorganized so that users wishing to
extend the implementation can clearly
identify which parts may be relied upon to
remain stable in the future.
“AdaCore is pleased to be able to support
the latest versions of Workbench and
VxWorks in our new release of
GNATbench,” said Dr. Patrick Rogers,
GNATbench Project Lead. “Ada is a key
language for developers of real-time
embedded systems using Workbench on
Wind River platforms, and GNATbench
provides Ada programmers with an
intuitive and productive extension to
Workbench. We look forward to
continuing GNATbench enhancements in
the future.”
“GNATbench’s support for our latest
version of Workbench will be a great
benefit to our Ada customers,” said Mr.
Rob Hoffman, Vice President and General
Manager of Aerospace and Defense at
Wind River. “We like our corporate
partners to stay in sync with our product
releases, and we appreciate AdaCore’s
consistent history of supporting new
Wind River products and version releases
as soon as they become available.”
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base; see
http://www.adacore.com/home/company/
customers/ for further information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railroad
systems, and medical devices, and in
security-sensitive domains such as
financial services. The SPARK Pro
toolset, available from AdaCore, is
especially useful in such contexts.
AdaCore has North American
headquarters in New York and European
headquarters in Paris.
www.adacore.com

AdaCore — GNAT Pro for
LynxOS 5.0
From: AdaCore Press Center
Date: Tue, 22 Sep 2009

210 Ada-related Products

Volume 30, Number 4, December 2009 Ada User Journal

Subject: AdaCore Announces Release of
GNAT Pro for LynxOS 5.0

URL: http://www.adacore.com/2009/09/22/
adacore-announces-release-of-gnat-pro-
for-lynxos-50/

NEW YORK, PARIS and BOSTON,
September 22, 2009 - Embedded Systems
Conference -
AdaCore, a leading supplier of Ada
development tools and support services,
today announced the release of the GNAT
Pro Ada development environment for the
LynuxWorks LynxOS 5.0 operating
system. This release allows GNAT Pro
users to develop applications for both
LynxOS 4.x and 5.0, and also provides a
smooth migration path from older
versions of the operating system to
LynxOS 5.0. GNAT Pro for LynxOS 5.0
is available for both Linux and Windows
host platforms, and for both PowerPC and
x86 embedded targets.
The new release is completely compatible
with the existing GNAT Pro 6.2.2 for
LynxOS 4.x. GNAT Pro customers using
this earlier LynxOS version can now take
advantage of the many new features
offered by LynxOS 5.0, including:
- Increased RAM support—up to 2 GB
- Symmetric Multiprocessing (SMP)
- ELF file format
- New POSIX—POSIX 1003.1-2003

PSE 53/54
“LynxOS is an important operating
system for many of our customers, and we
strive to stay in sync with its releases,”
said Robert Dewar, AdaCore President
and CEO. “GNAT Pro for LynxOS 5.0
will bring the most recent Ada technology
- including new tools and libraries and
improved code generation - to the latest
version of LynxOS.”
“When we issue a new operating system
release, customers expect that the tools
they used previously - especially
compilers and develop environments -
will be available,” said Steve Blackman,
LynuxWorks’ Director of Business
Development, Mil/Aero. “Ada is a
language of choice for many LynxOS
users, and we are pleased that AdaCore
has ported their latest GNAT Pro
development environment to LynxOS
5.0.”
About LynuxWorks
LynuxWorks, a world leader in the
embedded software market, is committed
to providing open and reliable real-time
operating systems (RTOS) and software
tools to embedded developers. The
company’s LynxOS family of operating
systems offers open standards with the
highest level of safety and security
features, enabling many mission-critical
systems in defense, avionics and other
industries. Additionally, LynuxWorks’
BlueCat Linux provides the features and

support of embedded Linux for
companies wanting to use open source
technology for their embedded
applications. The Eclipse-based
Luminosity IDE gives a powerful and
consistent development system across all
LynuxWorks operating systems. Since it
was established in 1988, LynuxWorks has
created technology that has been
successfully deployed in thousands of
designs and millions of products made by
leading communications, avionics,
aerospace/defense, and consumer
electronics companies. LynuxWorks’
headquarters are located in San José, CA.
LynuxWorks is a trademark and LynxOS
and BlueCat are registered trademarks of
LynuxWorks, Inc. Linux is a registered
trademark of Linus Torvalds. All other
brand or product names are registered
trademarks or trademarks of their
respective holders.

AdaCore — GPS 4.4
From: AdaCore Press Center
Date: Tue, 13 Oct 2009
Subject: AdaCore Introduces Enhanced

Version of GNAT Programming Studio
URL: http://www.adacore.com/2009/10/13/

gps-4-4/
PARIS and NEW YORK, October 13,
2009 - AdaCore, a leading supplier of
Ada tools and support services, today
announced the release of GNAT
Programming Studio (GPS) 4.4. This new
version of AdaCore’s graphical Ada-
oriented Integrated Development
Environment (IDE) offers an improved
user interface, faster performance and
greater integration with AdaCore’s
Project Coverage and SPARK Pro
toolsets. GPS is provided with GNAT Pro
on most platforms, for both native and
embedded software development.
The most noticeable enhancement in GPS
4.4 is in the graphical user interface
(GUI), which makes it easier for users to
add new plug-ins and customize the IDE.
The general navigation capabilities and
documentation generation features have
also been improved, ensuring consistent
creation of supporting materials. And
below the visible GUI, GPS now offers
tighter integration with both the Project
Coverage and SPARK Pro toolsets.
Project Coverage’s code coverage and
simulator capabilities can now be directly
accessed from the IDE, and support for
the SPARK language has been extended,
allowing improved source/annotation
navigation. SPARK developers may now
more easily develop SPARK language
applications and invoke the SPARK Pro
toolset from GPS.
“We have been systematically enhancing
the GNAT Pro toolset to improve support
for safety-critical and high-security
applications,” commented Arnaud
Charlet, GPS Project Manager at

AdaCore. “GPS 4.4 is a good illustration
of our strategy. Developers of high-
assurance systems may now access
Project Coverage and SPARK Pro tools
with the same IDE that they already use
for general development.”
Enhancements in GPS 4.4 include:
- Improved user interface look and feel
- Improved memory usage and speed
- New entity views
- Enhanced documentation generation to

support both API documentation and
source code browsing

- Hyperlinks added in source editor for
quick source and web navigation

- Support for Project Coverage toolset
invocation

- Improved SPARK Pro language and
toolset support, in particular source
navigation for annotations

- New “Tip of the Day” feature
- Support for filters in the locations

display view
- Unified “visual diff” within the source

editor
- Support for interleaved-Ada/Expanded-

Ada (.dg files) in source editor
- Outline View updated in real-time, with

the ability to display entities
hierarchically

- New source navigation menus to
display a type hierarchy

- New plug-ins, including:
 o Formatting preferences that can be

automatically set from gnatpp project
switches

 o Sources that can automatically be
reformatted on save using gnatpp

 o Simplified new file creation
GPS 4.4 is compatible with GNAT Pro
versions 3.16a1 up to 6.3. As with all
GNAT Pro components, GPS is
distributed with full source code and is
backed by AdaCore’s rapid and expert
online support.
About GNAT Programming Studio (GPS)
GPS is a powerful Integrated
Development Environment (IDE) written
in Ada using the GtkAda toolkit. GPS’
extensive source-code navigation and
analysis tools can generate a broad range
of useful information, including call
graphs, source dependencies, project
organization, and complexity metrics. It
also provides support for configuration
management through an interface to third-
party Version Control Systems, and is
available on a variety of platforms
including Altix Linux, IA64 HP Linux,
Solaris (sparc and x86), GNU/Linux (x86
and x86-64), Mac OS X, and x86
Windows (2003, XP, Vista, and 7). GPS
is highly extensible; a simple scripting

Ada-related Products 211

Ada User Journal Volume 30, Number 4, December 2009

approach enables additional tool
integration. It is also customizable,
allowing programmers to specialize
various aspects of the program’s
appearance in the editor for a user-
specified look and feel.
Availability
GPS 4.4 is currently available as part of
the GNAT Pro Ada Development
Environment on selected platforms, and
customers can download it via the GNAT
Tracker tool. For the latest information on
pricing and supported configurations
please contact sales@adacore.com.
Webinar₠
A webinar focusing on the new features
of the GPS 4.4 release will be presented
on November 10, 2009 at 11:00 am (EST)
/ 5:00 pm (GMT).
For more information, or to register,
please visit
http://www.adacore.com/home/gnatpro/
webinars/

Aonix — ObjectAda for
VxWorks/x86
From: Aonix Press Center
Date: Mon, 23 Nov 2009
Subject: Aonix Adds VxWorks/Intel®

Architecture Target Support to
ObjectAda Product Line

URL: http://www.aonix.com/
pr_11_23_09.html

Company Set to Address Growing
Demand for VxWorks/x86 Embedded
Systems
San Diego, CA–November 23, 2009—
Aonix®, a provider of solutions for safety
and mission-critical applications, today
announced the release of ObjectAda®
Real-Time 8.4 for Windows, targeting
Intel x86 architecture embedded and real-
time systems running the Wind River
VxWorks real-time operating system
(RTOS). Following the release of
ObjectAda Real-Time for VxWorks
targeting PowerPC architectures earlier
this year, this is the second ObjectAda
Real-Time release supporting full Ada
tasking atop VxWorks via Real-Time
Processes (RTP).
ObjectAda Real-Time for Windows x
Intel/VxWorks consists of a fully
compliant ACATS 2.5 Ada 95 compiler
plus supporting tools. It is compatible
with Wind River’s VxWorks
environment, which comprises the
VxWorks operating system and the
VxWorks cross development toolset.
ObjectAda for VxWorks leverages Wind
River Workbench, an Eclipse-based
development environment providing
developers access to the broad range of
tools available through the Eclipse
framework. Users also have the option to
utilize ObjectAda’s standard graphical or
command-line interface. The ObjectAda

compilation system is comprised of an
integrated language-sensitive editor,
source-code browser, compiler with
industry-leading compilation speed,
debugger and full library manager.
ObjectAda VxWorks provides runtime
library support for execution of Ada on
Intel Pentium targets via Wind River-
supplied board support packages (BSPs),
or for execution without target hardware
via VxSim, a target simulation facility
supplied in the VxWorks distribution.
VxSim users can perform initial
application execution and testing direct
from the Intel/Windows host development
platform.
“Aonix has provided Ada development
and compilation tools for x86 chips for
years,” commented Gary Cato, Aonix
director of marketing. “This ObjectAda
product is the first support we’ve offered
for VxWorks/Intel targets and is a
welcome addition to the ObjectAda
embedded, real-time and safety-critical
line of products With this product
introduction Aonix now provides
ObjectAda products for the full spectrum
of Wind River RTOS products and
enhances our ability as a Wind River
Strategic Software Partner to provide
additional platform options for our
customers.”
About the ObjectAda Family
ObjectAda is an extensive family of
native and cross development tools and
runtime environments. ObjectAda native
products provide host development and
execution support for the most popular
environments including Windows, Linux
and various UNIX operating systems.
ObjectAda Real-Time products provide
cross development tools on Windows,
Linux or UNIX systems which target
PowerPC and Intel target processors
running in a full Ada “bare” runtime or in
conjunction with popular RTOSs.
ObjectAda RAVEN® products provide a
hard real-time Ada runtime to address
those systems requiring certification to
the highest levels of safety standards such
as DO-178B Level A for flight safety.
Availability
ObjectAda Real-Time targeting the Intel
x86 architecture running Wind Rivers’
VxWorks is immediately available. Read
more about ObjectAda Real-Time
products.
About Aonix®
Aonix offers mission- and safety-critical
solutions primarily to the military and
aerospace, telecommunications and
transportation industries. Aonix delivers
the leading highly reliable, real-time
embedded virtual machine solution for
running Java™ programs deployed today
and has the largest number of certified
Ada applications at the highest level of
criticality. Headquartered in San Diego,

CA and Paris, France, Aonix operates
sales offices throughout North America
and Europe in addition to offering a
network of international distributors.
For more information, visit
www.aonix.com.

Lattix — Lattix 5.5
From: Lattix Press Center
Date: Tue, 10 Nov 2009
Subject: Lattix Releases Lattix 5.5
URL: http://www.lattix.com/node/120
Award-winning software architecture
management solution provides new API
and scripting capabilities to extend and
integrate Lattix with more platforms and
tools.
Boston, MA - November 10, 2009- Lattix
Inc., a leading provider of innovative
software architecture management
solutions, today announced the release of
its newest solution, Lattix 5.5. This
solution includes powerful new
functionality to enable architects,
developers and managers to identify
issues, re-engineer,and measure the
quality of complex software systems.
In addition to performance improvements
and feature enhancements, Lattix 5.5
provides a new API which can be used to
extend and customize the functionality of
Lattix. Also new in Lattix 5.5 are
improved integrations to Microsoft Visual
Studio and Klocwork, as well as new
integrations with the popular graphing
packages GraphViz and Pajek.
"The new API enables our users to
customize Lattix to fit seamlessly in their
development environment," explains
Neeraj Sangal, president and founder of
Lattix.
"With a number of scripts already
available from Lattix, our customers can
now create more precise models and
achieve better results through higher
utilization."
Users can now write their own Groovy
scripts to manipulate and query a Lattix
project, or change an existing script to
meet their requirements.
The Scripts Repository in the Lattix
KnowledgeBase provides access to scripts
such as those which:
- enable integration with build systems

for change impact analysis
- display a variety of network diagrams

using GraphViz
- generate a list of dependency paths

between two elements
The new integration with Microsoft
Visual Studio enables the source code for
a selected dependency or element
definition to be displayed in Visual
Studio.
With Lattix LDC, it is possible to
automatically update the Lattix project

212 Ada and Microsoft

Volume 30, Number 4, December 2009 Ada User Journal

with source file and line number
information as part of the Visual Studio
build process.
The DSM, CAD, and GraphViz
visualizations of Lattix 5.5
About Lattix 5.5
Lattix 5.5 provides the most
comprehensive solution for systems that
include codebases, databases,
frameworks, and UML/SysML models.
Lattix 5.5 supports XMI and IBM
Rational Rhapsody models; Ada, C/C++,
Java, .NET, and Pascal languages; Oracle,
SQL Server, and Sybase databases; and
Spring and Hibernate frameworks. Lattix
5.5 also provides support for full web-
based reporting of architectural metrics,
violations, and incremental changes.
To learn more about Lattix 5.5 and
explore the different solutions that are
available, please vist
http://www.lattix.com/products.
Lattix 5.5 enables companies to improve
and maintain quality, lower defect rates,
enhance testability, lower costs through
more effective development, and manage
risks by better understanding of the
impact of proposed changes.
Availability
Lattix 5.5 is available immediately from
Lattix in the US or from our partners
throughout Europe, the Middle East, and
Asia Pacific. A variety of license options
are available, from individual user to
enterprise floating licenses. A free
evaluation license is also available for
download from
http://www.lattix.com/gettingstarted.
About Lattix
Lattix is a leader of software architecture
management solutions that deliver higher
software quality and lower risk
throughout the application lifecycle.
Lattix provides a powerful new approach
of utilizing dependency models for
automated analysis and enforcement of
architectures. Lattix is located in
Andover, MA. More information about
Lattix can be found at www.lattix.com.

Ada and GNU/Linux
Debian Policy for Ada
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Mon, 26 Oct 2009 11:54:27 -0700

PDT
Subject: ANN: Debian Policy for Ada,

Fourth Edition for Debian 6.0 "Squeeze"
Newsgroups: comp.lang.ada
Stephe Leake and I are now satisfied with
our latest changes to the Debian Policy
for Ada. I have now published it[1] and
will commence the transition of all Ada
package to this new policy; this includes

moving to gnat-4.4 as the Ada compiler
and adding "aliversion" numbers to all -
dev package names.
[1] http://people.debian.org/~lbrenta/
debian-ada-policy.html
http://people.debian.org/~lbrenta/
debian-ada-policy.pdf
http://people.debian.org/~lbrenta/
debian-ada-policy.txt
http://people.debian.org/~lbrenta/
debian-ada-policy.info
http://people.debian.org/~lbrenta/
debian-ada-policy.texi
This new policy applies to the release of
Debian currently in development, 6.0
"Squeeze". The policy for the current
release, 5.0 "Etch", is still available[2].
[2] http://people.debian.org/~lbrenta/
5.0-lenny/debian-ada-policy.html
http://people.debian.org/~lbrenta/
5.0-lenny/debian-ada-policy.pdf
http://people.debian.org/~lbrenta/
5.0-lenny/debian-ada-policy.txt
http://people.debian.org/~lbrenta/
5.0-lenny/debian-ada-policy.info
http://people.debian.org/~lbrenta/
5.0-lenny/debian-ada-policy.texi
[In the original thread, the author
unfortunately provided incorrect links for
[2], as noted by Niklas Holsti. In a
subsequent thread by Ludovic Brenta the
correct links were published. The links
reported herein are already in their correct
form. —mp]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sun, 15 Nov 2009 02:23:32 -0800

PST
Subject: The Debian Policy for Ada is now

official
Newsgroups: comp.lang.ada
The Debian Policy for Ada has received
the blessing of the Debian organization at
large; a link to the document now appears
on the Debian Developer's Corner along
with all other policy documents:
http://www.debian.org/devel/

GNAT and Maemo
From: Michael Bode <m.g.bode@web.de>
Date: Sun, 15 Nov 2009 17:37:28 +0100
Subject: Gnat and Maemo
Newsgroups: comp.lang.ada
How difficult would it be to start
programming in Ada for the Maemo
platform? I understand one would need a
cross compiler to the armel target and the
GNAT runtime for armel and somehow
include that in the (Debian-based) Maemo
SDK. Is anyone working on this?
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Sun, 15 Nov 2009 14:56:47 -0800

PST

Subject: Re: Gnat and Maemo
Newsgroups: comp.lang.ada
[…]
Laurent Guerby and others are working
on enhancing GNAT so that it supports
arm and armel as a target. Unfortunately,
only SJLJ exception handling works at the
moment and SJLJ is both very slow and
non-standard on that architecture; the
EABI mandates ZCX. See the threads
stating at:
http://gcc.gnu.org/ml/gcc/
2009-08/msg00192.html
http://gcc.gnu.org/ml/gcc-patches/
2009-09/msg00450.html
It is not ready for use yet. I'm sure they'll
welcome help.
[…]

PragmAda Reusable
Components in Fedora
From: Björn Persson <bjorn@xn--

rombobjrn-67a.se>
Date: Tue, 10 Nov 2009 22:46:49 +0100
Subject: Doubling the number of Ada

libraries in Fedora
Newsgroups: comp.lang.ada
The PragmAda Reusable Components
library is currently being distributed as an
update to Fedora 11, and also to Fedora
12 (which is scheduled to be released in a
week). As GTKada is also available, this
means that there are now a whopping
two Ada libraries in Fedora! Well,
there's still a long way to go but this is at
least a start.
Once the mirrors have caught up, the
library can be installed with «yum install
PragmARC-devel», and using it is as
simple as «with "pragmarc";» if you use
GNAT project files.

Ada and Microsoft
Linking with GNAT on
Windows
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Tue, 24 Nov 2009 08:26:00 -0800

PST
Subject: Linking with GNAT on Windows
Newsgroups: comp.lang.ada
[…]
Imagine a C library compiled with Visual
Studio. This library is used by an Ada
program by means of pragma Import.
When the C library is compiled in the
Debug mode, GNAT can link the whole
program. If the same C library is
compiled in the Release mode, the GNAT
linker says "undefined reference" with
regard to the C function that is imported
by Ada.

Ada and Microsoft 213

Ada User Journal Volume 30, Number 4, December 2009

I am pretty sure that people who are
regularly targeting the Windows platform
have seen that already and could possibly
help with a hint (compiler/linker option
on the Visual Studio side?) on how to
proceed.
All suggestions are welcome.
This is GNAT 2009 and Visual Studio
2008.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 24 Nov 2009 18:34:43 +0100
Subject: Re: Linking with GNAT on

Windows
Newsgroups: comp.lang.ada
[…]
Hmm, it is no matter how the program is
compiled, but how is it linked.
Debug/Release are just project scenario
names, which can mean anything in the
concrete project.
Of course we cannot exclude that some
inspired C programmer could make use of
#ifdef __DEBUG__ to change names of
all functions in the source…
AFAIK, GNAT does not recognize the
MS lib files […]
There also exist *.def files which may
influence the names of the entries in the
import library.
Further there exist __declspec(dllexport),
__cdecl, __stdcall modifiers in the
program, which might have effect on the
external names.
Plus in Visual Studio there can be defined
post build steps. which might call scripts
and do, well, anything.
All in one, it is impossible to say what is
going on. You have to verify all steps. I
would ensure that *.a file is created and
used by GNAT. Then I would check the
names in it (nm -s). Then I would verify
the content of its source *.lib file etc.
From: Kevin K <kevink4@gmail.com>
Date: Tue, 24 Nov 2009 17:36:06 -0800

PST
Subject: Re: Linking with GNAT on

Windows
Newsgroups: comp.lang.ada
What I ended up doing when I needed to
link some C code compiled under Visual
C++ into an Ada main (due to the code
using APIs that weren't supported under
the SDK in GNAT environment) was to
build a DLL with the appropriate
declaration. The downside is that you
can't debug it that way. When debugging
is necessary, I need to create a driver in C
within Visual C++ and debug it there.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 25 Nov 2009 00:43:11 -0800

PST
Subject: Re: Linking with GNAT on

Windows
Newsgroups: comp.lang.ada

[…]
> Hmm, it is no matter how the program

is compiled, but how is it linked.
The GNAT invocation is the same in both
cases and includes this:

-largs -lmylibrary

with mylibrary.lib (the result of
compilation on Visual Studio) file
somewhere around.
> Of course we cannot exclude that some

inspired C programmer
I was that programmer. The whole C
library amounts to a single function with
single line of code ("Hello from C",
essentially), no preprocessor and no other
tricks. The function is declared as extern
"C" to avoid name mangling.
> AFAIK, GNAT does not recognize the

MS lib files
It seems to recognize them. Not only it
complains when the file is not around
(note: it can automatically make an
association between -lmylibrary linker
option and the mylibrary.lib file - this
would not be the case if .lib files were not
supported at all), but it really works fine if
the C library is build in the Debug mode.
I have tried to analyze all options in these
two modes, but do not see any differences
that would affect this.
> There is also exist *.def files which may

influence the names of the entries in the
import library.

Yes, but this is not used. My naive first
diagnostics was that the library compiled
in Debug mode has its names exported by
default, whereas the Release mode would
need the .def file. This theory is
contradicted by the fact that a test C
program can use that library no matter
how it was compiled. But then, it is the
single toolchain on
the whole path.
> Further there exist

__declspec(dllexport), __cdecl,
__stdcall modifiers in the program,
which might have effect on the external
names.

None of these are used. Note that it is a
static library, not a DLL.
> Plus in Visual Studio there can be

defined post build steps.
These are not defined. The C library was
created as a pristine project.
> All in one, it is impossible to say what

is going on.
Cool. I am pretty convinced that this is
not even a GNAT issue, but rather
concerns the interaction of Visual Studio
and MinGW toolchain that is a back-end
for GNAT.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 25 Nov 2009 10:46:56 +0100

Subject: Re: Linking with GNAT on
Windows

Newsgroups: comp.lang.ada
[…]
Usually debug/release versions have
different names like mylibraryd.lib or else
placed into different subdirectory like
.\Debug vs. .\Release. What about the "-
L" switch?
> […] The function is declared as extern

"C" to avoid name mangling.
OK, extern "C" normally mangles, e.g.
adds underscore in front of the name.
Also, if I correctly remember, stdcall
convention adds some funny suffixes like
"@4" to the names in import libraries. But
that behavior is independent on
debug/release.
[…]
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 25 Nov 2009 04:47:24 -0800

PST
Subject: Re: Linking with GNAT on

Windows
Newsgroups: comp.lang.ada
[…]
> Usually debug/release versions have

different names like mylibraryd.lib or
else placed into different subdirectory
like .\Debug vs. .\Release. What about
the "-L" switch?

If the file was not found, the linker would
say so. Every -lmylibrary option must
have a corresponding library file.
[…]
As already said, this is the interaction
between Visual Studio and MinGW, so
can be completely reproduced outside of
GNAT.
The problem proved to be related to the
Visual optimization option that is used to
enable so-called whole-program
optimization (Enable link-time code
generation). On command-line this is /GL
option.
This option must be switched off. I hope
this observation will help other
programmers.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 25 Nov 2009 14:44:26 +0100
Subject: Re: Linking with GNAT on

Windows
Newsgroups: comp.lang.ada
[…]
MSDN:
".obj files produced with /GL and
precompiled header files should not be
used to build a .lib file unless the .lib file
will be linked on the same machine that
produced the /GL .obj file. Information
from the .obj file's precompiled header
file will be needed at link time."

214 Ada Inside

Volume 30, Number 4, December 2009 Ada User Journal

That explains a lot. Noteworthy is
mentioning precompiled headers. That
stuff never ever worked in VC...
Presumably /GL silently killed the entry
point in the .lib file.

References to
Publications
Embedded Systems Design
— "Software for dependable
systems"
From: Peter Hermann
Date: Fri, 20 Nov 2009 12:52:09 +0000

UTC
Subject: Software for dependable systems

By Jack Ganssle in Embedded Systems
Design ESD

Newsgroups: comp.lang.ada
great article:
Software for dependable systems
by Jack Ganssle
in Embedded Systems Design ESD
vol22,#10,Nov2009, page 37
or click on News20091120 on top of
http://www.ihr.uni-stuttgart.de/
forschung/ada/resources_on_ada/
[read the article at:
http://www.embedded.com/
columns/breakpoint/220900315 —mp]

Ada Inside
Praxis HIS — SPARK used
for the AgustaWestland
AW159
From: Praxis HIS News Center
Date: Thu, 3 Sep 2009
Subject: General Dynamics UK selects

SPARK language for major new Royal
Navy helicopter project

URL: http://www.praxis-his.com/news/
generalDynamics.asp

SPARK used to develop safety-critical
system for AgustaWestland AW159 Lynx
Wildcat.
Praxis, the international specialist in
critical systems engineering and
assurance, today announced that General
Dynamics UK has selected Praxis’
SPARK language as part of its £6 million
contract to develop the safety-critical
Stores Management System for the Royal
Navy’s new AgustaWestland AW159
Lynx Wildcat helicopter.
SPARK is a high level programming
language and toolset designed for writing
software for high integrity applications.
General Dynamics UK selected SPARK
for the project owing to its ability to
enable the development and verification
of software to the highest level of

Ministry of Defence safety certification –
Defence Standard (Def Stan) 00-56 issue
2 Safety Integrity Level 4. SPARK
enables the application of formal
verification techniques in a segregated
monitor architecture, ensuring rapid
compliance.
Up to seven developers will use SPARK
to create the Stores Management System,
which controls the deployment of
weaponry from the AW159 Lynx
Wildcat.
Project development completes in mid
2011 and will cover more than 40,000
lines of SPARK code.
The AW159 Lynx Wildcat (formerly
called the Future Lynx) will be the Royal
Navy’s new maritime surveillance and
attack helicopter. Scheduled to enter
service in 2015, 28 helicopters have been
ordered for the Royal Navy. The AW159
will provide ship defence against surface
threats, act in an anti-submarine role and
operate as a light utility helicopter. The
Stores Management System will enable
the AW159 to operate the lightweight
Sting Ray torpedo as well as the
anticipated Future Air-to-Surface Guided
Weapon (FASGW).
General Dynamics UK has used SPARK
across its Stores Management System
product line since the early 1990s.
Previous projects include systems for the
Tornado, Harrier and Typhoon aircraft.
"Meeting strict safety-critical certification
is central to the new Stores Management
System for the AW159 Wildcat," said
Steve Hewitt, Programme Manager,
Mission & Security Systems, General
Dynamics UK Limited. "Our ongoing
partnership with Praxis meant that
SPARK was the natural choice when it
came to developing this mission-critical
application to the highest safety
standards."
Developed by Praxis, SPARK is a
language specifically designed to support
the development of software used in
applications where correct operation is
vital either for reasons of safety or
security. The SPARK Toolset offers static
verification that is unrivalled in terms of
its soundness, low false-alarm rate, depth
and efficiency. The toolset also generates
evidence for correctness that can be used
to build a constructive assurance case in
line with the requirements of industry
regulators and certification schemes.
"General Dynamics UK is an extremely
mature user of Praxis' SPARK
technology, and I am delighted that they
have once again chosen our technology
for a new development project," said
Keith Williams, Praxis Managing
Director. "This secures SPARK as a core
tool for assuring the integrity of advanced
weapons systems with its use on a wide
range of air platforms."
About Praxis

Praxis is a systems engineering company
specialising in safety and mission critical
applications. Praxis leads the world in
specific areas of advanced systems
engineering such as: ultra low defect
software engineering, safety engineering
for complex or novel systems, and
tools/methods for systems engineering.
Praxis offers clients a range of services
including turnkey systems development,
consultancy, training and R&D. Key
market sectors are Aerospace, Defence,
Air Traffic Management, Railways and
Nuclear. The company operates
internationally with active projects in the
US, Asia and Europe.
The headquarters of Praxis are in Bath
(UK) with offices also in London,
Loughborough and Paris. It is wholly
owned by Altran Technologies which is a
global leader in innovation engineering
and employs 18,500 staff across the
world.
www.praxis-his.com
About General Dynamics
General Dynamics United Kingdom
Limited, a wholly owned subsidiary of
General Dynamics (NYSE: GD), is a
leading player in the UK’s knowledge
economy and industrial base. Established
in the United Kingdom for over 40 years,
it employs over 1,600 people at 10 UK
and international facilities. A prime
contractor and complex systems
integrator, working in partnership with the
Ministry of Defence (MoD) and other
allies, growing key intellectual property,
skills and capabilities in its UK research
facilities and workforce, whilst harnessing
world-leading technology.
General Dynamics UK led a key MoD
Defence Technology Centre research
consortium and, together with a growing
C4I export programme, plays a central
role manufacturing and developing
technology to deliver network enabled
capability and ISTAR in the battlespace.
The Company is widely recognised as a
leading contender to supply and integrate
the next generation of Armoured Fighting
Vehicles for the British Army. For further
information visit
www.generaldynamics.uk.com
General Dynamics, headquartered in Falls
Church, Va., employs approximately
92,000 people worldwide. The company
is a market leader in business aviation;
land and expeditionary combat systems,
armaments and munitions; shipbuilding
and marine systems; and information
systems and technologies.
More information about General
Dynamics is available online at
www.gd.com

Ada Inside 215

Ada User Journal Volume 30, Number 4, December 2009

Use of SPARK at Genode
labs
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 26 Nov 2009 01:18:56 -0800

PST
Subject: Genode implements zero-footprint

runtime for Ada and SPARK
Newsgroups: comp.lang.ada
Today on osnews.com's front page an
innocuous phrase caught my attention so I
followed the links…
http://genode.org/documentation/
release-notes/9.11#section-19
"At Genode Labs, we are exploring the
use of the SPARK subset of Ada to
implement security-critical code and use
Genode as development platform. For this
reason, we have added support for
executing freestanding Ada code on
Genode."
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 26 Nov 2009 07:45:51 -0800

PST
Subject: Re: Genode implements zero-

footprint runtime for Ada and SPARK
Newsgroups: comp.lang.ada
[…]
> Hm, later on this page it says

"Elaboration is not performed". How
can then Ada code work at all?

By restricting the compilation units in the
program to only Pure and Preelaborated
units, I suppose.
From: Norman Feske

<norman.feske@genode-labs.com>
Date: Thu, 26 Nov 2009 07:47:59 -0800

PST
Subject: Re: Genode implements zero-

footprint runtime for Ada and SPARK
Newsgroups: comp.lang.ada
Hello,
as a developer of Genode, I am happy
about the response to our Ada-related
addition. As stated in the release notes,
the current integration of Ada support is
mainly geared towards using Genode as
an experimentation platform for
developing SPARK sub programs. It is
just the first step. If more people outside
the current Genode developer community
show interest in this particular topic, we
will be happy to extend the Ada support
as needed.
> Hm, later on this page it says

"Elaboration is not performed". How
can then Ada code work at all?

The mentioned limitation refers to
package initializations normally
performed by the startup code generated
by gnatbind, specifically the 'ada_init'
function.
The current use case for Ada on Genode
is to use SPARK for creating type and

utility packages with free-standings
functions called from C code.
Because such packages have no internal
state and no begin-end block, we can omit
gnatbind for now. However, should the
need for elaborating packages in the right
order arise in the future, support for
calling gnatbind will be added to the build
environment. In short, the solution comes
down to calling gnatmake with the '-c -b'
arguments, adding the generated startup
code to the program, and actually calling
'adainit'.
[…]

Indirect Information on Ada
Usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [Belgium]: Ada Programmer
Ada Programmer with French and English
language skills is required for a 6 month
contract in the south of Belgium. The role
will be to develop basic signalling
application and monitor software as well
as integration and functional testing.
Candidates will need a knowledge of Ada,
functional software specification
(Teamwork tool), embedded software and
safety protocols.
Job offer [United Kingdom]: Ada SPARK
software engineer
[…] Ada software engineer with SPARK
experience […].
The ideal candidate will be responsible
for software development of DO178B
software. […]
Skills and experience:
- Software engineer with Ada SPARK

experience
- DO178B software development

experience
- Experience of Artisan UML design
- Development experience of Aero

engine control software FADEC
including fuel pumps and fuel driven
actuators

Job offer [United Kingdom]: Graduate
Spacecraft SW Engineer
Graduate / Junior Spacecraft Simulations
SW Engineer - Maths/Physics Degree
C++/Java/Fortran/Ada
Tasks:
- Developing spacecraft simulators used

to train spacecraft operators
Essential Skills
- 1st Class or 2:1 degree in

Mathematics/Physics/Engineering
subject

- Knowledge of spacecraft systems
- Proficiency in C or C++ or Java or

Fortran or Ada

- Fluency in English
Desirable Skills
- Proficiency in C++
- Knowledge of software development

standards and methods
- Knowledge of orbital mechanics
- Knowledge of control system theory
- Experience of using processor

emulators in simulations
Job offer [United Kingdom]: Software
Engineer
[…] Requires familiarity with object
oriented design methodologies, UML and
experience of software development
generally. Desirable experience includes:
Ada 95 development, experience with
iData or equivalents (eg. VAPS), and
CORBA development. The Software
Engineer appointed will be responsible
for design, development, analysis, testing,
and documentation of a complex mission-
critical computing system. The successful
Software Engineer will be joining a large
and highly successful multinational.
[…]
Key responsibilities of the Software
Engineer:
- Design, development and unit test of

elements of software.
- General supervision in planning and

control of own work.
- Design using object oriented

methodologies and a UML toolset
(Artisan Studio).

- Code development in Ada 95 (using
AdaMulti).

- Unit testing (using AdaTest).
- Correct program errors, prepare

operating instructions, compile
documentation of program
development, and analyse system
capabilities to resolve questions of
program intent, output requirements,
input data acquisition, programming
techniques, and controls.

- Assignment to other teams may be
required.

[…]
Job offer [Italy]:
[…]
Development of software under RTCA
DO-178B, using Ada and/or C and
targeting embedded safety-critical
applications.
The development environment is Green
Hills AdaMULTI 2000.
The design methodology is HOOD.
Other software used during the software
development:
- PVCS Dimensions 7.2
- DOORS v8.0

216 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

- TNI Stood
Software development is supported with
the following tools for
debugging/integration on target:
- Green Hills AdaMULTI 2000 Debugger
- Power PC Probe (JTAG Connections)
- A proprietary engineering test bench-

Lab equipment (Sampling Oscilloscope,
Waveform Generator, Dynamic Signal
Analyzer)

Microsoft Office 2000 is used to support
the production of documentation.
[…]
Educational background:
Technical diploma with at least 15 years'
work experience or Laurea specialistica
[Master's degree —mp] in Computer
Science / Computer Engineering.
Knowledge as software developer of the
following operating systems:
- Windows 2000/XP/.Net
- UNIX
Knowledge of the following programming
languages:
- Ada, C, Assembler
[…]
[Translated from Italian —mp]

Ada in Context
Dynamic allocation of
unconstrained types
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Wed, 30 Sep 2009 07:29:26 -0700

PDT
Subject: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
Consider:

procedure Test is
 package P is
 type T (<>) is limited private;
 function Create return T;
 private
 type T is limited record
 I : Integer;
 end record;
 end P;
 package body P is
 function Create return T is
 begin
 return T'(I => 123);
 end Create;
 end P;
 S : access P.T;
begin
 S := new P.T'(P.Create); - - ??? (this
 is line 22)

end Test;

GNAT says:
test.adb:22:19: uninitialized
unconstrained allocation not allowed
test.adb:22:19: qualified expression
required
Interestingly, it works with Strings.
Why doesn't GNAT recognize it as a
qualified expression?
I would like to allocate dynamically
something that has a constructor function.
There is no other way to create the object
than with that function and presumably it
should be possible to use it with dynamic
allocation. How can I do it?
BTW - when preparing this example I
tried first with empty (null) record, but
got stuck with proper way to return an
instance of T. I remember there was some
older discussion about it, but for some
reason I cannot find it and the following:

return T'(others => <>);

is rejected as well.
What is the proper way to create null
aggregates?
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Wed, 30 Sep 2009 10:50:05 -0400
Subject: Re: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
I try to avoid the use of anonymous access
types.
They cause too many surprises.
> begin
 S := new P.T'(P.Create); -- ??? (this is

line 22)
 end Test;
 GNAT says:
 test.adb:22:19: uninitialized

unconstrained allocation not allowed
 test.adb:22:19: qualified expression

required
Looks like a bug in the compiler.
[…]

return (null record);

or

return T'(null record);

The "others => <>" should work, too.
[…]
From: Adam Beneschan

<adam@irvine.com>
Date: Wed, 30 Sep 2009 07:54:53 -0700

PDT
Subject: Re: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
[…]
> Interestingly, it works with Strings.

 Why doesn't GNAT recognize it as a
qualified expression?

It looks like a bug to me. I do notice that
if you remove "limited" from both
declarations of T, then it works.
There are some new Ada 2005 rules that
allow limited-type expressions in more
places (functions returning limited types
weren't allowed in Ada 95), so it's likely
that there was a mistake in implementing
this new feature.
[…]
Try

return T'(null record);

The first attempt, with (others => <>),
should have worked, but there was faulty
language in the RM that made this illegal
for a null record. It has been fixed by a
Binding Interpretation, AI05-16, so I
think compilers should allow that
construct, but perhaps it hasn't yet been
fixed in the version of GNAT you're
using.
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Wed, 30 Sep 2009 11:30:28 -0700
Subject: Re: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
[…]
> (functions returning limited types

weren't allowed in Ada 95)
Yes, they were. The current revision
changed them significantly.
From: Adam Beneschan

<adam@irvine.com>
Date: Wed, 30 Sep 2009 12:15:22 -0700

PDT
Subject: Re: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
[…]
Oh, yeah, that's right---the return-by-
reference thing. I forgot about that
because they were really more like
functions that return an access to some
existing object, rather than functions
returning an object. You couldn't create a
new limited object and return it. Anyway,
that doesn't really affect my point: the
compiler's implementation of functions
returning limited types is pretty much all
new for Ada 2005, and this appears to be
a case that slipped through the cracks in
GNAT.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 30 Sep 2009 16:56:41 +0200
Subject: Re: Dynamic allocation of

unconstrained types
Newsgroups: comp.lang.ada
> Interestingly, it works with Strings.
Because String is not a limited type.
> Why doesn't GNAT recognize it as a

qualified expression?

Ada in Context 217

Ada User Journal Volume 30, Number 4, December 2009

Qualified expression is not allowed for a
limited types, logically. (Not yet, I think it
will be a necessary step in order to
continue the idea of limited aggregates.
Once we allowed them, there is no reason
not to allow qualified aggregates and thus
limited expressions. After all aggregate is
an expression. Language design bugs are
always punished in the end…)
> I would like to allocate dynamically

something that has a constructor
function. There is no other way to
create the object than with that function
and presumably it should be possible to
use it with dynamic allocation.

> How can I do it?
By providing a function that explicitly
returns an access to T.
What you are trying to do: is to enforce a
custom initialization on a limited private
type. That does not work in Ada, alas. It is
hopeless, I am afraid. The best way I
know is to make it public, removing the
indefinite constraint. Otherwise you will
get mounting problems crippling your
design more and more, and still get no
working solution.
> What is the proper way to create null

aggregates?

return (null record);

if you need to specify the type, like when
the formal result is class-wide, then:

return X : T;

From: Adam Beneschan
<adam@irvine.com>

Date: Wed, 30 Sep 2009 08:03:57 -0700
PDT

Subject: Re: Dynamic allocation of
unconstrained types

Newsgroups: comp.lang.ada
> Qualified expression is not allowed for

a limited types, logically.
Yes, they are; see 7.5(2.1-2.9).

On task deallocation
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 17 Nov 2009 11:17:38 +0100
Subject: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
Consider a task encapsulated in an object
in either way:

type Device is
 Driver : Driver_Task (Device'Access);

or

type Device is
 Driver : not null access Driver_Task
 := Driver_Task (Device'Access);

Let the object is allocated dynamically
and we wanted to destroy it from the task.
It seems that there is no way to do this:

 task Driver_Task (
 Object : not null access Device) is
 procedure Free is
 new Ada.Unchecked_Deallocation
 (Device, Device_Ptr)
 Self : Device_Ptr;
 begin
 ...
 accept Shut_Down;
 Self := Object.all'Unchecked_Access;
 - - Or whatever way
 Free (Self); - - This will deadlock
end Driver_Task;

The core problem is that a task cannot
destroy itself, because that would block
for task termination, which never to
happen.
What I do to solve this is an extra
"collector task" to await for a rendezvous
with Driver_Tasks, accepting a pointer to
the Device and then after leaving the
rendezvous, freeing it. That looks tedious.
Don't we need some kind of "tail
recursion" for this destruction pattern?
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 17 Nov 2009 15:38:45 -0600
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
[…]
Ada does not allow an object to
destroy/free itself. That's generally a good
thing, because such an object cannot be an
ADT (it cannot be used as the element of
a container, for instance), and such a
model would require a far more complex
scheme of frame completion than is used
now: wait for all tasks, then finalize all
objects, then free all memory.
I realize that there are a few cases where
some other scheme would be better (we
struggled with this in CLAW, as the
finalization of library level objects tried to
use the GUI task which of course has
already terminated), but they would
require such an earthquake in semantics
as not to make any sense for Ada.
In your particular case, I don't understand
why you don't use nesting to solve the
problem. That is, put the object inside of
the task (either directly or logically), so it
can be destroyed when the task needs to
do that.
That would look something like:

task type Device;
task type Device is
 Device_Data : not null access
 Device_Data_Type := new
 Device_Data_Type;
 begin
 ...
 Free (Device_Data);

end Device;

Note: you'd need a named access type to
actually do this - I used an anonymous
one simply to make my point clearer.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 18 Nov 2009 09:41:01 +0100
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
[…]
> Note: you'd need a named access type

to actually do this - I used an
anonymous one simply to make my
point clearer.

Unfortunately that does not work. I
simplified the task description.
Actually in my case the device has some
associated objects, say, screws. They are
reference counted, both the devices and
screws. A device screw holds a reference
to its device. The screws are used
somewhere in the application. You can
create and remove screws and devices.
The application may hold references
them.
Now consider a case when the last screw
is removed from the device. This is an
operation eventually serviced by the
device driver. I.e. within the device
driver, you see, it was the last screw of
the device and *if* there is no other
references to the device, it must fall apart.
This is a case where you wanted the
device to commit suicide. There is
nobody else out there to do this. The
device is dangling. This is not the only
use case, just one possible case.
And, considering the design. It looks
logical that if screws are ultimately
removed at some dedicated context (of the
device driver), then the devices
themselves could also be removed on the
context of some "collector task".
Nevertheless, I am not sure that all cases
where active objects should "commit
suicide", should/could be treated this way.
From: Georg Bauhaus
Date: Wed, 18 Nov 2009 12:02:34 +0100
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
[…]
Could you make a Hammer task that will
perform its duties whenever a Device is
reported/reports to have lost all its
screws? (Yes, a garbage collector, I think,
though explicitly co-operating with
devices.)
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 18 Nov 2009 14:29:13 +0100
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
[…]

218 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

Yes, this is what I did.
But the question is of the general nature,
why there should be an extra task to
destroy the given one? So the argument
should be also general, like the Randy's
one about ADTs.
The counter argument and the problem is
that the relation between an object and its
task is not evident in Ada, for multiple
reasons. One of them is that tasks are not
tagged. So there is a problem, because
when this relation is ignored or missed by
the designer, then a straightforward
implementation of the task will
sometimes deadlock. That is not good.
From: Stefan Lucks <stefan.lucks@uni-

weimar.de>
Date: Wed, 18 Nov 2009 11:31:59 +0100
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
> Now consider a case when the last

screw is removed from the device. This
is an operation eventually serviced by
the device driver. I.e. within the device
driver, you see, it was the last screw of
the device and *if* there is no other
references to the device, it must fall
apart. This is a case where you wanted
the device to commit suicide. There is
nobody else out there to do this. The
device is dangling. This is not the only
use case, just one possible case.

OK, so you have a task (a device) which
notices that it is no longer useful. You
would like such a task to do some cleanup
and to commit "suicide". Unfortunately, it
can't do the cleanup after the "suicide",
because it is "dead" then. And it can't
cleanup itself before being "dead" because
it needs its local memory until the very
moment of its "death".
But couldn't you just use (or maybe
abuse) the features from
Ada.Task_Termination to do perform the
cleanup, after the task has died? Even if
the "death" is not by suicide (apart from
"suicide" = regular termination, the
options are "murder" = abort and
"accident" = unhandled exception).
See http://www.adaic.org/standards/
05rat/html/Rat-5-2.html#I1150.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 18 Nov 2009 18:48:06 +0100
Subject: Re: Tail recursion upon task

destruction
Newsgroups: comp.lang.ada
[…]
Yes, it is an interesting option. One could
terminate the task and from the handler
kill the object. The difficulty is that
Ada.Task_Termination is not generic. It is
not possible to pass a reference to the
object to the handler.
From: Egil Høvik

<egilhovik@hotmail.com>

Date: Thu, 19 Nov 2009 01:25:25 -0800
PST

Subject: Re: Tail recursion upon task
destruction

Newsgroups: comp.lang.ada
This would still be a bounded error.
A task is not terminated until the task
body has been finalized RM-9.3(5), and
since Task_Termination handlers are
executed as part of the finalization of task
bodies RM-C.7.3(14/2), you would
violate RM-13.11.2(11) by deallocating
the task in the handler.

Unchecked_Deallocation of
class-wide objects
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Mon, 28 Sep 2009 01:43:03 -0700

PDT
Subject: Unchecked_Deallocation of class-

wide objects
Newsgroups: comp.lang.ada
Is it legal and safe to deallocate class-
wide objects?
The problem is that such an object is
allocated with its concrete type, whereas
deallocation is defined for its class-wide
type.
Consider:

type Shape is tagged private;
type Shape_Access is access
 Shape'Class;
procedure Free_Shape is new
 Ada.Unchecked_Deallocation
 (Object => Shape'Class,
 Name => Shape_Access);
- - ...
type Circle is new Shape with ...
- - ...
C : Shape_Access := new Circle;
- - ...
Free_Shape (C);

Is the Circle object allocated on the
Shape-wide storage pool? From what I
understand, this is the condition for the
above to work properly. What if Circle is
allocated for some Circle_Access type
which is then converted to
Shape_Access? Can it be safely
deallocated?
I believe that the above is a pretty
standard use-case, but I would like to
confirm that. Unfortunately, AARM is not
very explicit about this subject.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 28 Sep 2009 11:12:04 +0200
Subject: Re: Unchecked_Deallocation of

class-wide objects
Newsgroups: comp.lang.ada
[…]

Yes, deallocation "dispatches" on the
pointer's target.
[…]
In Ada pool is bound to the access type,
not to the target type, which is logical
consequence that an object can be
allocated on the stack.
Another consequence is that it is
meaningless to talk about Shape-wide-
pool, however an implementation may
indeed allocate objects of different types
in different pools transparently to the
program. If it chooses to do this for
tagged types of the same hierarchy, then
the pointer should become fat and contain
the type tag in it. I know no Ada compiler
that does it this way, but it is a possible
scheme, IMO.
> What if Circle is allocated for some

Circle_Access type which is then
converted to Shape_Access? Can it be
safely deallocated?

You could not convert it because
Shape_Access is pool-specific.
(Unchecked_Conversion tells for itself)
If it were a general access to class wide
then deallocator would be "doubly
dispatching" on the pool and on the target.
Thus, as far as I can tell, it is safe in both
cases.

On dispatching calls in Ada
and C++
From: Markus Schoepflin

<markus.schoepflin@comsoft.de>
Date: Fri, 20 Nov 2009 14:15:33 +0100
Subject: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
[…]
I'm trying to fell may way around object
oriented Ada programming, and I think I
must be missing something absolutely
basic. Please consider the following
package:

package FOOS is
 type FOO is abstract tagged
 null record;
 procedure P (THIS : in FOO);
 procedure A (THIS : in FOO)
 is abstract;
end FOOS;
package body FOOS is
 procedure P (THIS : in FOO) is
 begin
 A (THIS);
 end;
end FOOS;

When trying to compile this, I get:
foos.adb:6:07: call to abstract function
must be dispatching
gnatmake: "foos.adb" compilation error

Ada in Context 219

Ada User Journal Volume 30, Number 4, December 2009

What is the compiler trying to tell me
here? And how do I go about calling
abstract procedures?
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 20 Nov 2009 14:27:14 +0100
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
[…]
It tells you that the type of THIS is FOO,
so you cannot call to A, because A is not
defined on FOO.
If P is to be defined in terms of any type
from the class FOO, then P has to be
declared differently (class-wide):

package FOOS is
 type FOO is abstract tagged
 null record;
 procedure P (THIS : in FOO'Class);
 - - I am SAME for the whole class
 - - rooted in FOO
 procedure A (THIS : in FOO) is
abstract;
 - - I have an implementation in
 - - each instance of the class except
 - - for the abstract ones like FOO.
end FOOS;
package body FOOS is
 procedure P (THIS : in FOO'Class)
 is
 begin
 A (THIS);
 - - I do not know what kind of FOO is
 - - THIS. So I dispatch to A according
 - - to the tag of THIS.
 end P;
end FOOS;

From: Markus Schoepflin
<markus.schoepflin@comsoft.de>

Date: Fri, 20 Nov 2009 14:58:57 +0100
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
> So If I understand this correctly, if I

want dispatching to happen on a given
type, I always need to use the class
type?

And one more question, can I have a
dispatching procedure that doesn't
explicitly use the type it dispatches on? In
C++, that would read:

class foo
{
 virtual void f() = 0;
};
class bar
{
 void f() {

 // Do something just depending on
 // class type bar,
 // not on an object of the class, so the
 // 'this' pointer actually is never used.
 }
};

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 20 Nov 2009 15:10:05 +0100
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
> So If I understand this correctly, if I

want dispatching to happen on a given
type, I always need to use the class
type?

Exactly. This helps both the compiler to
make the program much more efficient by
eliminating unnecessary dispatch and you
indicating the design problems like this
and making it safer in the opposite cases:
Consider the case where one non-abstract
operation calls another:

type FOO is abstract
 tagged null record;
procedure P (THIS : in out FOO);
procedure A (THIS : in out FOO);
...
procedure P (THIS : in FOO) is
begin
 ...
 A (THIS);
 - - This is a part of the implementation
 - - of P for the type FOO
 ...
end P;

Here the call to A does not dispatch. In
other language like C++ it would.
Now consider a type derived from FOO,
that overrides A, but inherits P.
That could break the implementation of P
in C++, but not in Ada, where P will
behave exactly as it did before.
When you design P you should decide
whether it is a class-wide subprogram or
not. That role of P will define the
behavior of calls to A from its body.
Sometimes the compiler can detect that
the declared role of P does not match its
implementation, as it was in your case.
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 20 Nov 2009 15:56:50 +0200
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
[…]
> package body FOOS is
> procedure P (THIS : in FOO)
> is
> begin

> A (THIS);
At this point, the compiler knows that
THIS is a FOO object, or is to be seen as
a FOO object. But you have said that the
procedure A on FOO is abstract -- not
implemented -- so you cannot call it.
I assume that your intention is to call the
procedure A that is implemented
(overridden) for the actual object THIS,
which is of some type derived from FOO
.. some type in FOO'Class for which you
have implemented A. To do so, you must
ask the compiler to make this call
dispatching, by converting the parameter
to FOO'Class:

A (FOO'Class (THIS));

This is called a "redispatching" call,
because the procedure P may have been
reached as the result of a dispatching call
on P, and now we are asking to dispatch
again.
One way to understand this is that in Ada
by default calls are statically bound, not
run-time bound (dispatching). Only calls
that have parameters of class type are
dispatching.
[…]
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Fri, 20 Nov 2009 16:00:08 +0200
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
> […] So If I understand this correctly, if

I want dispatching to happen on a given
type, I always need to use the class
type?

Yes. You can do that either by Dmitry's
method, declaring the parameter as
FOO'Class, or by converting a FOO
parameter to FOO'Class for the call. But
note that if an operation has no
parameters (and no return value) of type
FOO (or access FOO), only of
FOO'Class, it is not a primitive operation
of FOO and cannot be overridden in
derived types.
From: Niklas Holsti

<niklas.holsti@tidorum.ti>
Date: Fri, 20 Nov 2009 16:19:57 +0200
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
> […] And one more question, can I have

a dispatching procedure that doesn't
explicitly use the type it dispatches on?

No, as there is no implicit "this"
parameter in Ada (and no syntactic
brackets to group all the operations of a
type). To make an operation overridable
(a "primitive operation" in Ada terms)
you have to include one or more
parameters of the type (or of "access" to
the type) or it must return a value of the
type (or "access" to the type). And
moreover the operation must be declared

220 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

in the same package declaration as the
type.
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: 21 Nov 2009 14:07:12 GMT
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
[…]
The 'this' pointer might never be used, but
it is still there anyway. Ada's approach to
object oriented programming requires that
you make 'this' explicit. You can, of
course, choose to ignore it as well.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 20 Nov 2009 06:54:01 -0800 PST
Subject: Re: What makes a procedure call

'dispatching' in Ada?
Newsgroups: comp.lang.ada
I'd like to follow up on the (correct)
replies in this thread so far with a
"dynamic dispatching in Ada for C++
programmers" primer.
In C++:

class C {
 virtual void foo ();
}
C object;
C* pointer = &object;
void p () {
 object.foo (); // static dispatch
 pointer->foo (); // dynamic dispatch
}

In C++, class types are specific and
pointer types are class-wide. The
declaration

C* pointer = &object;

is strictly equivalent to

Object : aliased C;
type C_Access is access all C'Class;
Pointer : C_Access := Object'Access;

Ada makes it explicit that Pointer is of a
class-wide type, therefore calls through
the pointer dispatch dynamically:

procedure P is
begin
 Foo (Object); -- static dispatch
 Foo (Pointer.all); -- dynamic dispatch
end P;

So far it seems that Ada and C++ are
really the same, but wait! Ada has a
syntax to declare access types to a
specific type, like so:

type C_Specific_Access is
 access all C;

Any calls to primitive operations of C
through C_Specific_Access will dispatch
statically, not dynamically. There is no
way in C++ to declare such a type. In

C++, all pointer types are class-wide; this
applies also to the type of the implicit
"this" parameter.
Conversely, C++ has no way to declare a
class-wide type that is not a pointer or
reference type. Ada has C'Class for just
this purpose. The consequence is that, in
Ada, you do not need any pointers to
achieve dynamic dispatching whereas
C++ requires you to use pointers if you
want dynamic dispatching. Consider
again:

void p () {
 object.foo (); // static dispatch
 pointer->foo (); // dynamic dispatch
}

There is no way to dispatch dynamically
on "object"; you must use "pointer";
contrast with Ada:

procedure P (Object : C) is
begin
 Foo (Object); - - static dispatch
 Foo (C'Class (Object)); - - safe
 - - dynamic dispatch, without pointers!
end P;

The construct C'Class (Object) is called a
"view conversion" in Ada; it entails no
run-time cost and no additional object
code in this case (convert "up" the type
hierarchy) but it allows the programmer to
choose whether each call should dispatch
statically or dynamically.

Bug in the implementation
of Timing Events
From: Reto Buerki <reet@codelabs.ch>
Date: Mon, 14 Sep 2009 18:12:14 +0200
Subject: Timing_Events: Event time still set

after Cancel_Handler
Newsgroups: comp.lang.ada
[…]
Before reporting a bug, I wanted to ask
your opinion on this. Consider the
following code:

with Ada.Real_Time.Timing_Events;
package Timers is
 use Ada.Real_Time.Timing_Events;
 protected type Timer_Type is
 procedure Setup (
 At_Time : Ada.Real_Time.Time);
 function Get_Time return
 Ada.Real_Time.Time;
 procedure Stop (
 Status : out Boolean);
 private
 procedure Handle (
 Event : in out Timing_Event);
 Event : Timing_Event;
 end Timer_Type;
end Timers;
--
package body Timers is

 protected body Timer_Type is
 function Get_Time return
 Ada.Real_Time.Time is
 begin
 return Event.Time_Of_Event;
 end Get_Time;
 procedure Handle (
 Event : in out Timing_Event) is
 begin
 null;
 end Handle;
 procedure Setup (
 At_Time : Ada.Real_Time.Time) is
 begin
 Event.Set_Handler (
 At_Time => At_Time,
 Handler => Handle'Access);
 end Setup;
 procedure Stop (
 Status : out Boolean) is
 begin
 Event.Cancel_Handler (
 Cancelled => Status);
 end Stop;
 end Timer_Type;
end Timers;
--
with Ada.Text_IO;
with Ada.Real_Time;
with Timers;
procedure Cancel_Handler is
 use Ada.Real_Time;
 Handler : Timers.Timer_Type;
 Timer : constant Time :=
 Clock + Minutes (60);
begin
 if Handler.Get_Time = Time_First
 then
 Ada.Text_IO.Put_Line (
 "Time is Time_First ...");
 end if;
 Handler.Setup (At_Time => Timer);
 if Handler.Get_Time = Timer then
 Ada.Text_IO.Put_Line (
 "Handler set ...");
 end if;
 declare
 Stopped : Boolean := False;
 begin
 Handler.Stop (Status => Stopped);
 if Stopped then
 Ada.Text_IO.Put_Line (
 "Timer cancelled ...");
 if Handler.Get_Time = Timer then
 Ada.Text_IO.Put_Line (
 "Why is the time still set then?");
 end if;
 end if;
 end;
end Cancel_Handler;

Ada in Context 221

Ada User Journal Volume 30, Number 4, December 2009

The 'Timers' package provides a simple
protected type 'Timer_Type' which
basically just wraps an
Ada.Real_Time.Timing_Events.Timing_
Event type.
The Setup() procedure can be used to set a
specific event time.
Stop() just calls the Cancel_Handler()
procedure of the internal Timing_Event.
This procedure 'clears' the event (if it is
set).
Ada RM D.15 about Real_Time.Timing
Events states:
9/2 An object of type Timing_Event is
said to be set if it is associated with a non-
null value of type Timing_Event_Handler
and cleared otherwise. All Timing_Event
objects are initially cleared.
17/2 The procedure Cancel_Handler
clears the event if it is set. Cancelled is
assigned True if the event was set prior to
it being cleared; otherwise it is assigned
False.
18/2 The function Time_Of_Event returns
the time of the event if the event is set;
otherwise it returns
Real_Time.Time_First.
The RM does not explicitly state what
happens with the event time value
associated with a specific event after a
call to Cancel_Handler(), but it seems
logical to assume that Time_Of_Event
should return Time_First again because
no event is 'set' after it has been cleared
(handler set to 'null').
With FSF GNAT, only the event handler
is cleared, the event time remains set.
Tested with GNAT 4.3.2 and 4.4.1 on
Debian Stable/SID.
Could this be considered as a bug?
[…]
From: Reto Buerki <reet@codelabs.ch>
Date: Wed, 16 Sep 2009 23:19:51 +0200
Subject: Re: Timing_Events: Event time still

set after Cancel_Handler
Newsgroups: comp.lang.ada
[…]
> I say it is a bug because ARM 18/2 is

violated.
Thanks for the confirmation, bug filed [1].
[…]
[1] http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=41383

On the Ravenscar Profile
and ACATS
From: Jérôme Hugues <hugues@telecom-

paristech.fr>
Date: Fri, Oct 2 2009 16:03:00 CEST
Subject: [ada-france] Question sur le profil

Ravenscar
Mailing list: ada-france.ada-france.org
I take advantage of the change of the
Board to take the role of the inquisitor;-)

In Ada 2005 the Ravenscar Profile was
officially defined. At ada-auth.org it is
possible to read the minutes of the
discussions on the genesis of the profile.
While reading it again, I found the
following
(http://www.ada-auth.org/ cgi-bin/
cvsweb.cgi/ais/ai-00249.txt?rev=1.16):
!ACATS test
An ACATS test should be created for this
pragma.
Does it mean there is no test?
As a subordinate question, is there a
compiler fulfilling the ACATS tests for
the Ada 95 Annex D on Real-Time
Systems, so that the aspects related to
Task_Dispatching_Policy and
Locking_Policy are validated, as well as
the behavioural part of Ravenscar, with
the exception of the pragma
Detect_Blocking?
The problem I have is to understand if
RTEMS is compliant to Ravenscar or if
we risk to find a problem in the future
(under the hypothesis that it passes the
ACATS tests).
From: Laurent Guerby

<laurent@guerby.net>
Date: Fri, Oct 2 2009 16:20:00 CEST
Subject: Re: [ada-france] Question sur le

profil Ravenscar
Mailing list: ada-france.ada-france.org
[…]
I did not find "Ravenscar" in the last
updated ACATS tests:
http://www.ada-auth.org/acats.html
[…]
ACATS tests of Annex D are not included
in the test suite of GCC, someone has to
test them (just copy the files of the cxd
folder of ACATS in
gcc/testsuite/ada/ACATS/tests/cxd/).
From: Jérôme Hugues <hugues@telecom-

paristech.fr>
Date: Fri, Oct 2 2009 16:35:00 CEST
Subject: Re: [ada-france] Question sur le

profil Ravenscar
Mailing list: ada-france.ada-france.org
[…]
Thanks for that link, I forgot it!
[…]
Mmm, do you know where are the scripts
to run the suite to RTEMS?
(/trunk/gcc/testsuite/ada/acats/run_all.sh
seems only to run the test case on native)
I imagine that you can easily patch them
to specifically test this directory and
RTEMS with a BSP for LEON3, am I
wrong?
From: Laurent Guerby

<laurent@guerby.net>
Date: Fri, Oct 2 2009 17:31:00 CEST

Subject: Re: [ada-france] Question sur le
profil Ravenscar

Mailing list: ada-france.ada-france.org
Joel Sherrill has the patch to do that, he
sends me the results and issues from time
to time but it has been a while since I
performed a cross test on RTEMS.
In run_all.sh it is sufficient to change the
4 small functions target_run/gnatchop/
gnatmake/gcc to adapt them to your
target.
The easiest way if you have any problem
is to contact Joel directly, you can tell him
I told you to contact him :).
[The whole thread was translated from
French —mp]

Use of the same actual
parameter for in and out
formal parameter
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 17 Nov 2009 01:50:04 -0800

PST
Subject: Passing the same actual as both in

and out formal parameters?
Newsgroups: comp.lang.ada
Consider:

 type T is tagged private;
 procedure P (A : in T; B : out T)
 is separate;
 Object : T;
begin
 P (A => Object, B => Object);

This seems legal but I suspect the
execution might lead to bugs if P reads
and writes components of A and B in
arbitrary order, e.g.

type T is tagged record
 L, M : Integer;
end record;
procedure P (A : in T; B : out T) is
begin
 B.L := A.M; - - does this change
 - - A.L too?
 B.M := A.L; - - bug: A.L has been
 - - clobbered,now B.M = B.L?
end P;

My concern stems from the fact that T is
tagged (I cannot change that), so Object is
passed by reference as both A and B.
Am I right to be concerned?
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Tue, 17 Nov 2009 12:40:57 +0200
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
[…]
> This seems legal but I suspect the

execution might lead to bugs if P reads

222 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

and writes components of A and B in
arbitrary order, e.g.

I think this situation is defined in RM
6.2(12) where A and B are defined as
"distinct access paths" to the same object.
It is a bounded error if the parameter
passing mechanism is not specified, but
(by default) should work as expected
when the parameters are passed by
reference.
> type T is tagged record
> L, M : Integer;
> end record;
>
> procedure P (A : in T; B : out T) is
> begin
> B.L := A.M; -- does this change A.L

too?
Yes, as far as I understand RM 6.2(12).
> B.M := A.L; -- bug: A.L has been

clobbered, now B.M = B.L?
I believe so.
[…]
> My concern stems from the fact that T

is tagged (I cannot change that), so
Object is passed by reference as both A
and B.

> Am I right to be concerned?
Yes, if you expect A to be immutable
during the execution of P.
There is a Note to RM 6.2(12), which is
6.2(13): "A formal parameter of mode in
is a constant view (see 3.3); it cannot be
updated within the subprogram body".
But I think this means only that the "in"
mode access path to this object cannot be
used to update it. It does not mean that the
value of the object cannot change at all,
due to assignments from other access
paths.
If P is mean to return B as A with L and
M swapped, you should use an aggregate
assignment, B := (L => A.M, M => A.L).
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 17 Nov 2009 11:31:02 +0100
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
[…]
> Am I right to be concerned?
Depend on what your concern is ;-)
The semantic is well defined: tagged
types are by-reference type. If you want to
swap two fields of different parameters of
the same type, use a local variable.
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 17 Nov 2009 03:26:29 -0800

PST
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada

[…]
My example was heavily simplified; the
actual type has about a hundred
components and the procedure P is a little
more complex than swapping components
:)
But thanks for the responses, Niklas and
Jean-Pierre. They confirm my suspicion.
From: Jean-Pierre Rosen

<rosen@adalog.fr>
Date: Tue, 17 Nov 2009 14:13:25 +0100
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
[…]
But the important thing is that there is no
risk: behaviour is well defined, and will
not change with the next release of the
compiler.
If it is not the behaviour you want, you
can make a local copy (but you know
that).
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 17 Nov 2009 08:07:39 -0800

PST
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
[…]
Indeed; I was careful not to use the
phrases "bounded error" or "erroneous
execution", just "bug" :) The construct is
well-defined but error-prone and needs
documentation in my sources, so I've
added that.
Triggering the bug requires:
(1) pass-by-reference type (i.e. tagged,
limited, etc.) or explicit access type
(2) same object passed twice as both in
and out parameters
(3) non-atomic reads and writes to the
object inside the subprogram
When writing such a procedure, it is
necessary to pay attention: either prevent
the bug by checking for condition (2) and
raising an exception if it is met; use only
atomic operations so as to prevent (3); or
accept that the bug may happen and warn
about it.
In my particular case, the operations are
"atomic" in that the procedure first reads
the Object, then passes it as an "out"
parameter to another procedure, and never
reads it again. However, this being long-
term-support software, one never knows
that (3) can never happen in some future
revision.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 17 Nov 2009 08:26:47 -0800

PST
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada

 […]
> Am I right to be concerned?
As the others have pointed out, the
answers to your questions are "yes",
changing B.L does change A.L if the
same object is passed as a parameter to
both A and B. The semantics are well-
defined. My concern would be whether
optimization could change the order of the
operations inside P in a way that affects
the results if A and B are aliases for the
same object; I don't know offhand
whether this is allowable for parameters
of by-reference types. I'd have to hunt
through the RM to figure this out, unless
someone already knows the answer.
Whether this (the simpler problem,
without optimization) is a concern or not
depends on the situation. I've written
procedures that are specifically designed
to allow the same object to be passed as
an IN and an OUT parameter.
Of course, the body of the procedure has
to be written carefully to allow for this.
There's no way in Ada to enforce any of
this; right now it's just mentioned in the
comments in the package spec ("A and B
may be the same object", or "A and B
may not be the same object"), and the
caller is expected to obey this, and the
body is expected to perform correctly
when they are the same object, if they are
indeed allowed to be the same.
I think AI05-191 is related to this.
Offhand, it appears that if this AI is
addressed, you could put an assertion
somewhere (as a precondition of P, if
AI05-145 is addressed) to ensure that P is
never called with aliased (or overlapping)
components, if that would be bad.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Tue, 17 Nov 2009 15:25:13 -0600
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
> My concern would be whether

optimization could change the order of
the operations inside P in a way that
affects the results if A and B are aliases
for the same object; […]

I don't believe such an optimization would
be legitimate, but given how hard it is to
understand 11.6, I could be wrong. Most
of the permissions to optimize are related
to whether (and where) exceptions are
raised, but there is no exception here.
Similarly, there are a lot of things that are
evaluated in an unspecified order (which
could change because of optimization),
but that also does not apply here.
> I think AI05-191 is related to this.

Offhand, it appears that if this AI is
addressed, you could put an assertion
somewhere (as a precondition of P, if
AI05-145 is addressed) to ensure that P
is never called with aliased (or

Ada in Context 223

Ada User Journal Volume 30, Number 4, December 2009

overlapping) components, if that would
be bad.

Right, that's my understanding of the
point. The only problem is, there isn't any
sane way to describe such an assertion.
[…]
P.S. The checks proposed in AI05-0144-1
also are related to this situation, although
they would not detect this particular case
(as the semantics is well-defined, there is
no non-portability here).
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Tue, 17 Nov 2009 17:11:26 -0700
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
> […] The only problem is, there isn't any

sane way to describe such an assertion.
Given that the types are by-reference,
would comparing 'access of the
parameters serve?

pragma Assert (A'access /= B'access);

From: Adam Beneschan
<adam@irvine.com>

Date: Tue, 17 Nov 2009 16:23:56 -0800
PST

Subject: Re: Passing the same actual as
both in and out formal parameters?

Newsgroups: comp.lang.ada
[…]
First of all, for this to work in the general
case, that would need a major change in
language semantics, since you need an
access type in order for 'Access to be
allowed. The only way this would be legal
is if there happened to be exactly one "="
operator directly visible with operands of
some named access-to-T type. (Also, if
"=" were overridden with a user-defined
operator that did something unexpected, it
would fail, but nobody would do that.)
Second, it only catches the case where the
operands are of the same type; it won't
catch other overlaps such as

P2 (A => Object,
 B => Object.Component);

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Tue, 17 Nov 2009 20:47:53 -0700
Subject: Re: Passing the same actual as

both in and out formal parameters?
Newsgroups: comp.lang.ada
[…]
OK. Since this in the body of the
operation, it seems doable:

procedure P (A : in T; B : out T) is
 type T_Ptr is access T;
 A_Ptr : constant T_Ptr := A'access;
 B_Ptr : constant T_Ptr := B'access;
 pragma Assert (A_Ptr /= B_Ptr);

So you're guaranteed that "=" for T_Ptr is
used, and you know it hasn't been

overridden.
What about 'Address?
> Second, it only catches the case where

the operands are of the same type; it
won't catch other overlaps such as

> P2 (A => Object, B =>
Object.Component);

Sure, it's not a general solution; I doubt if
there could be one. But it does seem to
serve for the OP's case.

On tagged type and access to
subprograms
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Wed, 28 Oct 2009 00:51:19 -0700

PDT
Subject: Tagged type more type safe than

access to subprogram ?
Newsgroups: comp.lang.ada
[…]
I was reading the Ada 95 Quality and
Style Guide, seeking for some inspiration
about a design / style doubt.
I came into Chapter 5, “CHAPTER 5:
Programming Practices”,
5.3.4 Subprogram Access Types says:
> You can achieve the same effect as

access-to-subprogram types for
dynamic selection by using abstract
tagged types. You declare an abstract
type with one abstract operation and
then use an access-to-class-wide type to
get the dispatching effect. This
technique provides greater flexibility
and type safety than access-to-
subprogram types

Here :
http://www.iste.uni-stuttgart.de/ps/
ada-doc/style_guide/sec_5a.html#5.3.4
I agree about the “greater flexibility” (I've
recently meet such a case), but I do not
understand the “and [greater] type safety”.
If it's Ok for me to assert that tagged type
is a more flexible way than access to
subprogram, I do not see a case where
access to subprogram would be less type
safe than tagged type.
If there is something I do not understand,
this may mean I have something to learn
about it (the purpose of the question then).
Does any one know a case which match
this assertion ?
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 28 Oct 2009 09:55:08 +0100
Subject: Re: Tagged type more type safe

than access to subprogram ?
Newsgroups: comp.lang.ada
[…]
An access to subprogram is a poor-man's
closure. Let's ignore "access" part and

consider a pure downward closure (as it
should have been in Ada).
I argue that a helper type with an abstract
primitive subprogram is safer than a
closure, both safer and type-safer.
The general safety comes from the fact
that a closure brings a context with it,
which an object normally does not. An
abstract type is better encapsulated and
there is less chances to run into occasional
side effects.
Even if the side effects are desired I
would argue that it is better and safer to
limit them to the object rather than to the
closure's context. The crucial point is that
closure's effects are "there", while effects
on the object are localized to the object's
state, there are "here", at the call point.
The type safety is gained through
different types derived from the abstract
parent. There might be no difference at
the caller side, e.g. whether you
mistakenly call to the closure C1 instead
of C2, or mistakenly pass an instance of
S1 instead of S2 (both from the S'Class).
Yet it is type safer with regard to the
parameters required to construct S2. Its
constructor can have a different signature,
so that the parameters you pass in order to
create it were different from S1.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Thu, 29 Oct 2009 04:00:29 -0700

PDT
Subject: Re: Tagged type more type safe

than access to subprogram ?
Newsgroups: comp.lang.ada
[…]
> An access to subprogram is a poor-

man's closure. Let's ignore "access" part
and consider a pure downward closure
(as it should have been in Ada).

“As this should have been in Ada” ? What
were you meaning? I've always though
real closures are not possible with such
structures as Ada provides, except at
package level — which is especially the
case when a package can have multiple
instances… but only at package level.
Isn't it ?
> I argue that a helper type with an

abstract primitive subprogram is safer
than a closure, both safer and type-
safer. […]

> The type safety is gained through
different types derived from the
abstract parent. […]

If I attempt an abstract of your words, and
if I've understood you in a right way, it
could be: tagged types are safer than
accesses to subprograms, because the
abstract method of a tagged type is always
associated to a suitable context, unlike
subprogram, with which a single error is
immediately turned into a double error —
the one about the subprogram and the one
about the closure which comes with the

224 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

subprogram reference.
This is relevant, indeed.
Now I see the deal much better (providing
I'm OK with my understanding).
I would like to just add two other notes,
about flexibility (not safety): the first one,
I think its a good idea to add a Ready
function (returning Boolean) to the tagged
type, because the tagged type may be
extended in a way where it needs setup
(useful for peoples who like to add Eiffel-
like precondition to their specifications).
This seems general enough to me to add
this function to any tagged type which is
intended to act as an abstract method (and
to add an initial default implementation
which always return True). And then,
about implementation now : if an abstract
method is concerned by performance, it is
possible to add an alternate batch version
belong to the primary abstract method (to
run the method on a sequence of
parameters, either as input or output).
This is a good idea to add it to the same
tagged type, as it is deeply related to the “
normal” (un-batched version) of the
abstract method (deeply related in many
ways, such as required internal data to
work, setup, shared part of algorithm,
etc).
This is another argument pleading in
favor of the provided flexible of tagged
types over access to subprograms.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 29 Oct 2009 18:54:19 +0100
Subject: Re: Tagged type more type safe

than access to subprogram ?
Newsgroups: comp.lang.ada
[…]
>> An access to subprogram is a poor-
man's closure. Let's ignore "access" part
and consider a pure downward closure (as
it should have been in Ada).
[…]
I meant downward closures. There is no
reason for

type P is access procedure (...);

where actually meant

type P is procedure (...);

It is almost always safer and cleaner to
pass subprograms instead of access to
them. Obviously a subprogram type were
a limited type, so a subprogram were
passed by reference. A pointer were only
needed when you wanted to copy it. And
copying pointers is always asking for
trouble…
BTW, in Ada 83, there was no access to
subprogram, so we used tasks instead
(where a subprogram had to be a non-
generic parameter).
Task is a proper type since the day one.
Subprograms lingered, but then in Ada 95
one did a big mistake introducing access

discriminants, access to subprogram,
access to self (the Rosen trick), access to
function's mutable parameter etc. And
almost in all use cases of these, no access
is actually needed.
From: Georg Bauhaus
Date: Thu, 29 Oct 2009 21:45:02 +0100
Subject: Re: Tagged type more type safe

than access to subprogram ?
Newsgroups: comp.lang.ada
> BTW, in Ada 83, there was no access to

subprogram, so we used tasks instead
(where a subprogram had to be a non-
generic parameter).

Tagged types may come close to a
solution sometimes. You make "function
objects", like the ones found in Eiffel and,
I think, some other languages. […]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 30 Oct 2009 09:25:12 +0100
Subject: Re: Tagged type more type safe

than access to subprogram ?
Newsgroups: comp.lang.ada
[…]
> Tagged types may come close to a

solution sometimes.
Yes, I am using this pattern very often.
But:
1. There were no tagged types in Ada 83
2. In Ada 95 tagged types were in effect

strictly library-level. This restriction
was lifted only in Ada 2005, too late to
stop the "access-to everything cancer".

3. The language is too heavy when it
comes to create a singleton object
overriding one or two abstract primitive
operations. There should be short-cuts
for that.

Null range in unconstrained
array
From: Rick Duley <rickduley@gmail.com>
Date: Mon, 31 Aug 2009 18:28:06 -0700

PDT
Subject: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
If I have an unconstrained array type
'My_Array_Type' and declare an instance
of it as:

My_Array : My_Array_Type (1 .. 0);

then the LRM tells me it is a null range:
3.5 (4): A range with lower bound L and
upper bound R is described by “L .. R”.
If R is less than L, then the range is a null
range, and specifies an empty set of
values.
What, exactly, is My_Array (forgive the
language) pointing to? Is any memory
allocated to My_Array?
From: Randy Brukardt

<randy@rrsoftware.com>

Date: Mon, 31 Aug 2009 22:11:23 -0500
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
That's a question that the ARG decided
not to answer in general. (It matters for
aliased objects and "=" of accesses to
such objects). We agreed to not decide
(see AI95-00350-1, voted No Action). It
seems silly to require allocating memory
for objects with no components, but some
people think that it is important that
access type compare unequal. Thus there
was no agreement on clarifying the
wording.
So you'll have to look to see what your
particular compiler does.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 1 Sep 2009 07:50:48 -0700 PDT
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
Most likely, no. Randy gave a reason why
a compiler might want to allocate a little
bit of space for the array; but even if it
does, it's memory that will never be used.
Any attempt to refer to My_Array (X), no
matter what X is, will raise
Constraint_Error.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Tue, 01 Sep 2009 11:34:30 -0400
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
Well, arrays don't "point".
>> Is any memory allocated to

My_Array?
> Most likely, no. Randy gave a reason

why a compiler might want to allocate
a little bit of space for the array; but
even if it does, it's memory that will
never be used.

Randy's reason applies only if the array is
aliased, which the above one is not.
There's no reason the compiler has to
allocate any space for My_Array above.
If we have:

 My_Array : My_Array_Type (1 .. 0);
 X : Boolean;

it is entirely possible (likely even) that
My_Array'Address = X'Address.
Randy's concern about access values does
not apply to addresses.
Usually, empty arrays are not statically
known to be empty, though. In that case,
some space might be used to store the
bounds.
>...Any attempt to refer to My_Array (X),

no matter what X is, will raise

Ada in Context 225

Ada User Journal Volume 30, Number 4, December 2009

Constraint_Error.
Right.
From: Peter C. Chapin

<pcc482719@gmail.com>
Date: 06 Sep 2009 12:11:05 GMT
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
Wouldn't it be possible to pass My_Array
to a subprogram expecting
My_Array_Type? The subprogram might
consult the bounds on the formal
parameter before trying to use the array so
sending a null array to such a subprogram
is not automatically going to cause a
problem. In that case, it seems like
My_Array needs to have memory
allocated for it to hold information about
the bounds.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sun, 06 Sep 2009 08:41:22 -0400
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
> Wouldn't it be possible to pass

My_Array to a subprogram expecting
My_Array_Type?

Yes.
>…The subprogram might consult the

bounds on the formal parameter before
trying to use the array […]

The called procedure has to have some
way to know the bounds.
That's true whether the bounds are 1..0 or
1..100.
There are several ways to implement that.
For example, the procedure could be
passed the bounds as separate parameters,
in two registers. I don't consider that to be
"memory allocated for My_Array",
because it is not allocated when the
compiler sees My_Array -- it is allocated
when the compiler sees a call (and
separately for each call).
In this case, My_Array'Address =
X'Address is likely.
Alternatively, the compiler could allocate
the bounds as part of My_Array, just in
case there are some such calls.
In this case, My_Array'Address =
X'Address is unlikely.
If the procedure is inlined, the bounds
might end up being stored only in the
immediate-value fields of instructions. Or
the entire procedure call might vanish,
because the compiler knows it's (say)
looping through an empty array.
From: Adam Beneschan

<adam@irvine.com>
Date: Tue, 8 Sep 2009 10:54:08 -0700 PDT
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada

[…]
To elaborate on this a bit further: Suppose
you define a record type for reading a file
with Ada.Direct_IO, that looks something
like this:

type Employee_Data is record
 Name : String (1 .. 50);
 Address1 : String (1 .. 40);
 Address2 : String (1 .. 40);
 City : String (1 .. 30);
 State : String (1 .. 2);
 ...
end record;

[…] it would be very unexpected for the
compiler to put two extra integers in the
record for each of these strings, and it
would mess up your file I/O. But you
have to have the ability to pass any of
those fields to a subprogram with a
parameter type "String", and the bounds
have to be passed to the subprogram
somehow. I think it's most likely that the
bounds will be passed separately, as Bob
suggested, either by passing them in
separate registers, creating a three-word
temporary structure that contains the
bounds and a pointer to the data and
passing the address of that structure (with
that structure disappearing after the
subprogram returns), creating a two-word
structure with the bounds and passing the
address of that in a register, etc.
Something along those lines. But I'd
actually be surprised if *any*
implementation allocated extra space in
an Employee_Data record to hold the
bounds of each field.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Wed, 09 Sep 2009 04:35:19 -0400
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
> […] it would be very unexpected for the

compiler to put two extra integers in the
record for each of these strings, and it
would mess up your file I/O.

If you expect the layout of this record to
match your file, you must provide a
representation clause.
> But you have to have the ability to pass

any of those fields to a subprogram
with a parameter type "String", and the
bounds have to be passed to the
subprogram somehow. […]

It _could_ depend on whether there's a
pragma Pack, or a representation clause,
for the record. In the absence of such, I
would expect the compiler to treat these
components the same way it treats
separate objects. Which means I would
expect the bounds to be stored with the
object.
But that's just my expectations; compilers
are free to do whatever they want, as long
as it meets the standard.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Wed, 09 Sep 2009 09:00:39 -0400
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
>…Which means I would expect the

bounds to be stored with the object.
Most compilers, including GNAT, will
not store the bounds with the object
(whether it's a component or a standalone
object).
Think about an array of a million of those
records: you don't want 1,000,000 copies
of the number 50 stored at run time. That
number is known to the compiler, and can
be plugged in wherever needed (e.g. when
you say "for X in A(Y).Name'Range
loop", the compiler knows that's just "for
X in 1..50 loop".
> But that's just my expectations;

compilers are free to do whatever they
want, as long as it meets the standard.

Right.
From: Simon J. Wright

<simon.j.wright@mac.com>
Date: Wed, 9 Sep 2009 12:22:42 -0700 PDT
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
[…]
> type Employee_Data is record
> […]
> end record;
After leaving out the …, GNAT allocates
162 bytes for this record (no dope bytes).
Also, if you stream it, it takes just 162
bytes on the stream.
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Date: Thu, 10 Sep 2009 19:24:40 -0400
Subject: Re: Null Range in Unconstrasined

Array
Newsgroups: comp.lang.ada
> Also, if you stream it, it takes just 162

bytes on the stream.
That's not surprising: LRM 13.13.2 says:
3 S'Write
 S'Write denotes a procedure with the
 following specification:
4/2 procedure S'Write(

 Stream : not null access
 Ada.Streams.Root_Stream_
 Type'Class;
 Item : in T)

5 S'Write writes the value of Item to
 Stream.
The value clearly does not include the
bounds.

226 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

Binary I/O on standard
input/output stream
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 24 Oct 2009 15:07:29 -0700 PDT
Subject: Preferred way to do binray I/O on

standard input/output stream
Newsgroups: comp.lang.ada
[…]
There is no kind of binary mode vs text
mode flags with Ada stream/file IO, as it
there are with C. And then, C files are not
typed, while Ada files/streams are, thus,
this will not make any sense to simply
talk about binary I/O with Ada. So let
simply talk about non-text I/O from and
to standard input/output.
When some people need this, what is the
typical preferred to do so ?
Using a custom file type which relies on
the OS ? (one for each OS if it is to be
built for multiple platforms)
Simply use characters with Text_IO and
then do a character code interpretation as
if it was binary data? Other ways?
The first way, seems the more formal, but
requires more work, and probably a lot of
testing to ensure the custom file type
implementation does not contain any
error.
The second way seems to be safer in some
way (relies on a standard package), but
does not seem safe in the way nothing can
ensure no data will not be lost or modified
(as it is primarily Text_IO).
If I missed something in the standard
packages which allow this to be done
directly, I simply apologize for this topic.
[…]
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Sat, 24 Oct 2009 15:57:25 -0700
Subject: Re: Preferred way to do binray I/O

on standard input/output stream
Newsgroups: comp.lang.ada
[…]
Package Ada.Text_IO.Text_Streams
(ARM A.12.2) allows converting
Ada.Text_IO.File_Type to
Stream_Access and reading and writing
them through the capabilities of streams.
This allows converting standard input and
output to Stream_Access, since
Ada.Text_IO provides the functions
Standard_Input and Standard_Output
which return Ada.Text_IO.File_Type.
For general binary I/O, one can use
Ada.Sequential_IO or Ada.Direct_IO
instantiated with an appropriate type, or
Ada.Streams.Stream_IO. For standard
input and output, however, this can only
work if you have a name for these files
that you can use to open them, and such a
name is platform-dependent. The only
independent way to access these files is

through streams and
Ada.Text_IO.Text_Streams.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Sat, 24 Oct 2009 16:22:41 -0700 PDT
Subject: Re: Preferred way to do binray I/O

on standard input/output stream
Newsgroups: comp.lang.ada
[…]
There is further more a note in ARM 12.2,
which says (annotated reference) :
NOTES
6 35 The ability to obtain a stream for a
text file allows Current_Input,
Current_Output, and Current_Error to be
processed with the functionality of
streams, including the mixing of text and
binary input-output, and the mixing of
binary input-output for different types.
7 36 Performing operations on the stream
associated with a text file does not affect
the column, line, or page counts.
[…]
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Mon, 26 Oct 2009 17:34:08 -0700

PDT
Subject: Re: Preferred way to do binray I/O

on standard input/output stream
Newsgroups: comp.lang.ada
[…]
While this seems to work most of times, I
meet a malfunction (data not preserved) if
the stream ends with a line-feed (a byte
whose value is 10). When it is, this last
byte seems to be dropped from the stream,
which cause troubles if the binary format
is expecting it. This occurs only when it
exactly ends with this byte, and it is Ok if
this byte is followed by a byte whose
value is 0 (as an example). It does not
occur when the stream ends with a byte
whose value is that of the carriage-return
(13).
Finally, this does not really turn the
stream into a binary stream, and some
interpretations remain.
From: John B. Matthews

<jmatthews@wright.edu>
Date: Mon, 26 Oct 2009 21:14:38 -0400
Subject: Re: Preferred way to do binray I/O

on standard input/output stream
Newsgroups: comp.lang.ada
[…]
I get the same effect. I don't know if it's
the shell (bash) or OS (Mac) doing it. I
suspect the former: End_Of_File turns
True when a final linefeed remains to be
read; the effect is absent with redirection.
I'm vaguely uneasy using an exception for
flow control, but this seems to copy the
data unmolested:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Text_IO.Text_Streams;
procedure Copy is

 Stream_Ptr :
 Text_Streams.Stream_Access;
 C : Character;
begin
 Stream_Ptr := Text_Streams.Stream(
 Current_Input);
 loop
 Character'Read(Stream_Ptr, C);
 Put(C);
 end loop;
exception
 when End_Error => null;
end Copy;

From: Yannick Duchêne
<yannick_duchene@yahoo.fr>

Date: Mon, 26 Oct 2009 19:36:49 -0700
PDT

Subject: Re: Preferred way to do binray I/O
on standard input/output stream

Newsgroups: comp.lang.ada
[…]
The trouble with this, is that this force a
look-ahead: an item must be read to know
if an item is available, and this can lead
into numerous logical traps (I prefer to
keep distinct the action of reading and
testing availability of data).
May be this is finally really better to re-
create a type to stand for the standard
input as binary, but what I do not like
with this way, is the possible lack of
knowledge of some platforms, which is
required for implementations (For me, it
will be OK for Windows, BSD, Linux,
but not the others… although in the mean
time, I'm not sure I will ever need it for
other platforms).
From: John B. Matthews

<jmatthews@wright.edu>
Date: Tue, 27 Oct 2009 12:13:54 -0400
Subject: Re: Preferred way to do binray I/O

on standard input/output stream
Newsgroups: comp.lang.ada
[…]
Ah, I see your point. I recall this problem
going back to the days of UCSD Pascal,
which distinguished between interactive
and text type files for this very reason.
My use is to allow command line utilities
to read from standard input if no file name
is supplied. For me, the data stream
invariably arrives via redirection or a
pipe, so the problem does not arise. For
interactive programming, I typically use
GtkAda.
This variation of Copy makes it easier to
see what's happening.
Prefacing the loop with the End_Of_File
predicate exposes the problem for files
with a terminal LF. If running
interactively, control-D exits:

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Text_IO.Text_Streams;
procedure Copy is

Ada in Context 227

Ada User Journal Volume 30, Number 4, December 2009

 Stream_Ptr :
 Text_Streams.Stream_Access;
 C : Character;
 function Hex(C : Character)
 return String is
 H : constant String :=
 "0123456789ABCDEF";
 B : Natural := Character'Pos(C);
 S : String(1 .. 4);
 begin
 S(1) := '[';
 S(2) := H(B / 16 + 1);
 S(3) := H(B mod 16 + 1);
 S(4) := ']';
 return S;
 end Hex;
begin
 Stream_Ptr := Text_Streams.Stream(
 Current_Input);
- - while not End_Of_File loop
 loop
 Character'Read(Stream_Ptr, C);
 Put(Hex(C));
 end loop;
exception
 when End_Error => null;
end Copy;

[…]

On the performance of
'Read and 'Write
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Thu, 29 Oct 2009 16:29:47 -0700

PDT
Subject: Performance of the Streams 'Read

and 'Write
Newsgroups: comp.lang.ada
[…]
I got used to think that I/O was the last
spot where our preferred language was
condemned to slowness.
Now consider this. Variant 1 of a buffered
I/O:

type Buffer is array(Natural range <>)
 of Unsigned_8;
procedure Read(b: out Buffer) is
begin
 Buffer'Read(Stream(f_in), b);
exception
 when Ada.Streams.
 Stream_IO.End_Error => null;
 - - Nothing bad, just some garbage in
 - - the buffer after end of compressed
 - - code
 end Read;
 procedure Write(b: in Buffer) is
 begin
 Buffer'Write(Stream(f_out), b);
 end Write;

Bad luck, it is as slow as doing I/O's with
single bytes and Sequential_IO! But if it
is slow by receiving/sending a whole
buffer, how to make it faster? Now
someone (in a slightly different context)
came with this (call it variant 2):

procedure Read(b: out Buffer) is
 use Ada.Streams;
 First : constant
 Stream_Element_Offset :=
 Stream_Element_Offset(b'First);
 Last : Stream_Element_Offset:=
 Stream_Element_Offset(b'Last);
 SE_Buffer : Stream_Element_Array(
 First..Last);
 begin
 Read(Stream(f_in).all,
 SE_Buffer, Last);
 for i in First..Last loop
 b(Natural(i)):=
 Unsigned_8(SE_Buffer(i));
 end loop;
end Read;
procedure Write(b: in Buffer) is
 use Ada.Streams;
 First : constant
 Stream_Element_Offset:=
 Stream_Element_Offset(b'First);
 Last : constant
 Stream_Element_Offset:=
 Stream_Element_Offset(b'Last);
 SE_Buffer : Stream_Element_Array(
 First..Last);
 begin
 for i in SE_Buffer'Range loop
 SE_Buffer(i):=
 Stream_Element(b(Natural(i)));
 end loop;
 Write(Stream(f_out).all, SE_Buffer);
end Write;

Naively, you would say it is even slower:
you do even more by copying a buffer
into another one, right?
Indeed, not at all, it is *lots* faster (on
GNAT and ObjectAda)!
To give an idea, the variant 1 applied to a
bzip2 decompressor makes it 4x slower
than the C version, and variant 2 makes it
only 7% slower! With only I/O (like
copying a file) you would get an even
much larger difference.
Now, it raises some questions:
Is there maybe a reason in the RM why
the 'Read and 'Write have to be that slow?
Or are these two compilers lazy when
compiling these attributes ?
Should I bug AdaCore about that, then?
Do some other compilers do it better?
From: Georg Bauhaus
Date: Fri, 30 Oct 2009 04:36:27 +0100
Subject: Re: Performance of the Streams

'Read and 'Write
Newsgroups: comp.lang.ada
[…]
I finally thought that the above procedures
are faster than 'Read or 'Write because the
latter are defined in terms of stream
elements:
When there is a composite object like b :
Buffer and you 'Write it, then for each
component of b the corresponding 'Write
is called. This then writes stream
elements, probably calling
Stream_IO.Write or some such in the end.
So Write from above appears closer to
writing bulk loads of stream elements
than a bulk load of 'Writes can be.
Copying buffers does not matter in
comparison to the needs of I/O (on PCs).
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Fri, 30 Oct 2009 02:13:19 -0700 PDT
Subject: Re: Performance of the Streams

'Read and 'Write
Newsgroups: comp.lang.ada
[…]
Sure, it is the safe way: write records field
by field, arrays element by element (that
recursively). The compiler avoids
problems with non-packed data. Nothing
against that. The general case is well
done, fine. But the compiler could have a
look a the type left to the attribute and in
such a case (an array of Unsigned_8, or a
String) say: "Gee! that type Buffer is
coincidentally the same as
Stream_Element_Array, then I take the
shortcut to generate the code to write the
whole buffer and, this time, not the code
to write it element by element".
> Copying buffers does not matter in

comparison to the needs of I/O (on
PCs).

Right. Variant 2 works fine, but it is an
heavy workaround in terms of source
code. Especially for mixed type I/O with
plenty of String'Write and others, you
would not want to put the kind of Variant
2 code all over the place. It would be a lot
better that compilers are able to take
selectively the shortcut form for the
attributes.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Mon, 2 Nov 2009 15:37:48 -0600
Subject: Re: Performance of the Streams

'Read and 'Write
Newsgroups: comp.lang.ada
[…]
IMHO, Ada compilers should do that.
(There's specifically a permission to do
this optimization in Ada 2005:
13.13.2(56/2).) That's an intergral part of
the stream attribute implementation on
Janus/Ada. (Disclaimer: the entire stream
attribute implementation on Janus/Ada
doesn't work right, quite probably because
it is too complicated. So perhaps there is a

228 Ada in Context

Volume 30, Number 4, December 2009 Ada User Journal

reason that other Ada compilers don't do
that. :-) Note, however, that it is pretty
rare that you could actually do that (only
about 15% of the composite types I've
seen in Janus/Ada would qualify). So I'm
not surprised that implementers have left
that capability out in favor of things that
happen more often.
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Mon, 2 Nov 2009 14:16:30 -0800 PST
Subject: Re: Performance of the Streams

'Read and 'Write
Newsgroups: comp.lang.ada
> […] Note, however, that it is pretty rare

that you could actually do that (only
about 15% of the composite types I've
seen in Janus/Ada would qualify).

Sure - but imagine that these 15% might
transport 95% of the information. It could
happen, couldn't it?
And if type T qualifies, a record type R
with fields of types T,U,V (U and V not
qualifying) will be also transmitted faster,
an array of R will also go faster, and so
on…
> So I'm not surprised that implementers

have left that capability out in favor of
things that happen more often.

I am not surprised either…
From: Jeffrey R. Carter

<jrcarter@acm.org>
Date: Thu, 29 Oct 2009 17:39:39 -0700
Subject: Re: Performance of the Streams

'Read and 'Write
Newsgroups: comp.lang.ada

[…]
And if you overlay the
Stream_Element_Array onto the Buffer,
thus eliminating the copying and the
stream attribute operations?
From: Jeffrey R. Carter

<spam.jrcarter.not@spam.acm.org>
Subject: Re: Performance of the Streams

'Read and 'Write
Date: Fri, 30 Oct 2009 12:12:18 -0700
Newsgroups: comp.lang.ada
> With an Unchecked_conversion ?
No, that still does a copy.
Type Buffer, as a simple array of bytes,
should have Buffer'Component_Size =
Unsigned_8'Size by default; but you can
specify it if you're paranoid. If you're
really paranoid, you can add a test that
Unsigned_8'Size = Stream_Element'Size,
which you seem to be assuming. Then

procedure Put (B : in Buffer) is
 - - Terrible naming scheme.
 subtype Buffer_Stream is
 Stream_Element_Array (
 1 .. B'Length);
 S : Buffer_Stream;
 for S'Address use B'Address;
 pragma Import (Ada, S);
begin - - Put
 Write (S);
end Put;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 2 Nov 2009 15:32:51 -0600

Subject: Re: Performance of the Streams
'Read and 'Write

Newsgroups: comp.lang.ada
> No, that still does a copy.
It doesn't have to, there is a permission to
avoid copying in 13.9(12). So it depends
on what the compiler is able to do
optimization-wise.
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sun, 1 Nov 2009 13:38:44 -0800 PST
Newsgroups: comp.lang.ada
Subject: Re: Performance of the Streams

'Read and 'Write
> If you're really paranoid, you can add a

test that Unsigned_8'Size =
Stream_Element'Size, which you seem
to be assuming.

Yet a bit more paranoid: checking the size
of arrays!

 workaround_possible: Boolean;
 procedure Check_workaround is
 test_a: constant Byte_Buffer(1..10):=
 (others => 0);
 test_b: constant Ada.Streams.
 Stream_Element_Array(1..10):=
 (others=> 0);
 begin
 workaround_possible:=
 test_a'Size = test_b'Size;
 end Check_workaround;

It's the code I've put into Zip-Ada - big
success!

230 Conference Calendar

Volume 30, Number 4, December 2009 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2010

☺ January 20-22 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2010),

Madrid, Spain. Topics include: all aspects of programming languages and systems, with emphasis on
how principles underpin practice.

☺ January 19 4th ACM SIGPLAN Workshop on Programming Languages meets Program
Verification (PLPV'2010). Topics include: research at the intersection of programming
languages and program verification; attempts to reduce the burden of program
verification by taking advantage of particular semantic and/or structural properties of the
programming language; all aspects, both theoretical and practical, of the integration of
programming language and program verification technology.

January 25-27 5th International Conference on High Performance and Embedded Architectures and Compilers
(HiPEAC'2010), Pisa, Italy. Topics include: Compilation techniques for embedded processors;
Compilation and runtime support for multi- and many-core architectures; Tools and techniques for
simulation and performance analysis; Tools for analysis, design, testing and implementation of
embedded systems; etc.

☺ January 23 HiPEAC2010 - 2nd Workshop on GCC Research Opportunities (GROW'2010).
Topics include: current challenges in research and development of compiler analyses
and optimizations based on the free GNU Compiler Collection (GCC). Deadline for
early registration: January 6, 2010.

☺ Feb 03-04 2nd International Symposium on Engineering Secure Software and Systems (ESSoS'2010), Pisa,
Italy. Topics include: security architecture and design for software and systems, systematic support for
security best practices, programming paradigms for security, processes for the development of secure
software and systems, etc. Deadline for early registration: January 10, 2010.

February 15-18 4th International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'2010),
Krakow, Poland. Includes track on: Software Engineering for Distributed Systems.

☺ Feb 15 International Workshop on Multi-Core Computing Systems (MuCoCoS'2010).
Topics include: multi-core embedded systems; programming languages and models;
applications for multi-core systems; performance modeling and evaluation of multi-core
systems; design space exploration; tool-support for multi-core systems; compilers,
runtime and operating systems; etc.

February 17-19 18th Euromicro International Conference on Parallel, Distributed and network-based Processing
(PDP'2010), Pisa, Italy. Topics include: Parallel Computer Systems (embedded parallel and distributed
systems, fault-tolerance, multi/many core systems, ...); Models and Tools for Parallel Programming
Environments: Advanced Applications (numerical applications with multi-level parallelism, real time
distributed applications, distributed business applications, ...); Languages, Compilers and Runtime
Support Systems (parallel languages, object-oriented languages, dependability issues, scheduling, ...);
etc.

Conference Calendar 231

Ada User Journal Volume 30, Number 4, December 2009

March 09-11 16th French-speaking Conference on Object-Oriented Languages and Models (LMO'2010), Pau,
France.

March 09-12 23rd IEEE-CS Conference on Software Engineering Education and Training (CSEET'2010),
Pittsburgh, PA, USA. Theme: "Bridging the Gap between Academia and Industry in Software
Engineering Education and Training". Topics include: Curriculum and teaching materials, Software
engineering professionalism, Internship and projects for students and graduates, Case studies of
educational or training practices, Industry-academia collaboration models, etc.

☺ March 10-13 41st ACM Technical Symposium on Computer Science Education (SIGCSE'2010), Milwaukee,
Wisconsin, USA.

March 15-18 14th European Conference on Software Maintenance and Reengineering (CSMR'2010), Madrid,
Spain. Topics include: Experience reports and empirical studies on maintenance, reengineering, and
evolution; Description of education-related issues to evolution, maintenance and reengineering;
Mechanisms and techniques for reengineering systems as services; etc.

March 20-28 European Joint Conferences on Theory and Practice of Software (ETAPS'2010), Paphos, Cyprus.
Events include: FOSSACS, Foundations of Software Science and Computation Structures; FASE,
Fundamental Approaches to Software Engineering; ESOP, European Symposium on Programming; CC,
International Conference on Compiler Construction; TACAS, Tools and Algorithms for the
Construction and Analysis of Systems.

☺ March 21 Programming Language Approaches to Concurrency and communication-cEntric
Software (PLACES'2010). Topics include: the general area of foundations of
programming languages for concurrency, communication and distribution, such as
language design and implementations for communications and/or concurrency, program
analysis, multicore programming, concurrent data types, integration of sequential and
concurrent programming, etc. Deadline for submissions: January 15, 2010 (abstracts).

March 27 2nd Workshop on Generative Technologies (WGT'2010). Topics include: Generative
programming, metaprogramming; Analysis of language support for generative
programming; Case Studies and Demonstration Cases; etc.

March 27 7th International Workshop on Formal Engineering approaches to Software
Components and Architectures (FESCA'2010). Topics include: Software quality
attributes such as reliability, performance, or security; Interface compliance; Approaches
for correctness by construction; Static and dynamic analysis; Runtime management of
applications; etc.

March 27-28 10th Workshop on Language Descriptions, Tools and Applications (LDTA'2010).
Topics include: applications of and tools for meta programming in a broad sense, such
as Program analysis, transformation, generation and verification; Reverse engineering
and reengineering; Refactoring and other source-to-source transformations; Language
definition and language prototyping; Debugging, profiling and testing; etc.

March 27-28 8th Workshop on Quantitative Aspects of Programming Languages (QAPL'2010).
Topics include: probabilistic, timing and general quantitative aspects in Language
design, Multi-tasking systems, Language expressiveness, Verification, Time-critical
systems, Safety, Embedded systems, Program analysis, Risk and hazard analysis,
Scheduling theory, Distributed systems, Model-checking, Security, Concurrent systems,
etc.

March 22-26 25th ACM Symposium on Applied Computing (SAC'2010), Sierre and Lausanne, Switzerland.

☺ Mar 22-26 Track on Object-Oriented Programming Languages and Systems (OOPS'2010).
Topics include: Language design and implementation; Type systems, static analysis,
formal methods; Integration with other paradigms; Components and modularity;
Distributed, concurrent or parallel systems; Interoperability, versioning and software
adaptation; etc.

☺Mar 22-26 Track on Software Engineering (SE'2010). Topics include: technologies, theories, and
tools used for producing highly dependable software more effectively and efficiently;

232 Conference Calendar

Volume 30, Number 4, December 2009 Ada User Journal

such as Safety and Security; Dependability and Reliability; Fault Tolerance and
Availability; Architecture, Framework, and Design Patterns; Standards; Maintenance
and Reverse Engineering; Verification, Validation, and Analysis; Formal Methods and
Theories; Component-Based Development and Reuse; Empirical Studies, and Industrial
Best Practices; etc.

☺ Mar 22-26 Track on Real-Time Systems (RTS'2010). Topics include: all aspects of real-time
systems design, analysis, implementation, evaluation, and case-studies, including
scheduling and schedulability analysis; worst-case execution time analysis; modeling
and formal methods; validation techniques; reliability; compiler support; component-
based approaches; middleware and distribution technologies; programming languages
and operating systems; embedded systems; etc.

☺ Mar 22-26 Track on Programming Languages (PL'2010). Topics include: Compiling
Techniques, Formal Semantics and Syntax, Garbage Collection, Language Design and
Implementation, Languages for Modeling, Model-Driven Development and Model
Transformation, New Programming Language Ideas and Concepts, Practical
Experiences with Programming Languages, Program Analysis and Verification,
Programming Languages from All Paradigms, etc.

Mar 22-26 Track on Software Verification and Testing (SVT'2010). Topics include:
development of technologies to improve the usability of formal methods in software
engineering, tools and techniques for verification of large scale software systems, real
world applications and case studies applying software verification, static and run-time
analysis, correct by construction development, software certification and proof carrying
code, etc.

March 22-26 17th IEEE International Conference and Workshops on the Engineering of Computer Based
Systems (ECBS'2010), Oxford, UK. Topics include: Component-Based System Design; Design
Evolution; Distributed Systems Design; ECBS Infrastructure (Tools, Environments); Education &
Training; Embedded Real-Time Software Systems; Integration Engineering; Model-Based System
Development; Modelling and Analysis of Complex Systems; Open Systems; Reengineering & Reuse;
Reliability, Safety, Dependability, Security; Standards; Verification & Validation; etc. Deadline for
early registration: February 22, 2010.

March 24-26 15th IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2010), Oxford, UK. Topics include: Verification and validation, Reverse engineering and
refactoring, Design by contract, Safety-critical & fault-tolerant architectures, Real-time and embedded
systems, Tools and tool integration, Industrial case studies, etc.

April 06-09 3rd IEEE International Conference on Software Testing, Verification and Validation (ICST'2010),
Paris, France. Topics include: Verification & validation, Quality assurance, Empirical studies,
Inspections, Tools, Embedded software, Novel approaches to software reliability assessment, etc.

April 06-09 21st Australian Software Engineering Conference (ASWEC'2010), Auckland, New Zealand. Topics
include: Empirical Research in Software Engineering; Formal Methods; Legacy Systems and Software
Maintenance; Measurement, Metrics, Experimentation; Object and Component-Based Software
Engineering; Open Source Software Development; Quality Assurance; Real-Time and Embedded
Software; Software Design and Patterns; Software Engineering Education; Software Re-use and Product
Development; Software Risk Management; Software Security, Safety and Reliability; Software
Verification and Validation; Software Vulnerabilities; Standards and Legal Issues; Testing, Analysis and
Verification; etc.

April 13-15 2nd NASA Formal Methods Symposium (NFM'2010), Washington, D.C., USA. Topics include:
Formal verification, including theorem proving, model checking, and static analysis; Model-based
development; Techniques and algorithms for scaling formal methods, such as parallel and distributed
techniques; Empirical evaluations of formal methods techniques for safety-critical systems; etc.
Deadline for submissions: January 8, 2010 (abstracts), January 15, 2010 (papers).

☺ April 13-16 5th European Conference on Computer Systems (EuroSys'2010), Paris, France. Topics include:
various issues of systems software research and development, such as systems aspects of Dependable

Conference Calendar 233

Ada User Journal Volume 30, Number 4, December 2009

computing, Distributed computing, Parallel and concurrent computing, Programming-language support,
Real-time and embedded computing, Security, etc.

April 13-16 ACM-BCS Visions of Computer Science conference (Visions'2010), Edinburgh, UK. Topics include:
Programming Methods and Languages; Software Engineering, and System Design Tools; Distributed
and Pervasive Systems; Robotics; Medical Applications; etc.

April 15-16 2nd International Workshop on Software Engineering for Resilient Systems (SERENE'2010),
London, UK. Topics include: methods and tools that ensure resilience to faults, errors and malicious
attacks; Requirements, software engineering & re-engineering for resilience; Verification and validation
of resilient systems; Error, fault and exception handling in the software life-cycle; Frameworks, patterns
and software architectures for resilience; etc.

☺ April 19-23 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2010), Atlanta,
Georgia, USA. Topics include: Parallel and distributed algorithms; Applications of parallel and
distributed computing; Parallel and distributed software, including parallel and multicore programming
languages and compilers, runtime systems, middleware, libraries, parallel programming paradigms,
programming environments and tools, etc.

☺ April 19 15th International Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS'2010). Topics include: all areas of parallel
applications, language design, compilers, run-time systems, and programming tools;
such as New programming languages and constructs for exploiting parallelism and
locality; Experience with and improvements for existing parallel languages and run-time
environments; Parallel compilers, programming tools, and environments; Programming
environments for heterogeneous multicore systems; etc.

April 26-29 22nd Annual Systems and Software Technology Conference (SSTC'2010), Salt Lake City, Utah, USA.

☺ April 27 EDCC2010 - Workshop on Critical Automotive applications: Robustness and Safety (CARS'2010),
Valencia, Spain. Topics include: design, implementation and operation of critical automotive
applications and systems, with particular emphasis on dependability issues, software engineering for
robustness, security and safety issues, real-time embedded systems technologies, architectural solutions
and development processes for dependable automotive embedded systems. Deadline for submissions:
January 20, 2010.

☺ May 02-08 32nd International Conference on Software Engineering (ICSE'2010), Cape Town, South Africa.
Topics include: Engineering of distributed/parallel software systems; Engineering of embedded and
real-time software; Engineering secure software; Patterns and frameworks; Programming languages;
Reverse engineering and maintenance; Software architecture and design; Software components and
reuse; Software dependability, safety and reliability; Software economics and metrics; Software tools
and development environments; Theory and formal methods; etc.

May 31 – June 02 10th International Conference on Computational Science (ICCS'2010), Amsterdam, The Netherlands.
Topics include: recent developments in methods and modelling of complex systems for diverse areas of
science, advanced software tools, etc. Deadline for submissions: January 1, 2010 (full papers). Deadline
for early registration: March 31, 2010.

May 31 3rd International Workshop on Software Engineering for Computational Science
and Engineering (SECSE'2010). Topics include: Lessons learned from the
development of CSE applications; The use of empirical studies to better understand the
environment, tools, languages, and processes used in CSE application development and
how they might be improved; etc. Deadline for submissions: January 19, 2010 (papers).

May 31 7th International Workshop on Practical Aspects of High-level Parallel
Programming (PAPP'2010). Topics include: high-level parallel language design,
implementation and optimisation; modular, object-oriented, functional, logic, constraint
programming for parallel, distributed and grid computing systems; industrial uses of a
high-level parallel language; etc. Deadline for submissions: January 11, 2010 (full
papers).

May 31 – June 02 10th Annual International Conference on New Technologies of Distributed Systems
(NOTERE'2010), Tozeur, Tunisia. Topics include: Domain Specific languages for distributed systems;

234 Conference Calendar

Volume 30, Number 4, December 2009 Ada User Journal

Reliability and scalability of distributed systems; Modeling, Formal and Semi-formal methods, and tools
for distributed systems; Software and middleware for embedded distributed systems and their
applications; etc. Deadline for submissions: January 20, 2010 (research papers).

☺ June 01-04 DAta Systems In Aerospace (DASIA'2010), Budapest, Hungary.

June 14-15 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar'2010), Berkeley, CA, USA. Topics
include: the broad impact of multicore computing in all fields, including application design, languages
and compilers, systems, and architecture. Deadline for position paper submissions: January 24, 2010.

♦ June 14-18 15th International Conference on Reliable Software Technologies - Ada-
Europe'2010, Valencia, Spain. Sponsored by Ada-Europe, in cooperation with ACM
SIGAda. Deadline for submissions: January 11, 2010 (industrial presentations).

June 16-18 Code Generation 2010, Cambridge, UK. Topics include: Model-driven software development, Tool
and technology development and adoption, Code Generation and Model Transformation tools and
approaches, Defining and implementing modelling languages, Language evolution and modularization,
Case studies, etc. Deadline for submissions: January 15, 2010.

☺ June 21-23 Automotive - Safety & Security 2010, Stuttgart, Germany. Organized by Gesellschaft für Informatik
mit den Fachgruppen Ada, etc, and Ada-Deutschland. Topics include (in German): Zuverlässigkeit und
Sicherheit für fahrbetriebs-kritische Software und IT-Systeme; Evaluation und Zertifizierung von
Sicherheitseigenschaften automobiler Firmware/Software; Multi-Core-Architekturen; Zuverlässige
Echtzeit-Betriebssysteme; Fortschritte bei Normen und Standardisierungen; etc. Deadline for
submissions: January 14, 2010 (full papers).

June 21-23 AMAST2010 - 10th International Conference on Mathematics of Program Construction
(MPC'2010), Québec City, Canada. Topics of interest range from algorithmics to support for program
construction in programming languages and systems, such as type systems, program analysis and
transformation, programming-language semantics, security, etc.

☺ June 21-25 24th European Conference on Object Oriented Programming (ECOOP'2010), Maribor, Slovenia.
Topics include: research results or experience in all areas relevant to object technology, including work
that takes inspiration from, or builds connections to, areas not commonly considered object-oriented;
such as: Analysis, design methods and design patterns; Concurrent, real-time or parallel systems;
Distributed systems; Language design and implementation; Programming environments and tools; Type
systems, formal methods; Compatibility, software evolution; Components, modularity; etc.

June 21-25 10th International Conference on Application of Concurrency to System Design (ACSD'2010),
Braga, Portugal. Topics include: (Industrial) case studies of general interest, gaming applications,
consumer electronics and multimedia, automotive systems, (bio-)medical applications, internet and grid
computing, ...; Synthesis and control of concurrent systems, (compositional) modelling and design,
(modular) synthesis and analysis, distributed simulation and implementation, ...; etc. Deadline for
submissions: January 10, 2010 (papers).

June 26-30 15th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2010), Ankara, Turkey.

☺ Jun 28 – Jul 02 48th International Conference Objects, Models, Components, Patterns (TOOLS Europe'2010),
Málaga, Spain. Topics include: Object technology, including programming techniques, languages, tools;
Distributed and concurrent object systems; Real-time object-oriented programming and design;
Experience reports, including efforts at standardisation; Applications to safety- and security-related
software; Trusted and reliable components; Domain specific languages and language design; Language
implementation techniques, compilers, run-time systems; Practical applications of program verification
and analysis; etc. Deadline for submissions: January 22, 2010 (papers).

July 05-12 37th International Colloquium on Automata, Languages and Programming (ICALP'2010),
Bordeaux, France.

July 12-14 2010 International Conference on Software Engineering Theory and Practice (SETP'2010),
Orlando, Florida, USA. Topics include: Software development, maintenance, and other areas of
software engineering and related topics.

Conference Calendar 235

Ada User Journal Volume 30, Number 4, December 2009

July 15-19 22nd International Conference on Computer Aided Verification (CAV'2010), Edinburgh, UK. Topics
include: Algorithms and tools for verifying models and implementations, Program analysis and software
verification, Applications and case studies, Verification in industrial practice, etc. Deadline for
submissions: January 11, 2010 (abstracts), January 15, 2010 (papers).

July 22-24 5th International Conference on Software and Data Technologies (ICSOFT'2010), Athens, Greece.
Topics include: Software Engineering, Programming Languages, Distributed and Parallel Systems, etc.
Deadline for submissions: February 1, 2010 (regular papers).

July 25-28 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2010), Zurich, Switzerland. Topics include: multiprocessor and multi-core architectures and
algorithms; synchronization protocols, concurrent programming; fault-tolerance, reliability, availability;
middleware platforms; distributed data management; security in distributed computing; specification,
semantics, verification, and testing of distributed systems; etc. Deadline for submissions: February 10,
2010 (abstracts), February 17, 2010 (papers), April 27, 2010 (brief announcements).

☺Aug 31 – Sep 03 16th International European Conference on Parallel and Distributed Computing (Euro-Par'2010),
Ischia, Italy. Topics include: all aspects of parallel and distributed computing, such as Support tools and
environments, Scheduling, High performance compilers, Distributed systems and algorithms, Parallel
and distributed programming, Multicore and manycore programming, Theory and algorithms for
parallel computation, etc. Deadline for submissions: January 31, 2010 (abstracts), February 7, 2010 (full
papers), March 1, 2010 (workshops).

☺ Sep 13-16 39th International Conference on Parallel Processing (ICPP'2010), San Diego, California, USA.
Topics include: compilers and languages, etc. Deadline for submissions: February 24, 2010.

September 20-22 15th European Symposium on Research in Computer Security (ESORICS'2010), Vouliagmeni,
Athens, Greece. Topics include: Accountability, Information Flow Control, Formal Security Methods,
Language-based Security, Security Verification, etc. Deadline for submissions: April 1, 2010.

♦Oct 24-28 ACM SIGAda Annual International Conference on Ada and Related
Technologies (SIGAda'2010), Fairfax, Virginia (Washington DC Area), USA.
Sponsored by ACM SIGAda, in cooperation with SIGBED, SIGCAS, SIGCSE, SIGPLAN,
Ada-Europe, and the Ada Resource Association. Deadline for submissions: June 30,
2010 (technical articles, extended abstracts, experience reports, panel sessions,
industrial presentations, workshops, tutorials).

November 08-12 13th Brazilian Symposium on Formal Methods (SBMF'2010), Natal, Rio Grande do Norte, Brazil.
Topics include: Formal aspects of popular languages and methodologies; Logics and semantics of
programming and specification languages; Type systems in computer science; Formal methods
integration; Code generation; Formal design methods; Abstraction, modularization and refinement
techniques; Techniques for correctness by construction; Formal methods and models for real-time,
hybrid and critical systems; Models of concurrency, security and mobility; Theorem proving; Static
analysis; Software certification; Teaching of, for and with formal methods; Experience reports on the
use of formal methods; Industrial case studies; Tools supporting the formal development of
computational systems; Development methodologies with formal foundations; etc. Deadline for
submissions: June 10, 2010 (papers).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

236 Forthcoming Events

Volume 30, Number 4, December 2009 Ada User Journal

15th International Conference on

RELIABLE SOFTWARE TECHNOLOGIES
ADA-EUROPE 2010

VALENCIA, SPAIN, 14-18 JUNE

In cooperation with

ACM SIGAda

http://www.ada-europe.org/conference2010

ADVANCE INFORMATION
The 15th International Conference on Reliable Software Technologies – Ada-Europe 2010 will take place in
Valencia, Spain, on 14-18 June 2010. The conference has established itself as an international forum for provid-
ers, practitioners and researchers into reliable software technologies. Following tradition, the conference will span
a full week, with a three-day technical program at its centre from Tuesday to Thursday accompanied by vendor
exhibitions, and a string of parallel tutorials on Monday and Friday.

ABOUT THE VENUE
Valencia, situated on the Mediterranean coast of eastern Spain, is the capital city of the autonomous region
Comunidad Valenciana. It has a population of around 800,000 inhabitants. Not many cities are capable of so
harmoniously combining a fine array of sights from the distant past with innovative constructions now being
erected. Valencia, founded in 138 BC, is one of these fortunate few. From the remains of the Roman forum
located in today's Plaza de la Virgen to the emblematic City of Arts and Sciences, this town has transformed its
physiognomy over the years while preserving its monuments from the past.

Sightseeing around the city begins in the old quarter, where the conference venue is located. Still standing as
proof of the old defending wall are the graceful Torres de Serranos, the spacious Torres de Quart and some
remains of the apron wall in the basement of the Valencia institute of Modern Arts. The Gothic building of La
Lonja was declared heritage of humanity by UNESCO. It features a beautiful columned room where the old tables
on which trading transactions were finalized are still in use today. On the old riverbed of the river Turia lie the
nursery gardens, along with the Fine Arts Museum and the modern part of the city. Life in the city spreads down
to the seafront with the harbor and the beaches of Las Arenas and La Malvarrosa.

Forthcoming Events 237

Ada User Journal Volume 30, Number 4, December 2009

INVITED SPEAKERS
Three eminent keynote speakers have been selected to open each day of the core conference program:
� Pedro Albertos (Universidad Politécnica de Valencia, Spain), a worldwide expert in Automatic Control, will

explore the relationship between implementation and performance of control algorithms in a talk entitled
Control Co-Design: Algorithms and their Implementation.

� Theodore Baker (Florida State University, USA), a leading researcher in Ada and Real-Time systems, will
examine the state of the art in multiprocessor real-time scheduling in his talk What to Make of Multicore
Processors.

� James Sutton (Lockheed Martin, USA), a worldwide expert in programming technologies, will explore how
Ada is prepared for the so-called 3.0 World, a world that makes peace with complexity and chaos, and learns
to use them to its advantage. That will be in his talk entitled Ada: Made for the 3.0 World.

TUTORIALS
Attendees will have a varied choice of half- and full-day tutorials that will be offered on Monday and Friday
before and after the central days of the conference. Tutorials consist of monographic courses, given by recognized
experts in their respective fields, which deal with up to date technologies for the development of reliable software.

SOCIAL PROGRAM
The social program will schedule two events: a welcome reception on Tuesday in the city center and a banquet
dinner on Wednesday in a typical Masía —an old country house— at a very short distance from the city.

FURTHER INFORMATION
The conference web site at http://www.ada-europe.org/conference2010.html will be giving full and up to date
details of the program and the venue, including travel advice, maps and a list of hotels close by. For Exhibiting
and Sponsoring details please contact the Exhibition Chair, Ahlan Marriott, by email at Ada@white-elephant.ch.
A sliding scale of sponsorship provides a range of benefits. All levels include display of your logo on the
conference web site and in the program. The lowest level of support is very affordable.

238 Forthcoming Events

Volume 30, Number 4, December 2009 Ada User Journal

Call for Technical Contributions – SIGAda 2010

ACM Annual International Conference
on Ada and Related Technologies:

Engineering Safe, Secure, and Reliable Software
 Fairfax, Virginia (Washington DC Area), USA

October 24-28, 2010
Submission Deadline: June 25, 2010

Sponsored by ACM SIGAda
http://www.acm.org/sigada/conf/sigada2010

SUMMARY: Reliability, safety, and security are among the most critical requirements of contemporary
software. The application of software engineering methods, tools, and languages all interrelate to affect how and
whether these requirements are met.
Such software is in operation in many application domains. Much has been accomplished in recent years, but
much remains to be done. Our tools, methods, and languages must be continually refined; our management
process must remain focused on the importance of reliability, safety, and security; our educational institutions
must fully integrate these concerns into their curricula.
The conference will gather industrial and government experts, educators, software engineers, and researchers
interested in developing, analyzing, and certifying reliable, safe, long-lived, secure software. We are soliciting
technical papers and experience reports with a focus on, or comparison with, Ada.
We are especially interested in experience in integrating these concepts into the instructional process at all levels.

POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:

• Challenges for developing reliable, safe, long-lived,
secure software

• Transitioning to Ada 2005
• Ada and SPARK in the classroom and student

laboratory
• Language selection for highly reliable systems
• Mixed-language development
• Use of high reliability subsets or profiles such as

MISRA C, Ravenscar, SPARK
• High-reliability standards and their conformance to

DO-178B and preparing for DO-178C
• Software process and quality metrics
• System of Systems
• Real-time networking/quality of service guarantees
• Real-Time Parallel Processing

• Analysis, testing, and validation
• Use of ASIS for new Ada tool development
• High-reliability development experience reports
• Static and dynamic analysis of code
• Integrating COTS software components
• System Architecture & Design
• Information Assurance
• Ada products certified against Common Criteria /

Common Evaluation Methodology
• Distributed systems
• Fault tolerance and recovery
• Performance analysis
• Implementing Service Oriented Architecture
• Embedded Hard Real-Time Systems

KINDS OF TECHNICAL CONTRIBUTIONS:
TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically
10-20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings
and in ACM Ada Letters. The Proceedings will be entered into the widely-consulted ACM Digital Library
accessible online to university campuses, ACM's 80,000 members, and the software community.
EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature.
If your abstract is accepted, you will be expected to produce a full paper, which will appear in the proceedings.
Extended abstracts will be double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its
relationship with previous work by you and others (with bibliographic references), results to date, and future
directions.

Forthcoming Events 239

Ada User Journal Volume 30, Number 4, December 2009

EXPERIENCE REPORTS present timely results on the application of Ada and related technologies. Submit a
1-2 page description of the project and the key points of interest of project experiences. Descriptions will be
published in the final program or proceedings, but a paper will not be required.
PANEL SESSIONS gather a group of experts on a particular topic who present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.
INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation to the Industrial Committee Chair by August 1st 2010. The
authors of selected presentations shall prepare a final short abstract and submit it to the Committee Chair by
October 1sth, 2010, aiming at a 20-minute talk. The authors of accepted presentations will be invited to submit
corresponding articles for publication in the ACM Ada Letters.
WORKSHOPS are focused work sessions, which provide a forum for knowledgeable professionals to explore
issues, exchange views, and perhaps produce a report on a particular subject. A list of planned workshops and
requirements for participation will be published in the Advance Program. Workshop proposals, up to 5 pages in
length, will be selected by the Program Committee based on their applicability to the conference and potential for
attracting participants.
TUTORIALS offer the flexibility to address a broad spectrum of topics relevant to Ada, and those enabling
technologies which make the engineering of Ada applications more effective. Submissions will be evaluated
based on relevance, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial proposals
should include the expected level of experience of participants, an abstract or outline, the qualifications of the
instructor(s), and the length of the tutorial (half-day or full-day). Tutorial presenters receive complimentary
registration to the other tutorials and the conference.

HOW TO SUBMIT: Send contributions by June 25, 2010, in Word, PDF, or text format as follows:

Technical Articles, Extended Abstracts, Experience Reports, and Panel Session Proposals to: Program Chair,
Lt. Col. Jeff Boleng (Jeff.Boleng@usafa.edu)

Tutorial Proposals to: Tutorials Chair, Dr. Robert Pettit (RPettit@gmu.edu)

Industrial Presentations Proposals to: Industrial Committee Chair, Prof. Liz Adams (adamses@cs.jmu.edu)

FURTHER INFORMATION:
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (mfeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Greg Gicca (Gicca@AdaCore.com) and Kristen Ferretti
(kef@ocsystems.com) for information about becoming a sponsor and/or exhibitor at SIGAda 2010.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be
particularly aware and careful about visa requirements, and should plan travel well in advance. Visit the
conference website for detailed information pertaining to visas.

ANY QUESTIONS?:
Please submit your questions to Conference Chair Alok Srivastava (alok.srivastava@auatac.com) or Local
Arrangements Co-Chairs Avtar Dhaliwal (avtar_dhaliwal@gencosystems.com) and Florence Gubanc
(fgg@ocsystems.com).

 241

Ada User Journal Volume 30, Number 4, December 2009

Book review: Ada for Software Engineers, by
Mordechai Ben-Ari
Tullio Vardanega
University of Padua, Department of Pure and Applied Mathematics, via Trieste 63, 35121 Padua, Italy; email:
tullio.vardanega@math.unipd.it

1 Introduction
There is some irony in me writing a review for this book.
Twofold irony, in fact. On the one hand, when I first eyed
Mordechai Ben-Ari’s book, fresh off the press, on one of
the exhibitor’s stalls at the Ada-Europe 2009 Conference in
Brest, France, I said to myself: “I must read this book, for
it’s got all the right keywords in the title and I also trust the
author”. I did not grab the book then, for I wanted to play
fair to the other conference attendees, and let them have
their complimentary copy first. So I kept the resolve in the
back of my mind and, as it often happens, daily routine
made me stay very far from returning to it. On the other
hand, I can now see that the favourable gaze I gave to the
book was caused by me mistaking its purpose altogether. In
fact I never thought myself much attracted to programming
books, and thus I assumed Ben-Ari’s book discussed how
software engineering principles can be served by Ada,
which was much better placed in the land of my favourites.
Well, I was wrong in many ways, and I can now see it fully
after reading Ben-Ari’s book end to end. I must therefore
offer my gratitude to the editor of the Ada User Journal –
you don’t know how relieved I am not to be talking to
myself here anymore ☺ – for asking me to do this review.
And here I am, writing the review for a book I much liked
and thoroughly enjoyed, and that I badly wanted to read,
just because I ignored or mistook its true subject.

Enough with reminiscence now, and on to the job.

You may have happened to hear or listen or possibly even
take part in debates over what programming language
should be taught in Universities and which should be taught
first. For some reason, even before becoming an educator
myself, I thought that University education should always
put concepts, paradigms and methodologies in the
foreground, and place technology-specific discourse in the
background. I was lucky and grateful that my own
University education was precisely in that line. Of course I
understand that the industry dominant view of education
leans more toward acquiring technical skills than on
mastering the fundamentals, on the (short-sighted)
assumption that the hard measure of productivity is the
number of lines of code written per unit of time. The net
result of skipping over the basics to jump onto specific
high-level programming paradigms however is not
especially encouraging and some fear – with good reason, I
am afraid – that great damage is done to software
engineering education by that course of action. However, as

for myself, I never wanted to join the fight for my favourite
language to be taught first. Actually, I always argued, to
employers and students alike, for the higher efficiency of
starting from solid foundations before taking on a new
programming language, than just developing language
fluency on thin footing. The response I got then and often
continue to get now is that industry cannot train their
recruits to the programming language of choice, for this is
the job of educators. Well, this is sad, isn’t it. However, I
know of industry who thinks exactly the converse and thus
can console myself a little from the grief.

2 In the way of a review
The reader should not misunderstand me and think that I
am going astray. No, I am not. But then, why I am
discussing this? Because Ben-Ari’s book matches my
thinking in the regard of programming language education
so very well, this of course be said without losing sense of
proportion. If you asked me when I would place the
teaching of Ada in a software engineering curriculum, I
would then tell you that I would fit it no earlier than in the
third or fourth year. I would consider basic knowledge of
computer science and computer systems prerequisite, along
with two to three years of programming experience. Only
then, I think, learning Ada can be the aim instead of the
means to a different end, like teaching programming
principles. And guess what? I found these considerations
almost verbatim under the “intended audience” paragraph
at the start of Ben-Ari’s book. So I said to myself, well, this
must be my book and continued on reading light-heartedly.

I am now in my seventh year of lecturing in a computer
science curriculum after my inception in the University
profession. I have never taught a programming language
class and never offered myself to teach one (you can guess
what language it would be if I should). I only insisted that
the programming language education of the curriculum had
an escalating slant, so that more advanced paradigms, like
object orientation, concurrency, distribution, systems
programming and real-time, could be planted on a firmer
basis. I am lucky that the current curriculum matches my
wishes close enough. So I can occasionally refer to Ada in
my software engineering class in the third year, with hope
of making an impact, and then extensively use Ada in my
class on concurrency and distribution in the fourth year,
asking the students to learn the spans of Ada they need for
my assignments, by contrasting it to the languages they
were taught before.

242 Book review: Ada for Software Engineers

Volume 30, Number 4, December 2009 Ada User Journal

Experience proves that this teaching strategy suits best the
students who have grown fit for intellectual challenges –
and some actually do – but causes headaches to those who
view the world as the more popular languages depict it.
Think of how students learn Java or C++, or even C#. They
hardly ever read manuals, so probably then don’t actually
“learn”, but rather memorize. Instead, or in fact, they go by
examples and devour tutorials that help them construct
working applications. Now, the world of Ada is so distant
from this style that naïve students get frustrated. Ada’s
genotype is abhorrent of the hype and most of the Ada key
figures are so busy doing important things (and this is
literally true, really) that they don’t have time to kill in
developing basic tutorial-like materials for the uninitiated.
So one is left to wonder where students can be referred to
for filling in their Ada education gaps. Of course there are
some valid sources around, but they look sparse to my eyes,
or too Ada-centric. And being Ada-centric is not especially
apt to win those who go to Ada by command – and feel
going upstream there – and not by choice. So I would need
something else, which I had not found yet.

Based on this experience, if I were to single out the
characteristics that I deem vital for an effective Ada
education, I would enumerate three:

• Explaining why things are the way they are in Ada, in
terms of the language reference manual. This teaches
students that programming languages should obey
standard behaviour and that syntax serve to convey
semantic information in manners that fit language
design.

• Contrasting the Ada way of things to other, more
popular languages that one may safely assume the

students already know. This helps students understand
differences and value them for offering a different look
to the same problems.

• Constructing case-study examples by using successive
increments of language features. This helps students
feel like having tutorial material, yet without the no-
effort hype element of it.

I was amazed when I read Ben-Ari’s own presentation of
the structure of the book. What I read there and later found
in the actual contents of the book – which proves that the
author was true to his words – was the closest match to my
requirements I could ever imagine.

I said I am not a fan of language textbooks – though I have
always found John Barnes’s books on Ada most preciously
informative and beautifully written. However I think I have
now found one that I can refer my students to with full
empathy and trust that they can follow the trail that I would
like them to tread when figuring how to think in Ada,
hopefully before writing code.

At the time of writing, I have just finished my yearly class
on concurrent and distributed systems, and given out the
usual tough assignment. I know that students will feel
compelled – no, not obliged, I hope – to try and use Ada to
solve the problems I have posed them. I can predict that
some will come back to me asking for guidance on how to
do this and that in Ada and wondering why they can’t do it
the way Java does or C++. I now know that I will point
them to Ben-Ari’s book for a response. Perhaps in some
time I may ask the Ada User Journal editor permission to
report on how the book fared in the students’ experience.

 243

Ada User Journal Volume 30, Number 4, December 2009

Experiences in Evaluating Ada with a Pilot Project
Maciej Sobczak
CERN, CH-1211 Geneve 23, Switzerland; email: Maciej.Sobczak@cern.ch

Abstract
This article describes author’s experiences in
evaluating and introducing Ada as a complementary
programming language in a non-Ada environment in
the context of large-scale distributed control system.
The article presents the problem, motivations and a
rather bitter outcome of the exercise.

1 Introduction
The European Organization for Nuclear Research (CERN)
has managed to gain headlines during the last year thanks
to its flagship project – LHC, the Large Hadron Collider.
This project is described as the largest machine ever build
on the planet and indeed many of its construction
parameters are defining new limits in many engineering
disciplines. From the perspective of the software
community, the computing facilities at CERN are of
particular interest and the control system that drives the
whole machine is certainly interesting to those that deal
with control, embedded, distributed and real-time systems.

The accelerator control system at CERN can be
characterized by massive distribution with around 60_000
logical devices spread among almost 2_000 real-time
servers (so-called front-ends) and accessed by tens of
operator applications that are used for configuration of
settings and monitoring of those devices. A logical device
might represent a physical measurement, an actuator or a
virtual data source that concentrates, filters or pre-computes
the values from other sources – in all these cases logical
devices are defined in a uniform and location-transparent
name space with a single and unified method to follow
from device name to actual implementation server. This
makes the directory and name services crucial
infrastructure components of the whole system.

Till the end of last year, the typical sequence of actions for
any client application that wanted to access a given logical
device was the following:

- Query the directory server for the device name – the
directory server replied with the front-end server name
that is exposing data and settings for the given device
(many devices can be handled by a single server). The
directory server uses the device dictionary from the
main configuration database.

- Query the CORBA name server for the front-end
server name – the name server replied with the IOR
location of the server’s main object. The name server
used the IOR information that is automatically
provided by each front-end server when it is started.

- Having the object reference, access the actual front-
end server with the details of the requested operation
and the logical device name.

In other words, the communication infrastructure relied
heavily on the availability of two separate components (the
device directory and the CORBA name server), both of
which were implemented in Java and generated regular
reliability and maintenance issues, both of them were also
working as single instances – obviously a very weak point
in the whole control system. In this context the decision
was taken to provide a better directory and name lookup
solution, which would guarantee the logical continuation of
the service, but with higher reliability and potential
performance improvements.

An important property of this project was that it was not
bound to any existing technology or communication
protocol and that it was under the responsibility of a single
team. Such circumstances seemed to be a good opportunity
to select the appropriate technology without any imposed
constraints – and this is when the idea of using it as a pilot
project for trying out and evaluating Ada was born.

2 Show that it is easy
The pilot project was meant to evaluate Ada as a
prospective candidate for other future projects and as such
it had to show that the new technology could be
accommodated with as little investment as possible – with
all possible meanings of “investment”, since every single
cost of introducing it could be a potential argument against
it. There were two major aspects that had to be addressed:
the cost of acquiring and installing the necessary
development tools and the cost of developers’ training.

The choice of development tools was pretty obvious in the
context of Linux as the standard software environment for
all infrastructure-related installations – GNAT is a standard
package in the Scientific Linux CERN, which is based on
RedHat. The only potential problem was that the necessary
certification and acceptance process for the whole
operating system lags behind the recent developments and
the only version of GNAT that was available on this system
was 3.4.6, which is known to be less than perfect.
Fortunately, it was not a problem in the context of this
project.

The choice of GNAT and its inherent ability to link with
the existing native libraries was also very important in the
context of the database access. The SOCI-Ada library was
used to handle that part of the project, and this was a
natural extension of the existing use of the SOCI library in
other applications that were implemented in C++. Thanks

244 Experiences in Evaluat ing Ada with a Pi lot Project

Volume 30, Number 4, December 2009 Ada User Journal

to this there was no need to introduce any new database
access method – obviously an important point in solving
database access issues.

The potential cost of team training can be minimized with
careful selection of the language elements that were used in
the project – unrestricted use of advanced language features
would make it more difficult for others to understand the
code. Interestingly, the main recommendations of the
Ravenscar profile, even though intended for specialized
needs, seemed to provide a perfect way to simplify the
language subset for this project. Static set of tasks that
communicate only via protected objects was a proper
model that was easy to comprehend without the necessity
to learn the complete language. Similarly, the data
structures used in the project were mainly statically
constrained arrays and there was no need to complicate the
code with dynamic memory management.

The choice of development tools, using the existing
database access method and the discipline in keeping the
code simple were important arguments to show that the use
of new technology in this project was not a revolution and
could be attempted with little cost.

3 Designing the new system
As already explained in the Introduction, the previous
directory/name service was based on two separate
components, one of them being a standard CORBA service.
Such a setup forced the client applications to physically use
separate network interactions for something that
conceptually was a single logical service – resolving just a
device name or just a front-end server name was not a
major use-case and it was perceived as a lost opportunity to
optimize the client-server interaction. Another optimization
strategy that was unnecessarily difficult with this two-
server setup was the concept of array queries, where a
client application is interested in interaction with many
logical devices (there are several cases with collective
display applications that access up to one thousand logical
devices at a time). Allowing such an application to
completely resolve thousand device names in a single query
instead of interacting with two separate services for each
device name separately could dramatically improve the
start-up time of such programs. Another important problem
with the two-server setup was the inconsistent approach to
data storage – the directory server used a relational
database whereas the CORBA name server used a big local
file in proprietary format – this inconsistency limited the
maintenance and monitoring options.

A natural way to solve these problems was to merge the
two services into a single one providing both device and
server name resolutions in a single interaction.

The CORBA protocol was abandoned and a trivial text-
based protocol was used instead. This move was criticized
as unnecessary and a very important argument against it
was related to the fact that all other components in the
system would need to be modified in order to understand
the new protocol, but on the other hand CORBA was
previously responsible for another maintenance nightmare

related to the huge number of established connections that
were kept alive without any purpose – a rather cumbersome
property of the CORBA approach. Since the directory
interactions are usually related to the initialization phase of
any given component in the system, it was reasonable to
close the connection on both sides just after the interaction.
This resulted in the reduced number of active network
connections from thousands to just a few that are currently
active – a move that was very much appreciated by the
network administrators.

Two important design decisions were directly related to the
reliability of the new service:

- Introduction of the redundancy of installation – up to
the database server. In other words, two instances of
the directory server running on separate machines
should be able to provide continuous service even with
possible downtime of any single instance. The notion
of redundancy was also introduced at the user side,
where front-end servers were supposed to bind their
locations at both directory instances (at least one
completed interaction is required to consider the bind
operation to be successful) and client applications
randomly picked one of the two instances to execute
their queries with potential failover to the other one.
Even though the introduction of redundancy was
motivated by the reliability concerns, it was actually
useful mainly to allow comfortable rollout of
improvements without interruption of the service.
Obviously, an important aspect of the redundancy is
the data synchronization – this was achieved with a
single shared database. In other words, each directory
instance writes new data to the database and
periodically reads the whole set back, which ensures
that sooner or later the information propagates from
one instance to another. In any case, the propagation of
information is of concern only when the new server
location was bound to one of the instances while the
other one was not active.

- Treating the database as a non-critical component – in
other words, allowing the database to be unavailable
for some period of time without affecting the ability of
the directory server to provide its services. This
decision was very important due to the fact that the
central database server undergoes routine upgrades and
patching several times per year and this should not
have any impact on the critical infrastructure services.
Since the database is used not only as a long-term
storage but also as a data propagation channel between
all directory instances, the server needs to be able to
temporarily store the new information in the local file
until the database is available again. It is worth to note
that the local file store might potentially become a
source of data inconsistency if one of the servers is
temporarily unavailable at the same time when the
database itself is unreachable, which would prevent the
servers to exchange new data properly – in addition, in
the same scenario the local store of the other server
would become the only place where the new

M. Sobczak 245

Ada User Journal Volume 30, Number 4, December 2009

information is stored. The probability and risks
associated with this scenario were judged as acceptable
and indeed the operational experience confirmed that
further reliability improvements were not necessary.

The whole service is a natural place for the use of
multitasking – a classical architecture for network servers
was chosen with the following specialized tasks:

- Single acceptor task that waits for new incoming
connections from clients and that hands them over to
the worker tasks.

- Several worker tasks that wait for the availability of
the “work item” and processing it in a loop. The
number of tasks was set to 5 as a rough estimation of
the needs – according to the log files, these 5 tasks
were always able to handle the whole traffic in the
control system.

- Database access task that asynchronously handles all
database activity: reading the whole device dictionary,
storing new server bindings and reading them back.
The asynchronous nature of this task means that no
other task waits for this one to execute any given work
unit – instead, other tasks only notify that some type of
access needs to be performed and the database access
task at some point in time (usually immediately) does
what was requested. The lazy and seemingly
unpredictable nature of this task is what allows the
whole server to survive the periods of database
unavailability.

- Controller task (that is the environment task after
executing all initialization work) that periodically
triggers the database readout. It might be also a proper
place to handle the collection and publication of
various statistics.

Two major data structures that are shared between all these
tasks are device and server maps, implemented as statically
allocated arrays or appropriately defined records.

The following two tables illustrate conceptually both the
device map and the server map.

Device map:

Device_Name Server_Name

Termostat_1 Term_Srv_A

Termostat_2 Term_Srv_A

Power_Converter_123 Pow_Srv_P

Server map:

Server_Name Server_Location

Term_Srv_A IOR://432835534…

Pow_Srv_P IOR://314245326…

In the most typical case, the client application is interested
in obtaining the Server_Location (that is, the information

that allows to establish the physical connection with the
target server) for the given Device_Name, which requires
the availability of both of the above structures. The ability
to perform such a query within a single interaction is the
major added value with regard to the old solution.

It should be noted that the two data structures above are
conceptually very simple, but allow for future growth in
terms of new use-cases, which might include security
protections against accidentally overwriting existing
bindings, audit scans to check if the target servers are
actually announcing themselves from the locations where
they are supposed to be, statistical analysis of the target
server reboot patterns and more. From the point of view of
the client application, however, the combination of these
two maps the most vital resource.

4 Feasibility Study and Demonstration
Since this pilot project was the first attempt to use Ada in
the team, we needed to demonstrate that all technical
aspects resulting from the design are well mastered and that
no major surprises would threaten the project later on.
Assuming the above design considerations, the following
programming problems were identified:

- Reading and writing data structures from/to local files
- Direct_IO was a proper choice for this.

- Writing formatted log files – Text_IO for file operation
and Calendar for time reporting proved to be useful,
with the small exception of the time formatting that
was not available in Ada 95. For this reason the
convenient Image routine that in Ada 2005 is available
in Calendar.Formatting had to be implemented from
scratch.

- Accessing the Oracle database – as already explained,
the SOCI-Ada library was used to handle that part.

- Network operations – provided by GNAT.Sockets.

Several simple programs have been implemented to
demonstrate that these programming problems are well
mastered and that the whole project can be attempted
without major risks.

5 Coding – get it done
The coding phase of this pilot project did not reveal any
surprises thanks to the feasibility study and demonstration
that was performed previously.

Just for the record, the implementation phase resulted in 16
Ada packages with total line count of ~5_000.

6 Demonstrate responsibility sharing
An important aspect of the whole exercise was to
demonstrate that the new technology does not jeopardize
our ability to maintain the software in the long term even
with possible rotation of the team members. Without this
demonstration it was clear that the idea of introducing new
programming language would not be accepted based on
valid management concerns. Therefore, part of the project
was to involve somebody else and ask him to introduce

246 Experiences in Evaluat ing Ada with a Pi lot Project

Volume 30, Number 4, December 2009 Ada User Journal

some modifications to the code as a mean to check if the
responsibility for the whole can be passed or shared.

This part was surprisingly easy, contrary to the popular
belief that Ada cannot be introduced to non-Ada
programmers. Granted, the person who was involved had
some limited exposure to the language as part of his
university curriculum, but our perception was that it was
not critical to guarantee his ability to understand and
modify the existing code. The ease of responsibility sharing
can be attributed to the fact that a reasonably small subset
of the language was used in the implementation and all the
programming concepts were immediately visible in the
code.

Presumably it would not be that easy if some advanced
language features were freely used in the code, but that
possibility is inconclusive in the context of this exercise –
after all, obfuscation of code can be achieved in any
language.

7 Deployment
The pilot project was meant to evaluate Ada as a potential
alternative technology for our developments. The only
justification for such evaluation is the intention to improve
the state of the art and to make a progress with relation to
previous results. Needless to say, the motivation to try out
Ada was to reduce the defect rate in the software that we
produce and that on average is not very satisfactory.

How did it work in this pilot project? One thing can be
firmly stated: the defect rate achieved in this project was
much below the average and the major visible effect was
that the complete server was put into production without
any hassle and with immediate ability to handle the traffic
of the whole distributed control system. There was no
“infancy” stage and the system was mature from its first
version. The new directory server is in operation from
December last year and is successfully providing
continuous service without any hiccups. This was an
achievement that was very visible and acknowledged.

To be very honest, though, the zero-bug goal was not fully
achieved and we had to face two embarrassing coding
mistakes:

- The logging component automatically switched to
another log file after reaching the given limit of entries
in the current file – this way a series of log files is
created instead of a huge and single one.
The process of switching to another file involves
closing the current file object (the type of this object is
Ada.Text_IO.File_Type) and opening the same object
for another physical file name – obviously a non-
atomic sequence of actions that leaves a tiny window
of opportunity for other tasks to see it in a state that
does not allow proper use. The protection against this
possibility was not implemented in the initial version,
which resulted in a failure.

- The network component reported exceptions whenever
the interaction with clients did not follow the expected
path. These exceptions were handled in the outermost

exception handler, where the informative message was
formatted and logged. The trap that we fell into is that
in order to put as much useful information in the log
message as possible, the
GNAT.Sockets.Get_Peer_Name function was used to
get the address of offending client. Surprisingly, this
function itself resulted in exception if the client socket
happened to be already closed at the time it was called
– this new exception was not handled (it all happened
already in the outermost handler, so there was no other
enclosing handler), which silently killed the worker
task.

Neither of these issues caused the interruption of the
service thanks to the redundancy of the whole installation,
but was anyway embarrassing – mainly because such bugs
are not related to any programming language and therefore
cannot be attributed to our problems in using the new
language. On one hand - these were our own mistakes.
On the other hand – Ada did not prevent us from making
them. In retrospect, both faults were related to the fact that
the respective language features (multitasking and
exceptions) lead to execution paths and module interactions
that are not explicit in code and therefore cannot be
statically analyzed. This interesting observation proves that
special language profiles and static contracts are justified
when the ultimate reliability is expected.

To summarize – even with these two embarrassing issues
the overall perception is that the new directory server is one
of the most reliable components in the system and its
implementation and deployment were surprisingly fluent.
Personally, I consider it to be a very good indication of the
ability of Ada to handle mission-critical infrastructure
tasks. From the technical standpoint, the evaluation was
positive.

This result was meant to be a strong argument for
expanding our set of technologies and to introduce Ada as a
first-class citizen in our control system. But…

8 Bitter outcome of the exercise
After officially presenting the project to the wider
audience, which included senior engineers and other
managers, it appeared that the idea of introducing the new
programming language is not very well perceived. The
major argument against it was the prevalent belief that Java
is good enough as a technology for implementing all
middle-tier components including the infrastructure
services and that there is no need to extend our existing
toolset. Another important argument was that in the
working environment that involves tens of people there is a
lot of value in standardization and consolidation of that
toolset – a context where any new technology is obviously
perceived as an “intruder” that can only encourage others to
divert from the “standard” by introducing whatever fancy
technology they like and therefore undermine the efforts to
manage consistent technical culture in the whole
development group.

The sad part of this outcome is not only that the pilot
project did not achieve the positive perception of Ada,

M. Sobczak 247

Ada User Journal Volume 30, Number 4, December 2009

which was the original intention of the author, but rather
that after the discussion on introducing the new
programming language was finally “settled”, the
acceptance of Ada as a valid technology for the
implementation of mission-critical components of the
accelerator control system at CERN is not likely to happen
anytime soon. An important part of this settlement is that
even though nobody ever questioned the value and quality
of the new directory server that is already in operation, it is
supposed to be replaced with an implementation that
conforms to the standard toolset.

The bitter lesson that was learnt is that the major obstacle
in the wider adoption of Ada is not related to its technical

attributes, but rather to its ability to compete in the
decision-making process that involves too many non-
technical factors.

About the author
The author is working as a Middleware Team Leader for
the accelerator control system at CERN, where he is
responsible for the proper operation of the communication
infrastructure. Apart from this work, he is a contributor of
open-source software and provides independent consulting
services.

You can contact him at http://www.msobczak.com/ and at
http://www.inspirel.com/

248

Volume 30, Number 4, December 2009 Ada User Journal

Couverture: an Innovative Open Framework for
Coverage Analysis of Safety Critical Applications
Matteo Bordin, Cyrille Comar, Tristan Gingold, Jérôme Guitton, Olivier Hainque, Thomas Quinot
AdaCore, 46 rue d'Amsterdam, 75009 Paris (France);
{bordin, comar, gingold, guitton, hainque, quinot}@adacore.com

Julien Delange, Jérôme Hugues, Laurent Pautet
Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13 (France);
{ julien.delange, laurent.pautet, jerome.hugues}@telecom-paristech.fr

Abstract
One key step in the development of safety-critical
applications is the assessment of the quality of the
verification strategy. In practice, structural coverage
is the methodology used to ascertain the testing
campaign well satisfy a given quality criteria. In this
paper, we describe the possible strategies to measure
structural coverage in a DO-178B context. After
evaluating state-of-the-art approaches to measure
structural coverage, we introduce Couverture, an
innovative framework for coverage analysis
exploiting a virtualized execution environment.
Keywords: structural coverage, DO-178B, MC/DC
virtualization, Ada.

1 Introduction
The development of a high-integrity application usually
requires a close interaction between the design and testing
phases. System requirements are decomposed into high-
level architecture, then into atomic modules; the latter are
then finally implemented, possibly using a third generation
programming language such as Ada or C/C++. A set of
corresponding verification activities mirrors each
decomposition step in the design phase: for example,
acceptance testing corresponds to system design,
integration testing to architectural design and unit testing to
module design. The test cases are derived from the
requirements themselves: the idea is to have the
specifications, rather than the implementation, drive the
testing strategy. This is the V process model applied to
software engineering (see fig. 1).

One key step in the V development process is the
assessment of the quality of the testing strategy. For
software systems, structural coverage [8] is the canonical
approach in practice. Structural coverage is the analysis of
how an application is exercised by a testing campaign. The
basic idea behind coverage analysis is to gain confidence in
the testing process by checking that the testing suite
exercises all meaningful constructs present in the
application in a sufficiently extensive way.

Figure 1 The V process model

Several different coverage metrics exist [7], usually
differing on the minimal number of tests necessary to reach
full coverage. The most common are statement and
decision coverage: the first measures which source code
statements are exercised, while the second measures how
Boolean expressions (decisions) are evaluated. Reaching a
certain degree of coverage means that the requirement-
driven testing strategy involves a set of tests whose
execution exercises all the structures the metric targets. For
example, reaching full statement coverage means executing
at least once all statements present in the application source
code; reaching full decision coverage means that the tests
execution caused all decisions (typically in if, case or while
statements) to be evaluated to both outcomes (True and
False). To provide a practical evidence of the difference
between different testing metrics, we introduce here a very
simple example which we will use extensively in the
remainder of this paper. The source code of the example is
the following:

1. procedure P (A, B, C : Boolean) is
2. begin
3. if (A and then B) or else C then
4. Do_Something;
5. end if;
6. end P;

Listing 1 Example Source Code

The example comprises two statements (lines 3 to 4) and a
single decision (the Boolean expression at line 3).
Statement coverage for procedure P can be reached with
just one test causing the Boolean expression "(A and then

M. Bordin et al . 249

Ada User Journal Volume 30, Number 4, December 2009

B) or else C" to be evaluated to True. Decision coverage
can be reached with two tests, one evaluating the decision
at line 3 to True, the other to False.

Coverage analysis is explicitly required by several
industrial standards: for example, DO-178B (civil
avionics), ECSS-40 (space systems) or IEC-880 (nuclear).
In this paper we concentrate on the DO-178B standard
because it requires the most stringent coverage metrics to
be applied.

2 Structural Coverage and DO-178B
DO-178 [1] is an international standard providing guidance
for the development of software to be deployed on airborne
systems flying over civil ground. The standard applies to
both Europe and North and South America. Developers of
avionics software are expected to follow the guidelines
contained in DO-178. They shall then submit the required
evidence to certification authorities to gain certification
credit for the software and allow its deployment on
airborne systems. The DO-178 standard has been reviewed
in 1992, giving birth to DO-178B. The next revision of the
standard, DO-178C, is expected by the end of 2010: the
concepts contained in this paper apply to both DO-178B
and DO-178C. DO-178B is complemented by DO-248B
[2], which provides clarifications on the use of the DO-
178B standard.

DO-178B describes a set of development and verification
activities which shall be performed by a development team
in order to gain certification credit for the developed
software. Among these activities, structural coverage is part
of the software verification process (see [1], table 7).
Within DO-178B, structural coverage serves both to assess
the quality of the verification strategy and to demonstrate
the absence of unintended functions: if a part of the
application is not covered by a requirement-driven testing
strategy, it is likely that the implementation did not proceed
from the requirements. Unintended functions shall not be
deployed on the final applications, as they are not justified
by any requirements, nor they are likely to have been
thoughtfully tested.

Three different metrics are considered within DO-178B:
Statement Coverage (SC), Decision Coverage (DC) and
Modified Condition/Decision Coverage (MC/DC). All of
these metrics express coverage in terms of source code
elements: notions such as statement, decision, condition are
defined only in relation to source code. We have already
introduced SC and DC. We briefly illustrate MC/DC here:
more information can be found on [5,6]. MC/DC
distinguishes between decisions and conditions; a decision
is, exactly like in DC, a Boolean expression. a condition is
an atomic Boolean expression: conditions are grouped in
decisions1. In the example in listing 1, "A", "B" and "C" are
conditions grouped in the decision "(A and then B) or else
C". To achieve MC/DC, every point of entry and exit in the

1 A decision may be composed by a single atomic Boolean expression: in
this case the condition is also a decision.

program must be invoked at least once, every decision must
take all possible outcomes at least once, every condition in
a decision must take all possible outcomes at least once,
and each condition in a decision should be shown to
independently affect the outcome of that decision [1]. Two
evaluation vectors are required to demonstrate independent
effect of a condition C on a decision D. The vectors shall
be identical but for the value of C and one vector must
cause D to be evaluated to True, the other to False. For
example, to reach MC/DC for the source code in listing 1,
we can use the following evaluation vectors for the single
decision: (T,T,F), (T,F,T), (T,F,F), (F,T,F). Independent
effect of "A" is demonstrated by (T,T,F) and (F,T,F): the
two vectors are identical but for the value of "A" and the
decision is evaluated first to True, then to False.
Independent influence of "B" is demonstrated by (T,T,F)
and (T,F,F); independent influence of "C" is demonstrated
by (T,F,T) and (T,F,F). MC/DC requires at least n+1 tests
to cover a decision composed by n independent conditions
[5].

Within DO-178B, the metric chosen for structural coverage
depends on the criticality of the application: the more
safety-critical the application, the more stringent the metric
(i.e. more tests are required to achieve the coverage
objective). The aim is to require a more extensive testing
campaign for the most safety-critical software applications.
The effort required to reach a given coverage shall however
be reasonable. For example, path coverage (the execution
of all possible execution paths) exercises the application
more than MC/DC, but it also requires an unreasonable
amount of tests. The correspondence between coverage
metrics and criticality level is as follows:

• Level A: MC/DC. Applications whose criticality level
is A are those whose failure would cause a
catastrophic impact such as to "prevent continued safe
flight and landing".

• Level B: Decision Coverage. Applications whose
criticality level is B are those whose failure would
cause a severe impact such as "a large reduction in
safety margins or functional capabilities, or physical
distress or higher workload such that the flight crew
could not be relied on to perform their tasks
accurately or completely, or adverse effects on
occupants including serious or potentially fatal
injuries to a small number of those occupants."

• Level C: Statement Coverage. Applications whose
criticality level is C are those whose failure would
cause major impact such as "a significant reduction in
safety margins or functional capabilities, a significant
increase in crew workload or in conditions impairing
crew efficiency, or discomfort to occupants, possibly
including injuries."

Level D (minor impact) and E (no impact) do not require
any measure of coverage.

2.1 Source Coverage versus Object Coverage
Applicants to DO-178B certification have proposed the use
of object code coverage instead of source code coverage as
a metric to satisfy the objectives of DO-178B. The

250 Couverture: an Innovat ive Open Framework

Volume 30, Number 4, December 2009 Ada User Journal

proposed approach consisted in measuring either
instruction coverage or branch coverage. Object instruction
coverage (OIC) requires assessing all object instructions
are executed at least once; branch coverage (OBC) in
addition requires all conditional branches to be exercised
for both directions (branch and fall through). The use of
object code coverage has also been proposed as a way to
cope with untraceable object code. Section 6.4.4.2 of DO-
178B indeed states: "The structural coverage analysis may
be performed on the Source Code, unless the software level
is A and the compiler generates object code that is not
directly traceable to Source Code statements. Then,
additional verification should be performed on the object
code to establish the correctness of such generated code
sequences". Untraceable object code is object code
generated by the compiler and impacting the control flow
in a way not directly visible from source code. A typical
example is array bounds check which may raise an
exception. Reaching a given level of coverage for source
elements may not be representative of the untraceable
object code: even an extremely complete testing campaign
may not assure all object code is executed. The untraceable
object code is nevertheless present in the application, it
may be executed during operation and may thus lead to
unintended behaviour not verified during the testing
process. Measuring object code coverage may thus be a
way to ensure even untraceable code is executed during the
requirement-driven testing campaign.

The issue raised by section 6.4.4.2 of DO-178B, and in
general the equivalence of source and object coverage, is
considered in both FAQ 42 of DO-248B ("Can structural
coverage be demonstrated by analyzing the object code
instead of the source code?") and CAST paper 17
(Structural Coverage of Object Code, [3]) issued by the
FAA (Federal Aviation Administration). Both documents
assert that object code coverage can substitute source code
coverage "as long as analysis can be provided which
demonstrates that the coverage analysis conducted at the
object code will be equivalent to the same coverage
analysis at the source code level" [2]. In this context,
equivalence means that object code coverage should
require the same number of test cases as those needed to
reach source code coverage for the appropriate metric
(CAST paper 17 at [3]). In practice, object code coverage
may be equivalent to source code coverage only on limited
cases, for example when [4,12]: (i) the compiler generates a
branch instructions for each condition and (ii) only short
circuit operators (and then, or else) are used and (iii) short
circuit Boolean operators are always right-associated, like
"A and then (B or else C)". When Boolean operators are
right associated, the nodes of the resulting evaluation graph
always have a single incoming edge (coming from the
previous condition) and two outgoing edges: one exits the
evaluation, the other proceeds to the next condition. The
evaluation graph is thus a tree with n+1 leaves: there are
n+1 paths from the root to the leaves, meaning that we need
n+1 test vectors to fully cover the tree and achieve full
OBC, exactly like for MC/DC (fig. 2a). When Boolean
operators are left-associated (like in listing 1), the resulting

evaluation graph is not a tree and can be potentially
covered by less than n+1 tests (see fig. 2b). In the general
case, it is rarely the case for object code coverage metrics
to be in any direct relation to source code coverage metrics.
For example, branch coverage is not equivalent to MC/DC,
and instruction coverage is not equivalent to DC or SC.
FAA reports such as DOT/FAA/AR-07/17 [4] provide
evidence of this absence of relationship. It is also pretty
simple to provide an example using the code in Listing 1.
When compiling the code in listing 1 with GNAT Pro 6.2.1
for a bareboard PowerPC platform and with -O1
optimization, the generated object code is (branch
instructions in bold):

_ada_p:
 stwu 1,-16(1)
 mflr 0
 stw 0,20(1)
 cmpwi 7,3,0 # compare r3 (A) with 0 and put result in cr7
 beq- 7,.L2 # if equal (A=False) branch to L2
 cmpwi 7,4,0 # compare r4 (B) with 0 and put result in cr7
 bne- 7,.L3 # if not equal (B=True) branch to L3
.L2:
 cmpwi 7,5,0 # compare r5 (C) with 0 and put result in cr7
 beq- 7,.L5 # if equal (C=False) branch to L5 (end)
.L3:
 bl do_something_pkg__do_something

The resulting execution graph is shown in figure 2b. Note
that the same graph would be produced even with no
optimization (-O0). Full branch coverage can be reached
with just three tests (using test vectors (T,T,F), (T,F,T),
(F,T,F)), while MC/DC requires at least four tests. The
basic reason for such a difference is MC/DC begin a
stateful property over the evaluation of a decision, whereas
OBC is a local property of a single instruction.

Figure 2a Evaluation graph for "A and then (B or else C)"
Four tests are necessary to cover the whole graph.

Figure 2b Evaluation graph for "(A and then B) or else C":
Branch coverage achieved with (T,T,F), (T,F,T), (F,T,F)

Object code coverage is also just a partial solution to cope
with the additional verification activities on untraceable
object code for level A software (DO-178B, section

M. Bordin et al . 251

Ada User Journal Volume 30, Number 4, December 2009

6.4.4.2). Producing additional tests to cover all untraceable
object code has little sense because the requirements that
caused such code to be produced cannot be found in the
specifications of the system under development, but rather
in the way the compiler implements a part of the
programming language standard. Let's consider again array
bounds check: they are generated because this is how the
compiler implements the language standard, not because of
some requirement specific to the application being
developed. Moreover, covering all untraceable object code
may require a significant effort which would be better spent
in performing more meaningful verification activities. This
is why CAST paper 12 [3] suggests the use of a traceability
study to satisfy the additional verification activities on
untraceable object code for level A software: a traceability
study provides evidence that, in a given context (coding
standard, compiler, compilation switches), the compiler
either generates traceable code or the untraceable code is
correct – i.e. it correctly implements the requirements
expressed by the specifications of the chosen programming
language. A traceability study is thus a sort of black box
qualification of the compiler: the requirements are the parts
of the language standard used in the application context and
tests compare the object code generated by the compiler
with the legitimate expectations.

Regardless of guidance and empirical evidence, the
equivalence of object code coverage and source code
coverage is however still a controversial topic and subject
of debate: applicants managed to gain certification credit
using both source code coverage and object code coverage.

3 Current approaches to structural
coverage
Current industrial solutions to evaluate structural coverage
are usually divided into two main categories: tools
measuring source code coverage and tools measuring
object code coverage. Given the domain of interest
(aerospace), it is important to remind that the source code is
usually cross compiled on host workstations and deployed
on less powerful target platforms.

Tools measuring source code coverage like IBM Rational
Test RealTime, LDRA Testbed, IPL AdaTest or Bullseye
Coverage, usually depend on source code instrumentation
to evaluate the coverage. Source code instrumentation
requires the coverage tool to modify the application source
code by adding calls to logging facilities in appropriate
locations. For example, to measure statement coverage it is
enough to log the entry in each block of execution (if
statements, loops, switch statements, etc.): if all blocks are
entered and no exception has been raised, then all
statements have been covered. Of course, the more
stringent the coverage metrics, the more invasive the
instrumentation: instrumenting the source code for MC/DC
requires to log the evaluation of each atomic Boolean
expression, as well as to record all Boolean evaluation
vectors to demonstrate independent effect of conditions on
decisions. Coverage of instrumented code has the
advantage of providing a straightforward mapping between
the source code and the logged coverage information: it

perfectly fits the requirements of DO-178B. On the other
side, developers may be asked to demonstrate that the
instrumentation did not modify the application behaviour
and that the coverage of the instrumented application is
representative of the coverage of the final application. It is
usually necessary to compare the tests results for the two
versions of the application (instrumented and not
instrumented) to provide such evidence.

The other approach to structural coverage targets object
code coverage. Tools measuring object code coverage
usually log which instructions have been executed by
exploiting hardware probes connected to the target via a
JTAG/BDM, debug information and instruction-by-
instruction execution. This approach has the major
advantage of being non intrusive: since no instrumentation
is added, and since coverage is measured on the final, cross
compiled application, no additional verification is required.
In addition, this approach depends on the target platform
rather than on the programming language, making it an
excellent candidate for applications written with several
programming languages. The main limitation consists in
the dependence upon the target hardware (and a physical
connection) to execute the tests and measure coverage: this
means that coverage may be measurable only when the
target hardware is available; furthermore, such a process
suffers from the slowness of the hardware connection to the
target hardware required by the technology. Regardless of
the limitations described in section 2.1, several successful
tools measure object code coverage, for example VeroCel
VeroCode or GreenHills GCover.

In this section, we identified the following major
limitations in current state-of-the-art coverage approaches:

For approaches based on source coverage via
instrumentation: it is necessary to demonstrate that
instrumentation did not modify the behaviour and coverage
of the final, non-instrumented application.

For approaches based on object code coverage: coverage
results cannot be directly mapped onto source coverage
metrics and they usually require the final hardware to be
available and connected to the host via a probe.

4 Couverture
Couverture is a research project founded by French
institutions within the System@tic framework. The project
consortium comprises AdaCore, OpenWide, Telecom
ParisTech and LIP6 (Pierre et Marie Curie University,
Paris).

Couverture innovates on all aspects of current technology
for structural coverage by:

• Providing a virtualized execution platform for cross-
compiled application on the host machine. The virtual
machine is able to produce a detailed execution trace.

• Measuring object code coverage through careful
examination of execution traces.

• Measuring source code coverage as defined by DO-
178B by relating elements of the execution trace

252 Couverture: an Innovat ive Open Framework

Volume 30, Number 4, December 2009 Ada User Journal

(instructions, branches) to source-level structures
(statements, decisions, conditions).

The Couverture technology is thus able to measure both
source and object coverage for the cross compiled
application. Supporting both object and source code
coverage guarantees the maximum flexibility in terms of
user needs. The use of a virtualized environment guarantees
an extremely efficient process because it does not require
the hardware to be available nor to be physically connected
to the target board. Finally, since source code coverage is
inferred from execution traces, no instrumentation of
source code is required, making it unnecessary to provide
evidence that the natively compiled, instrumented
application is equivalent to the cross compiled one.

In the following sections we examine in details the main
point of interests of Couverture.

4.1 A virtualized, instrumented execution
environment
The core of the Couverture technology is a virtualized
execution environment playing a dual role: it permits the
execution of cross compiled applications on the host
workstation without requiring the final hardware to be
available and it gathers execution traces exploited by
Couverture to measure object and source code coverage.
The basic idea behind Couverture is to virtualize the
approach commonly used to measure object code coverage:
while traditional object coverage tools require a physical
connection to the target hardware to measure coverage,
Couverture uses a virtualized environment producing a rich
execution trace containing the address of executed object
instructions and the outcomes of conditional branches.
Couverture is then able to determine actual object code
coverage by processing several execution traces
corresponding to the executions of different tests.

The technology at the heart of Couverture is QEMU
(http://www.qemu.org). QEMU is a processor emulator
employing dynamic binary translation. QEMU takes as
input a cross-compiled application and translates basic
blocks into executable code for the host processor. Thanks
to binary translation, and to the fact that the target platform
is usually much slower than the host workstation,
performances are more than adequate: in the case of current
generation PowerPC or ERC32/LEON2 targets, the
simulator proved to be faster than the target boards. QEMU
has an accurate model of the target Floating Point Unit
(FPU). Although using an emulated FPU is slower than
directly accessing the host FPU, the emulator assures a
numerical precision identical to the target: from a
numerical computations point of view, QEMU is
representative of the target platform. QEMU also emulates
different I/O chips which can be used to simulate the
interaction between the application and the environment.
Thanks to the emulation of I/O, QEMU permits to run also
those testing campaigns which would require a physical
interaction with the external environment. QEMU is
released as free software: the availability of the source code
and the presence of an active user community guarantee the

tool can be extended to support additional hardware and
logging techniques. Our main extension to QEMU is the
support for the generation of execution traces containing
the list of executed object instructions: our addition
required minimizing the amount of logged instructions to
avoid the explosion of the size of execution traces. By
comparing this list with the dump of the executable object,
it is possible to measure object code coverage. In addition,
the virtualized environment is able to keep track of the
history of the evaluations of branch instructions: each
single evaluation of a branch instructions is tracked along
with the value to which the branch instruction was
evaluated (branch or fallthrough). This additional
information is necessary to measure branch coverage
because passing through a branch instruction just once is
not enough to achieve its full coverage.

Currently, the following platforms are supported via a
QEMU-based emulation: PowerPC bareboard, LEON2 and
ERC32 (SPARC) bareboard and WindRiver VxWorks 653
on PowerPC.

4.2 Introducing Source Coverage Obligations
The augmented execution traces produced by QEMU are
enough to measure object code coverage. They are however
not sufficient to infer source code coverage: without
additional data, Couverture would suffer the same
limitations plaguing other coverage tools targeting object
code coverage (see section 2.2). Couverture needs to relate
source code structures to object code elements and in
particular to determine:

1. Which object code instructions are generated from
each statement;

2. Which statement (and thus which instructions, see
point 1) is executed if a decision is evaluated to True
and which is executed if it is evaluated to False;

3. Which branch instruction corresponds to which
condition;

4. How conditions (and thus branch instructions, see
point 3) are grouped together to form a decision.

Standard debug data does not provide all required
information. Debug formats such as DWARF 2/3 can just
link object instructions to a location in the source code
identified by a line and a column, but are not able to map
them to source-level structures such as conditions or
decisions. This is why we had to complement the debug
information with Source Coverage Obligations (SCOs).
SCOs are extracted from source code by the compiler: they
identify source constructs for which coverage artifacts need
to be exhibited in order to satisfy some coverage objective.
SCOs contain a compact representation of the control flow
which group conditions within the enclosing decision and
specify which statements are executed when a decision is
evaluated to True and False. By weaving SCOs with debug
information, it is possible to represent the source-level
control flow and its structures in terms of object
instructions. Couverture can then infer all DO-178B source

M. Bordin et al . 253

Ada User Journal Volume 30, Number 4, December 2009

code coverage metrics from the execution traces produced
by QEMU:

• Statement coverage is achieved if any instruction
generated by a given statement are executed (see point
1 above).

• Decision coverage is achieved if the Boolean
expression composed by all object branch instructions
associated to a given condition is evaluated to both
True and False. Calculating decision coverage
requires a sort of abstract interpretation of execution
traces to determine the evaluation of a decision
starting from the evaluation of the associated object
branches.

• MC/DC is achieved if all branch instructions have
demonstrated to have an independent impact on the
evaluation of the decision they belong to (see point 4
above). Of course, this includes each branch
instructions to be evaluated for both directions
(branch and fallthrough, see point 3 above)

As explained, SCOs and debug information contain the
information to detect whether the conditions above apply.
An example shall help us clarifying this crucial point.
Starting from the decision at line 3 of the procedure P in
listing 1, the GNAT Pro compiler is able to produce the
data depicted in fig. 3: it associates conditions to branches
and it groups branches corresponding to the evaluation of a
given decision. Thanks to this information, Couverture is
able to detect that the three tests sufficient to achieve
branch coverage (see fig. 2) are not enough for MC/DC:
since the SCO states that all three branch instructions are
logically owned by the same condition, Couverture can
easily verify that the independent impact of decision "C" on
the whole decision is not demonstrated (test vector (T, F, F)
is missing). This example shows that the coverage
technology employed by Couverture does not suffer from
the same limitations of other object code coverage tools.

Figure 3 Simplified graphical representation of a SCO plus
debug information produced by GNAT Pro

4.3 Preserving execution flow
The mechanism employed by Couverture to measure code
coverage consists in inferring source code execution flows
by analyzing object code execution traces with the support
of SCOs: for this to be possible, the control flow across
object instructions must be representative of the control
flow across source code elements. In particular, each
condition must be mapped onto a branch instruction. It is

thus extremely important to preserve the execution flow
from source code to object code: if control structures are
not preserved during compilation, it may be impossible to
infer paths across source code elements from object code
execution traces. A simple example will help clarifying this
idea. Consider the following function:

1. function F (A : Boolean) return Boolean is
2. begin
3. if A then
4. return True;
5. else
6. return False;
7. end if;
8. end F;

Listing 2 Example Source Code

When compiled with minimal optimization (-O1), the
resulting object code is:

_ada_f:
 blr # return the value of the parameter

The generated object code does not contain any branch
instruction: the execution flow implemented by the object
code is not representative of the execution flow in the
source code. As a result, even the Couverture toolset would
assert that any form of DO-178B coverage can be achieved
with just one test, instead of the two actually necessary: in
fact, a simple execution of function F will cause the
complete coverage of all generated object code. In the
general case, even disabling optimization cannot guarantee
the source code execution flow is preserved down to object
code. To address this issue, the compilation technology
shall guarantee the execution flow is preserved, even when
using optimizations. In GNAT Pro (AdaCore flagship Ada
compiler), this is achieved by the –fpreserve-control-flow
switch. –fpreserve-control-flow disables all requested
optimizations (possibly via the –O option) which may
influence the preservation of the control flow from source
code to object code. The result of using this compilation
switch with the source code in listing 2 is the following:

_ada_f:
 cmpwi 7,3,0
 beqlr- 7 # branch instruction for A
 li 3,1
 blr

In the example, a branch instruction is generated for the
condition "A" in the source code: this ensures the control
flow described at source level is preserved in object code
instructions.

5 Current Results
The Couverture technology is currently used both as an
internal tool and within an industrial context. In both cases,
Couverture has been coupled with a GNAT Pro
compilation chain.

5.1 Industrial Test Cases
Couverture is currently used at AdaCore to measure the
source code coverage of the internal test suites used to

254 Couverture: an Innovat ive Open Framework

Volume 30, Number 4, December 2009 Ada User Journal

qualify the Ravenscar run-time for the ERC32 and LEON2
processor in a ECSS-40 context. QEMU has been extended
to support these processors.

In addition, the development team responsible for the Air
Data Inertial Reference Unit (ADIRU) for the Airbus A350
XWB at Thales Aerospace uses Couverture to measure
object and source code coverage at DO-178B level A [10]:
in this context, QEMU emulates a bare-board PowerPC
target.

5.2 R&D Test Cases
Couverture has also been evaluated using applications
developed within two R&D projects. The first test case is
represented by an Ada 2005 application built in the context
of the IST-ASSERT project. The application is a reduced
subset of the guidance and navigation system of a satellite.
Coverage analysis with Couverture uses the support for
LEON2 in QEMU. We exercised the application in
nominal mode, and processing the output with the
Couverture toolchain. From the analysis, we found out that
71% percent of the code was fully covered, whereas 25%
was partially covered. Only 4% was not covered. The
coverage analysis revealed that the partially covered code
corresponded to error conditions not being exercised, and
thus showed that our test suites didn't completely cover our
requirements.

The second test case resolves around POK, a real-time
embedded kernel for safety-critical systems. POK
implements several industrial standards, including
ARINC653 used in the avionic domain. POK comprises
two main layers: the kernel and the partition runtime
(called libpok). The kernel provides partition support, inter-
partition communication and scheduling; it is particularly
compact in order to (i) ease its verification/certification and
(ii) minimize the amount of potentially unintended
functions. The libpok layer provides kernel-interfacing
functions and abstraction layers, for example, POSIX or
ARINC653. Partitions are executed on top of the POK
kernel to ensure partitions isolation. Each partition can
include one or more compatibility layers to execute their
application code. Each partition is also isolated in space (a
memory segment is dedicated to each partition) and time
(each partition has at least one time slot to execute its
threads). POK is written in C for x86 and PowerPC
architectures. Ongoing work includes a LEON port and an
Ada API for the ARINC653 layer of libpok. POK is
available as open-source software under the BSD licence at
http://pok.gunnm.org.

Since the libpok layer contains several heterogeneous
components, its full inclusion would likely lead to deploy
code not derived from requirements in the final application.
To avoid the deployment of unintended functions, kernel
and libpok can be configured to explicitly select the
required services using an automatic code generator from
AADL specifications [13]. The code generator configures
each layer according to system requirements and thus
ensures configuration correctness and absence of
unintended functions.

We have carried out experiments to analyze kernel code
coverage using Couverture (statements coverage). We
studied two examples of POK using different kernel
services:

• “Partition-threads”: one partition that contains two
tasks. It only uses the partitioning services.

• “Middleware-queuing”: two partitions with one task
per partition. Inter-partition communication occurs
between the two partitions so the kernel provides
partitioning and inter-partition communication
services.

The measured code coverage for x86 targets ranges from
65% (middleware queuing) to 91% (partition threads). This
is mostly expected: more complex setup in the second
example leads to potentially more dead code. Thanks to
Couverture we were thus able to identify which services of
the POK kernel should be moved to libpok in order to
include them only when strictly necessary: after these
changes, POK and its test cases shall comply with the
coverage requirements for DO-178B level C. In addition,
we managed to improve our code generation strategies to
decrease the amount of dead code coming from non-
necessary libpok services. Both case studies demonstrate
that Couverture is ready to address the challenges of
certification of systems deployed on the LEON2 processors
and of applications executed on partitioned kernels.

6 Conclusions
In this paper, we have illustrated an innovative approach to
structural coverage based on a virtualized, instrumented,
execution environment. Couverture is able to measure
structural coverage of object and source code without
requiring any form of application instrumentation with a
single execution of the cross-compiled application and test
suites. To measure source code coverage, the Couverture
technology requires the compiler to identify source
constructs for which coverage artifacts need to be exhibited
and to link them to object instructions. This is achieved by
the generation of Source Coverage Obligations and debug
information. The compiler must also assure the execution
flow is preserved from source code to object code. The
GNAT Pro compiler has been extended to implement such
feature via the –fpreserve-control-flow switch. The technology
described in this paper is currently used both as an internal
tool and in a major project in a DO-178B level A context.

In addition to its technical contributions, Couverture is the
first industrial project which leverages on the Open-DO
vision [9]. Open-DO is an initiative to promote an open and
collaborative approach to the development of high integrity
systems, in particular within a DO-178 context. Couverture
completely embraces the Open-DO vision, providing an
open repository [11] where development artifacts are freely
available: potentially, the whole user community can access
and contribute to the development and qualification of the
technology. This is the first step towards the cross
fertilization between open and high-assurance development
promoted by Open-DO.

M. Bordin et al . 255

Ada User Journal Volume 30, Number 4, December 2009

References
[1] EUROCAE: "Software Considerations in Airborne

Systems and Equipment Certification" - DO-178B,
1992, 1999.

[2] EUROCAE: "Final Report of Clarification of DO-
178B" – DO-248B, 2001.

[3] FAA CAST papers, http://www.faa.gov/aircraft/
air_cert/design_approvals/air_software/cast/cast_paper
s/

[4] FAA: "Object-Oriented Technology Verification Phase
3 Report - Structural Coverage at the Source-Code and
Object-Code - DOT/FAA/AR-07/20", 2007

[5] FAA: "An Investigation of Three Forms of the
Modified Condition Decision Coverage (MCDC)
Criterion - DOT/FAA/AR-01/18", 2001

[6] NASA: "A Practical Tutorial on Modified Condition/
Decision Coverage - NASA/TM-2001-210876", 2001

[7] Ntafos, S.C: "A comparison of some structural testing
strategies", IEEE Transactions on Software
Engineering, Issue 6, 1988

[8] Beizer, B., "Software Testing Techniques", 2nd edition

[9] Open-DO: www.open-do.org

[10] Thales Aerospace Division Selects GNAT Pro for
Airbus A350 XWB (Xtra Wide-Body):
http://www.adacore.com/2009/06/01/a350/

[11] Couverture Open Repository at Open-DO.org:
http://forge.open-do.org/projects/couverture

[12] Romanski G.: "MCDC coverage using short0circuit
conditions", available at verocel.com.

[13] Delange J., Pautet L., and Kordon F.: "Code
Generation Strategies for Partitioned Systems", 29th
IEEE Real-Time Systems Symposium (RTSS'08),
work in progress proceedings, December 2008

256

Volume 30, Number 4, December 2009 Ada User Journal

Generating Component-based AADL Applications
with MyCCM-HI and Ocarina
Thomas Vergnaud, Frédéric Gilliers, Hugues Balp
THALES Communications, 1, avenue Augustin Fresnel, Palaiseau, France; firstname.lastname@thalesgroup.com

Abstract
This paper presents the result of studies made on the
combination of Lightweight CCM and AADL in order
to build component-oriented applications that meet
requirements for real-time embedded systems. We
explain how we mapped Lightweight CCM
components onto AADL architectures, and the
consequences of such a combination. We finally
present some results in terms of memory size and
execution jitter. This work was done in the scope of
two projects: ANR Flex-eWare and ITEA SPICES.
Keywords: Lightweight CCM, AADL, distributed real-
time embedded systems (DRE), model driven
engineering (MDE).

1 Introduction
Application design for real-time embedded systems
traditionally relies on what we could call “low-level
technologies”, such as direct Ada programming.
Approaches like model driven engineering (MDE) are
seldom used, since they tend to deal with more abstract
views of the applications, and thus often prevent the
designer from controlling all aspects of the actual
application code.

Components oriented approaches, which focus on the
application logical topology, are known to help capture the
complexity of distributed embedded systems [5]. When
available, automatic code generation associated to these
approaches greatly improves development efficiency and
helps reduce the cost of complex systems. However the
component based approaches have mainly been adopted in
information systems [7], where time constraints are less
stringent and computing resources much less sparse.

Research has been done to study how to describe real-time
embedded architecture [4], notably using architecture
description languages such as AADL [1]. However, AADL
remains at a low level of description, and thus does not
focus on component-based software architectures.

In this paper, we explain how we combined these two
approaches in order to provide a high-level, business-
oriented application design while ensuring real-time
embedded capabilities for the generated application code.
In the first section, we briefly describe the two standards
we used: Lightweight CCM and AADL, and the
relationship we can define between them. Then we provide
some details on the mapping we defined from one to the
other. Finally we present some results in terms of

implementation with execution jitters and memory footprint
to validate our approach.

2 Overview of Lightweight CCM and
AADL
In this section, we describe the main aspects of Lightweight
CCM and AADL, and we explain how they can be
associated in a common process.

2.1 Lightweight CCM
Lightweight CCM [3] is a standard subset of the CCM
(CORBA Component Model) standard component model.
It is defined by the OMG. Lightweight CCM is dedicated to
providing a CCM compatible component model suitable to
the needs of distributed embedded systems.

Lightweight CCM defines the notion of software
component as an envelope that wraps the user business
code, isolating it from the execution environment. User
code thus communicates with the outside of the component
only through the component envelope. This envelope is
described using the IDL3 language. IDL3 defines two
communications ways offered to the user code: interfaces
and events. Interfaces are sets of operations; they can be
either provided by a component (facets) or required by it
(receptacles). The same way, events are either sent by the
component (event sources) or received by it (event sinks).

IDL3 constructions are transformed into sets of IDL2
interfaces that are to be implemented either by the
component framework (i.e. the component envelope) or by
the user code. This later case corresponds to the services
provided by the component, described in its IDL3
declaration. This set of interfaces is named CIF
(Component Implementation Framework).

CCM is originally defined as the CORBA 3 standard, and
thus typically relies on an ORB to manage
communications. However, this is not mandatory, as the
CCM purpose is to hide the ORB from the business code,
nested in components. Therefore, one can use virtually any
runtime to support the execution of CCM architectures,
provided that it can manage the two communications
paradigms (operations and events).

IDL3 itself does not address the description of component
deployment. The CCM is thus usually associated with
another OMG standard, D&C [2] that covers the
deployment and the configuration of components. D&C is a
very rich and complex standard, mainly adapted to the
deployment of complex, dynamic information services. It
lacks several configuration elements required to deploy

T. Vergnaud, F. Gi l l iers, H. Balp 257

Ada User Journal Volume 30, Number 4, December 2009

real-time systems (e.g. thread priority definition).
Therefore, in the context of this work, we developed a
custom architecture language named COAL (Component
Oriented Architecture Language). COAL [8] is targeted at
the description of static deployment of IDL3 components.

2.2 AADL
AADL is an architecture description language targeted at
the modeling of real-time embedded systems, distributed or
not. It is standardized by the SAE [1].

Compared with Lightweight CCM, AADL covers wider
modeling aspects: it allows the description of software
architectures in a hardware execution environment.
Software elements are described from a low-level point of
view, centered on execution threads.

AADL defines a notion of components, which do not have
the same semantics as in Lightweight CCM. Components
have an interface that provides features and
implementations that describe their internal structure.

The AADL standard defines several categories of
components; each of them has well identified semantics.
Software components are used to model application.
Processes represent memory spaces in which threads are
executed. Processes have to contain at least one thread.
Thread groups are used to gather threads and thus create
thread hierarchies. Subprograms correspond to
programming language procedures. Data are used to model
the data structures manipulated by AADL threads and
subprograms.

Execution platform components are used to describe the
hardware environment topology on which applications are
deployed. Processors represent microprocessors and
associated operating systems. Memories represent storage
units, such as RAM, hard disks, etc. Devices are used to
model sensors or purely hardware components. Buses
represent networks, wires, etc. that are used to interconnect
processors, devices and memories.

AADL systems are used as containers for other components
(including systems); they help in structuring architectures.
Abstract components are also defined; they carry no
semantics at all, and are simple boxes that can be refined in
any other component category.

Components can contain subcomponents. The standard
defines legality rules regarding the possible compositions:
processors cannot be subcomponents of subprograms;
threads can (and must) be subcomponents of processes.

Component features can be ports, required or provided
access to some subcomponents or subprograms. Inside
components, features of subcomponents are connected to
features of other subcomponents or to features of the
containing component. Features of threads are used to
model different kinds of communications paradigms:
message passing (event data ports), remote operation call
(subprogram accesses), and shared memory (data access).

Component composition describes the structure of
architectures. AADL also allows for the characterization of

these components: properties can be associated with each
architecture element (components, subcomponents,
features, connections, etc.).

AADL properties are used to specify constraints (e.g.
execution time, memory size) or characteristics (e.g.
period, thread dispatch policy). They can also be used to
describe configuration parameters (e.g. the network address
of a processor). Properties can also be used to associate
source code files to application components; AADL
components act as containers for the application
algorithms.

The AADL defines sets of standard properties, for which
precise semantics is defined. Thus, analysis and generation
tools can interpret them. Users can also define their own
properties. The use of these additional properties is then
dependent on specific tool support, e.g. scheduling or
reliability analysis.

AADL constructions describe application structures that
encapsulate algorithms. Hence, such structures control the
execution of the application, according to the different
parameters provided by the architecture description
(topology and execution parameters given by AADL
properties).

An AADL application is executed on the top of an AADL
runtime that provides scheduling and communication
services. Such a runtime is configured according to the
architecture description. Standard AADL properties are
interpreted to parameterize some aspects of the runtime
(e.g. execution periods, dispatch policies, etc.)

3 Rationale for combining modeling
languages
Lightweight CCM (i.e. IDL3) and AADL are two distinct
modeling languages. Yet, they address different modeling
aspects: Lightweight CCM focuses on the logical software
description, without dealing with deployment and resource
allocation. AADL focuses on resource allocation and
precise runtime description, but does not integrate software
business components (in the sense of Lightweight CCM).
Lightweight CCM describes architecture from a more
abstract point of view than AADL. Therefore, combining
these two approaches provides a complete model-based
design process with support for effective generation.

Mappings between modeling languages consist in defining
equivalences of concepts between them. Most of the
semantic aspects must be preserved in order to have a
meaningful mapping. In our situation IDL3 and AADL
address different modeling scopes. IDL3 covers business
component modeling. AADL covers deployment and
resource allocation. Hence, we cannot define a mapping
that would preserve all semantics.

The mapping from IDL3 to AADL actually defines how to
build an AADL application with AADL semantics from an
IDL3 design. The following section described the mapping
we defined.

258 Generat ing Component-based AADL Appl icat ions wi th MyCCM-HI and Ocar ina

Volume 30, Number 4, December 2009 Ada User Journal

4 Mapping of Component Declarations
The mapping from Lightweight CCM to AADL is
structured into several parts:

• Units (i.e. modules, or packages);

• Data types;

• Component types;

• Resource allocation and deployment.

4.1 Modeling Units
Model units are packages in AADL and modules in IDL3.
Packages and modules help structure the declarations.

IDL3:

module a_unit {
 // public declarations
 ...
 // no private declarations
};

AADL:

package a_unit
public
 -- public declarations
 ...
end a_unit;

IDL3 is a language to describe interfaces. Thus IDL3
modules have no private section, since it would have no
sense. On the contrary, AADL is used to describe the
complete structures of the architectures, including
components inaccessible from external entities. Therefore
AADL packages can have a private section, which is not
used by the mapping.

4.2 Data Types
IDL3 defines a set of data types that can be manipulated by
the components. AADL does not have exactly the same
approach. The definition of the data semantics is not part of
the core standard. Thus, AADL does not impose any
specific notation to associate semantics to data components.

An annex of the AADL standard defines a set of properties
to specify the semantics of data components [6]. It offers
more flexibility than IDL3. Therefore, most IDL3 data
types can be described in AADL. Since this property set is
not normative, one can use its own way of definition as
well.

In the scope of a mapping between IDL3 and AADL, it is
sound to directly associate the type definitions written in
IDL3 with AADL data component declarations.

Basic types

In the scope of our architectures, basic IDL types with a
bounded size (short, unsigned short, long, unsigned long,
long long, unsigned long long, float, double, long double,
characters, wide characters, bounded strings, bounded wide
strings, boolean, octets) are allowed.

Unbounded strings should not be allowed, since their use
prevents from statically computing buffer sizes during the
code generation process. Such a computing is required for
static allocation strategies required by real-time systems.
Equivalent AADL data component declarations are defined
in an AADL package named CORBA (as the IDL3 types
are standard CORBA types). These data components
redefine standard AADL data components.

package CORBA
public
 data short extends Base_Types::int16
 end short;
 data unsigned_short extends Base_Types::uint16;
 end unsigned_short;
 …
end CORBA;

Complex types

All complex IDL types whose size can be computed at
compilation time are allowed: enumerations, fixed-point
numbers, structures, union, fixed-size arrays, and bounded
sequences.

Unbounded sequences and CORBA Any types are not
allowed, since it is not possible to statically determine their
size..

The following syntactical IDL constructions are managed:

typedef <type> a_typedef;
struct a_struct_type {...};
enum an_enum_type {a, b};
union a_union_type switch (<discriminator>) {...};
typedef <type> an_array_type [<dimension>];
sequence <type, max_elements> a_sequence_type;

They are translated into the following AADL declarations:

data a_typedef extends <type>
end a_typedef;
data an_enum_type
properties
 data_model::data_type => enum;
 data_model::enumerators => (“a”, “b”);
end an_enum_type;
data an_array_type
properties
 data_model::data_type => array;
 data_model::base_type => (data <type>);
 data_model::dimension => <dimension>;
end an_array_type;
…

4.3 Component Types
CCM components are used for business-oriented design,
while AADL components correspond to concrete software
or platform entities.

Specific semantics is associated with each AADL
component categories, except abstract components. On the
contrary, CCM components carry no precise semantics
concerning their management by the runtime.

T. Vergnaud, F. Gi l l iers, H. Balp 259

Ada User Journal Volume 30, Number 4, December 2009

System threads that are attached to component interfaces
drive CCM components. Hence, CCM components
typically correspond to sets of AADL threads and possibly
other components (data, subprogram groups...). The exact
translation of CCM components into AADL depends on the
deployment information. Interfaces described in IDL3 are
associated with AADL components.

Plain IDL3 descriptions do not provide any deployment and
resource allocation information. In these cases, IDL3
components are to be translated in a first step into AADL
abstract components.

IDL3:

component a_component {
// interfaces and ports
...
};
AADL:

abstract a_component
features
-- features
...
end a_component;

When adding deployment information, the AADL abstract
component shall be replaced by the adequate concrete
AADL components (typically, AADL threads). Note that
since CCM and AADL components do not correspond to
the same modeling scope (business and actual
implementation), the mapping between CCM and AADL
actually associates a set of IDL3 components with a set of
AADL components: AADL components may be “shared”
by several CCM components.

Synchronous communications in CCM are performed using
operations grouped in interfaces. On the AADL side,
feature groups must be used. These feature groups contain
subprogram accesses.

IDL3:

interface iface1 {
 void method_a (in long param);
 long method_b (inout short param1,
 out boolean param2);
};
interface iface2 {
 double method_a ();
};
component a_component {
 provides iface1 interface1;
 uses iface2 interface2;
};

AADL:

subprogram iface1_method_a
features
 param : in parameter CORBA::long;
end iface1_method_a;
subprogram iface1_method_b
features

 param1 : in out parameter CORBA::short;
 param2 : out parameter CORBA::boolean;
 result : out parameter CORBA::long;
end iface1_method_b;
subprogram iface2_method_a
features
 result : out parameter IDL_types::double;
end iface2_method_a;
feature group iface1
features
 method_a : provides subprogram access
iface1_method_a;
 method_b : provides subprogram access
iface1_method_b;
end iface1;
feature group iface2
features
 method_a : provides subprogram access
iface2_method_a;
end iface2;
abstract a_component
features
 interface1 : feature group iface1;
 interface2 : inverse of feature group iface2;
end a_component;

Methods provided by IDL3 components are translated into
accesses to AADL subprograms provided in the AADL
component features.

Asynchronous communications in CCM are performed
through event sources and event sinks. The equivalent
constructions in AADL are in or out event data ports.

IDL3 event types correspond to declarations of AADL data
components that are semantically structures.

Unlike operations, CCM event ports are directly declared in
components and are not part of any interface.

IDL3:

eventtype type_of_communication {
 public short a;
 public long b;
};
component a_component {
 publishes type_of_communication event1;
 emits type_of_communication event2;
 consumes type_of_communication event2;
};

AADL:

data type_of_communication
properties
 data_model::data_type => struct;
 data_model::base_type => (data CORBA::short,
 data CORBA::long);
 data_model::fields => (“a”, “b”);
end type_of_communication;
component a_component
features
 event1 : out event data port type_of_communication;

260 Generat ing Component-based AADL Appl icat ions wi th MyCCM-HI and Ocar ina

Volume 30, Number 4, December 2009 Ada User Journal

 event2 : out event data port type_of_communication;
 event3 : in event data port type_of_communication;
end a_component;

We can note that there is no distinction between publishes
and emits in AADL component features: this distinction
impacts the number of AADL connections that should be
attached to the out ports.

The internals of the abstract component is made of a set of
AADL threads that correspond to the resources allocated to
the CCM component to manage its interfaces. They
encapsulate the user code of the CCM component, as well
as the envelope implementation code that connects the
CCM API (i.e. the Component Implementation
Framework) to the AADL runtime API.

5 Mapping of Deployment Information
In this section, we describe how to translate deployment
information associated with CCM descriptions into AADL
architectures. We provide a general approach to handle the
deployment information that does not rely on any
deployment formalism, such as OMG D&C, COAL or even
UML/MARTE. The information we consider is:

• software and hardware nodes (i.e. processes and
processors);

• binding of CCM components to nodes;

• connections between nodes;

• connections between component interfaces;

• allocation of execution resources to component
interfaces.

We actually worked with COAL, but the mapping is not
bound to a specific syntax, provided that the necessary
information is provided by the description. Therefore, we
do not provide examples of COAL concrete syntax in this
section.

CCM components that correspond to software
implementations are gathered in AADL processes, bound to
AADL processors. AADL threads describe the executions
resources that are required to run the CCM components.

All CCM components port instances can be associated with
an execution resource. If no execution resource is
allocation to a CCM port, this port will not appear in the
AADL description, and the connection will be managed
inside the AADL thread code (generated by the component
framework).

As CCM event are considered to be asynchronous
communications, an execution resource must be allocated
to all CCM event sinks.

Since the dependencies between facets/event sinks and
receptacles/event sources are not described in IDL3, all
receptacles and event sources of all the CCM components
managed by a given AADL thread are translated as features
of this AADL thread.

The transformation rules are as follows:

1. The CCM components that are collocated into a given
software node must be identified;

2. An AADL processor and an AADL process are
created;

3. All ports (facets, receptacles, event ports) that are
connected to external components are translated into
AADL and associated with the AADL process;

4. An AADL thread is created for each execution
resource declared in the component instance
deployment description; all the threads corresponding
to a given interface are identical;

5. Each AADL thread manages the input CCM interface
it is associated with, as well as all output interfaces that
may be invoked by the input interface; components
providing “passive” interfaces are merged with the
calling component; thus, each AADL has the output
interfaces of the CCM component they manage, and
also the output interfaces of the CCM components that
are invoked through “passive” interfaces;

6. The source code associated with the component
implementation, as well as the source code that
manages the connection between the CIF and the
AADL runtime API, are associated with the
AADL process using the two standard properties
source_language and source_text;

7. The source code of the envelope that must be invoked
is specified using the property compute_entrypoint_
source_text, associated with each thread.

The following pictures show a deployment example in
CCM and the resulting AADL architecture. Components B
and C are deployed on a software node, and connected to
other components on other nodes.

The software node is represented in AADL by a process
bound to a processor. Once again, only ports a, c, and f are
connected to external components. Therefore, only these
three ports are translated into AADL. Ports b and d and e
are internal and thus not represented in the interface of the
process. Yet, there are internal connections between e and
c, and between b and d. Since no thread manages d, it is
integrated into the threads of component B. Facet c is
managed by an independent thread; therefore it is
represented inside the AADL process.

The two threads that manage facet a of component B also
manage facet d of component C, but not facet c. Hence, the
two threads have three interfaces: a, e and f.

The thread that manages facet c of component C has two
interfaces: c and f. It does not have any interface for d,
since it does not manage this facet.

The AADL process encapsulates the hardware source code
of components B and C, as well as the envelope code that
connects the CIF to the AADL software runtime API. The
threads call this source code.

T. Vergnaud, F. Gi l l iers, H. Balp 261

Ada User Journal Volume 30, Number 4, December 2009

CCM configuration:

AADL architecture:

6 Implementation in MyCCM-HI and
Ocarina
We described the mapping between a description made in
IDL3 and deployment information, and AADL. This
mapping has been implemented in a tool chain that allows
the generation of C code from IDL3 and COAL files.

In this section, we explain how we implemented the
CCM/AADL transformation rules. This mainly consists of
the description of our tool chain.

6.1 Description of the Framework
The tool chain is the combination of MyCCM-HI and
Ocarina.

Ocarina is an AADL compiler developed by Télécom
ParisTech. It can generate C or Ada code from AADL
descriptions. The generated code is a configuration layer
for PolyORB High Integrity. PolyORB-HI is an AADL
runtime; it provides thread management and
communication primitives, according to the AADL
semantics. PolyORB-HI is statically configured at code
generation time. As a main consequence, no dynamic
memory allocation is performed.

MyCCM High Integrity is a component framework
developed by THALES. Its purpose is to generate AADL
descriptions that can be processed by Ocarina, as well as
the necessary source code for CCM component envelopes.
The envelope code interfaces the component
implementation code, written by the framework user, and
the code generated by Ocarina for the AADL threads.

From the application model (i.e. IDL3 and COAL files),
MyCCM-HI generates both envelope code in C and AADL
architecture. This is the application of the mapping we
described in the previous section.

The AADL architecture is then processed by Ocarina to
generate C code that is meant to be compiled on the top of
PolyORB-HI.

Finally, deployment code generated by Ocarina, envelope
code generated by MyCCM-HI and component
implementation provided by the user are compiled together
(typically with gcc) to produce an executable binary.

6.2 Performances
In order to validate our approach, we made some
benchmarks on the generated code. These benchmarks were
based on a simple architecture: a typical message passing
application, with a component on a node, sending a
message to another component on another node. Each time
it receives a message, the second component sends back a
message to the first component. Thus we can calculate
round-trip communication times.

For this architecture, the size of the PolyORB-HI runtime is
approximately 20 kB; the size of a component envelope is
about 4 kB. Such a small footprint validates our approach
as a suitable solution for embedded applications, with little
memory resource.

We made tests with two embedded boards, equipped with
Freescale MPC5200 processors at 384 MHz, running the
ElinOS real-time Linux kernel. We executed the
application on the two boards while running some random
load programs at the same time (successive memory
allocation, file accesses, heavy computation, etc.). The
benchmarks showed a latency of 768 µs for the roundtrip,
with a jitter of 24 µs, that is, a jitter of 3.12%. It thus shows
that the PolyORB-HI runtime and the component envelope
generated by MyCCM-HI provide stable execution time,
suitable for real-time applications.

7 Conclusion
In this paper, we explained a mapping between CCM and
AADL architectures. CCM architectures are described with

262 Generat ing Component-based AADL Appl icat ions wi th MyCCM-HI and Ocar ina

Volume 30, Number 4, December 2009 Ada User Journal

IDL3 and deployment information. The mapping allows for
the translation of a CCM application into an AADL
architecture. Hence, the user code implementing the CCM
components benefits from an API close to the Lightweight
CCM standard, while it actually runs within an AADL
application, with AADL semantics.

Thanks to this approach, we benefit the advantages of
AADL: analysis capabilities and suitable performances of
the generated code regarding real-time and embedded
aspects. We also benefit the application design approach of
Lightweight CCM, centred on business code.

We implemented this approach in a tool chain. This tool
chain is made of two main tools, which are both free
software. MyCCM-HI is a CCM framework that generates
AADL architecture from CCM descriptions, and C
envelope code. It can be downloaded from http://myccm-
hi.sf.net. Ocarina generates C or Ada code for the PolyORB-
HI runtime from AADL descriptions. It can be downloaded
from http://aadl.telecom-paristech.fr.

8 Acknowledgement
The authors would like to thank Jérôme Hugues, Étienne
Borde, Grégory Haïk and Bruno Hergott, who participated
in the work we presented. They either developed parts of
the theories we presented, contributed in the design of the
tools, or implemented them.

References
[1] SAE. Architecture Analysis & Design Language

(AADL) v2.0 (proposed draft). Technical report
AS5506A, SAE, 2009.

[2] OMG Deployment & Configuration (D&C)

[3] OMG CORBA Component Model specifications
(version 4.0)

[4] B. Zalila, L. Pautet, J. Hugues. Towards automatic
middleware generation, 11th IEEE International
Conference on Object-oriented Real-time distributed
Computing (ISORC’08), 2008

[5] P. Dissaux, HOOD Patterns, Data Systems in
Aerospace (DASIA’01), 2001

[6] SAE. AADL v2 Data Modeling Annex, draft v0.8,
2008

[7] W. Emmerich, N. Kaveh, Component technologies:
Java beans, COM, CORBA, RMI, EJB and the
CORBA component model. 24th International
Conference on Software Engineering (ICSE’02), 2002.

[8] É. Borde, G. Haïk, L. Pautet. Scheduling Mode-based
Reconfiguration in Critical Embedded Systems,
Design, Automation & Test in Europe, (DATE’09),
2009

[9] SPICES Project, D3.3.1: Mapping between
Lightweight CCM and AADL, 2008

264

Volume 30, Number 4, December 2009 Ada User Journal

Ada User Guide on MaRTE OS
Mario Aldea Rivas, Michael González-Harbour
Universidad de Cantabria, 39005-Santander, Spain; email: {mgh, aldeam}@unican.es; http://marte.unican.es

Abstract
MaRTE OS (Minimal Real-Time Operating System for
Embedded Applications) is a free software platform
that allows to execute concurrent real-time Ada, C
and C++ applications on a bare PC and, with some
limitations, on a Linux box. It is mostly written in Ada
with some C and assembler parts. Ada applications
running on top of MaRTE OS can use the full Ada
language functionality including most of the new
services defined in the RM real-time annex. The
GNAT run-time has been adapted to run on the
POSIX interface provided by MaRTE OS. This guide
provides information about MaRTE OS from the
user’s perspective, including the supported func-
tionality and the installation and usage procedures on
the different supported platforms.

1 Introduction
MaRTE OS is a real-time kernel for embedded applications
that follows the Minimal Real-Time System Profile
(PSE51) defined in the POSIX.13 standard [1] and is usable
from Ada applications through an adaptation of the GNAT
run-time system. Given the support for real-time
functionality that MaRTE OS provides it can be used to
develop advanced real-time applications according to the
real-time annex defined in Ada 2005 [2][3]. The services
provided by the system have a time-bounded response, so
hard real-time requirements can be supported. MaRTE OS
is distributed under a modified-GPL free-software license.

MaRTE OS was initially designed to support embedded
applications running on a bare processor. Currently the
supported architecture is a bare PC using an 80386
processor or higher. A basic hardware abstraction layer
(HAL) is defined to facilitate porting to other architectures.
In effect, this layer can be implemented using the services
of another operating system that acts as a virtual processor.
An implementation of MaRTE OS is available on the
Linux operating system, which is useful for testing,
development, and teaching purposes.

Most of the internal code of MaRTE OS is written in Ada
with some C and assembler parts. Nonetheless, APIs for
different programming languages are provided, allowing
for the development of concurrent real-time applications
written in Ada, C and C++. It is even possible to mix
different languages in the same application, for instance
with coexisting (and cooperating) C threads and Ada tasks
running under a coherent real-time scheduling policy. In
addition, Java (RTSJ) applications can be executed on
MaRTE OS when it is configured as a POSIX threads
(pthreads) library for Linux.

The development environment is based on the GNU
compilers GNAT, gcc, and gcj, as well as on their
associated utilities such as the gdb debugger.

When developing embedded applications, a cross
development environment is used with the development
tools hosted on a Linux system. The executable images can
be uploaded to the target via an ethernet link, and cross
debugging is possible through a serial line. It is also
possible to write the executable image to a bootable device
such as a flash memory, for isolated execution in the target.

MaRTE OS has been used to develop industrial embedded
systems and is also an excellent tool for educational
activities related to real-time embedded systems
programming.

This paper will give a high-level user perspective of
MaRTE OS for Ada programmers, and is intended for
people interested in evaluating the system, or using it for
developing embedded applications or for teaching real-time
programming.

The paper is organized as follows. Section 2 gives some
details on the architecture of MaRTE OS that are useful to
understand its principles of operation. Section 3 describes
the properties and installation procedures in a Linux
platform, while Section 4 does the same for a bare PC
platform. Section 5 describes the supported functionality,
and the usage procedures appear in Section 6. Finally,
Section 7 discusses future work.

2 Architecture
The central part of MaRTE OS is its kernel, which
implements the support for the concurrency services and
the functionality described in Section 5.

The kernel has a low-level abstract interface for accessing
the hardware. This hardware abstraction layer (HAL)
encapsulates operations for interrupt management, clock
and timer management, and thread context switches. Its
objective is to facilitate migration from one platform to
another, being the implementation of this hardware
abstraction layer the only part that needs to be modified in
that process.

The kernel provides a POSIX interface [4] through a
collection of Ada functions with the same profiles as the C
language POSIX functions. This approach implies two
important advantages:

• C applications can use the kernel directly, just a set of C-
header files are needed.

M. Aldea Rivas, M. González-Harbour 265

Ada User Journal Volume 30, Number 4, December 2009

• The GNAT run-time system for Linux is layered on top
of the C POSIX interface. So, it was easy to adapt it to
run on our kernel.

The operating system kernel is just one of the pieces that is
used in the MaRTE OS environment to execute Ada
applications. Other important components are the GNAT
run-time system, the C standard library and the device
drivers. MaRTE OS also provides a POSIX-Ada interface
(POSIX.5b) to facilitate synchronization between Ada tasks
and C threads.

Figure 1 shows the relationship among all these
components for an Ada application running on MaRTE OS
in a PC computer.

Figure 1 MaRTE OS Architecture

Although originally intended for embedded systems based
on the PC architecture, MaRTE OS has been also adapted
to behave as a POSIX-threads library for Linux. So
currently MaRTE OS can be used on the following
platforms:

• MaRTE on a bare PC (architecture “x86”). MaRTE OS
applications are stand-alone programs that can be
launched on a bare PC.

• MaRTE on Linux (Architectures “linux” and
“linux_lib”). MaRTE OS applications are executed as any
other standard Linux user process.

3 MaRTE on Linux
When running on Linux, MaRTE OS is used to provide
concurrency at the library level to Ada and C applications.
In the case of Ada, MaRTE OS is used as the POSIX-
threads library that supports the Ada tasking services
implemented by the run-time system of the GNAT
compiler.

MaRTE OS provides two different alternatives to execute
on Linux, which are treated as different architectures in the
MaRTE installation process but that, in fact, are very
similar. They are called “linux” and “linux_lib”
architectures and they differ in that the “linux_lib”

architecture uses the Linux libraries and file system, while
the “linux” architecture uses the standard C library
provided by MaRTE OS, and thus its own internal pseudo
file system.

The main differences between the architecture for bare PCs
and the “MaRTE on Linux” architectures are in the
hardware abstraction layer:

• In “MaRTE on Linux” a Linux timer is used instead of
the hardware timer of the “x86” architecture.

• In “MaRTE on Linux” Linux signals play the role of the
hardware interrupts in the “x86” architecture.

• The context switch routine is the same for the “linux”,
“linux_lib” and “x86” architectures.

The process of building an application for the “linux_lib”
architecture is shown in Figure 2. In first place, the user’s
code files are compiled. Next, the obtained object files are
linked with MaRTE and other static or dynamic Linux
libraries in order to build a standard Linux program.

“MaRTE on Linux” applications are executed as any other
standard Linux program and they can be debugged using
gdb or any other standard debugger.

Figure 2 Building an application for the

“linux_lib” architecture

Although MaRTE on Linux is a very convenient solution in
some cases, is has its limitations:

• Hard real-time behaviour cannot be achieved since
MaRTE applications are standard user processes that
share CPU time with all the other processes in the system
according to the Linux scheduling policies. As any other
process, they are affected by memory swapping, Linux
kernel activities, etc.

• Measurement of execution time of tasks is inaccurate
because context switches between the MaRTE application
and other Linux processes are not taken into account.
Accuracy is improved if there are no other user processes

266 Ada User Guide on MaRTE OS

Volume 30, Number 4, December 2009 Ada User Journal

running in the same box, but there can still be system
processes active.

• A common limitation of library-level concurrence is the
global blocking on I/O operations. Since only one Linux
thread is used to implement all the user’s tasks, a task
waiting for an I/O operation will imply the blocking of
the only Linux thread and, consequently, the whole
application will block.

Despite those limitations, MaRTE OS on Linux represents
a good choice to teach real-time Ada (or POSIX)
programming courses, because of the following
advantages:

• Correct behaviour of priorities and scheduling policies.

• New Ada 2005 real-time services: execution time clocks
and timers, task group execution time budgets, timing
events, dynamic ceiling priorities for protected objects
and additional scheduling policies: round robin, EDF, and
priority-specific dispatching.

• All in an inexpensive platform: free software in a
standard Linux box.

Apart from teaching activities, the “linux” and “linux_lib”
architectures can also be used as a fast mechanism to
perform preliminary functional testing of applications
before their definitive testing in the embedded computer.

3.1 Architecture “linux”
This architecture is intended to be as close as possible to
the “x86” architecture. With that purpose, the C standard
library used is the one adapted for MaRTE (instead of the
standard library provided with the Linux operating system).
This implies the MaRTE pseudo-file system is used and
dynamic memory management is performed by the malloc()
and free() functions provided by MaRTE, which implement
the TLSF algorithm [5] that has efficient time-bounded
allocation and deallocation.

This architecture only provides simple drivers for the
console and the keyboard. They just put and get characters
to and from the Linux “stdout” and “stdin” file descriptors
(as opposite to managing the hardware devices directly like
these drivers do in the “x86” architecture).

The structure of an Ada application running on the “linux”
architecture is shown in Figure 3. As it can be seen it is
very similar to the one shown in Figure 1, only changing
the drivers and the hardware abstraction layer.

Due to its similarity with the “x86” architecture, this
architecture is the most appropriate to perform preliminary
testing of applications before their final testing in the
embedded computer.

3.2 Architecture “linux_lib”
In this architecture MaRTE OS only behaves as a POSIX-
threads library that supports Ada tasking. Other POSIX
services not related to threading are delegated to the Linux
C standard library. In particular, the use of this library
implies that the dynamic memory management is carried

Figure 3 The “linux” architecture

out by Linux. The second implication, probably more
interesting for the users, is that the Linux file system and
other system features can be accessed from MaRTE
applications using the standard POSIX, Linux or Ada APIs
like in any other Linux program.

The structure of an Ada application running on the
“linux_lib” architecture is shown in Figure 4. The main
difference with Figure 3 is the use of the Linux C standard
library in place of the MaRTE C library and drivers.

This architecture is the most appropriate for those who
want to write Ada program that use the Linux services and,
at the same time, take advantage of the full Ada scheduling
and the new Ada 2005 real-time services provided by
MaRTE OS.

3.3 Installation
This subsection will provide an overview of the MaRTE
OS installation process for the “MaRTE on Linux”
architectures. For detailed information read the INSTALL
document included in the MaRTE tarball.

Figure 4 The “linux_lib” architecture

M. Aldea Rivas, M. González-Harbour 267

Ada User Journal Volume 30, Number 4, December 2009

Installing “MaRTE on Linux” is straightforward. You only
need a Linux computer with a working installation of the
GNAT-GPL-2009 compiler. Probably the easiest way of
installing MaRTE is downloading the binary tarball from
the MaRTE OS web page. Just unpack the tarball and run
the minstall script.

Just after running the minstall script you will have a
working MaRTE installation set to use the “linux_lib”
architecture. At this point it is already possible to make and
execute our first “MaRTE OS on Linux” program:

If you prefer to use the “linux” architecture you only need
to run the msetcurrentarch command (more on MaRTE
utilities in Section 6):

The applications compiled after executing that command
will use the chosen architecture.

4 MaRTE OS on a bare PC
When using this architecture, MaRTE OS applications are
stand-alone programs that can be launched on a bare PC.
This architecture is called “x86” in the MaRTE installation
process.

For “PC” we mean any “PC compatible” computer:
netbook, laptop, desktop, or embedded computer (e.g., a
PC104 single board computer) with a processor that is
binary compatible with 80386, 80486, Pentium, P-II, P-III
or P-IV processors. The computer should also have the
standard PC devices: Programmable Interrupt Controller
(PIC), Programmable Interval Timer (PIT), Real-Time
Clock (RTC), etc. In fact MaRTE OS requirements are very
standard and we have not found any PC-like computer
where MaRTE can not be run.

Going more into the details, a MaRTE program for this
architecture is a multiboot-compliant x86 ELF executable
that can be booted using any multiboot loader (e.g., GRUB,
the loader used by Linux). In this program the user’s code
is statically linked with all the libraries required to execute
in a bare PC: MaRTE OS kernel, drivers, C standard
library, etc. In the linking phase the code that performs the
initialization of the system is also included . This piece of
code will be the first to be executed once the application is
launched in the target. When the initialization finishes, the
main user’s procedure is executed. The process of building
an application is shown in Figure 5. The structure of an
Ada application running on the “x86” architecture was
shown in Figure 1.

4.1 Cross-development environment
An embedded systems development cycle is usually
performed in a cross-development environment. The cross-

Figure 5 Building an application for the “x86” architecture

development environment for MaRTE OS (architecture
“x86”) is shown in Figure 6. It is formed by a PC running
Linux as “Host” and a bare x86 PC as “Target”, with both
systems connected by an Ethernet LAN for application
downloading, and a serial line for remote debugging using
the GNU debugger gdb.

The application is built in the host computer using the
GNAT compiler and the scripts provided with MaRTE
(described in Section 6). Once the application has been
built it is downloaded to the target through the ethernet and
executed there. Details about this process are provided in
Section 4.4.

4.2 Target processor and timing services
The implementation of clocks and timing services in
MaRTE OS depends on the processor available in the target
computer.

If the processor is an 80386 or 80486, the Programmable
Interval Timer (PIT) is used both for the clocks (i.e., for

Figure 6 MaRTE OS cross development environment

268 Ada User Guide on MaRTE OS

Volume 30, Number 4, December 2009 Ada User Journal

measuring absolute or system time) and for the timing
services (i.e., those requiring the generation of a timed
event at the requested time). The PIT is a standard device in
the PC architecture that has three 16-bit counters driven
through a hardware clock signal of 838.1 ns period. The
main problem with the PIT is that its registers are accessed
through the old I/O bus in the PC architecture, which
makes accessing any of these registers a very slow
operation.

If a Pentium processor is available, the measurement of
absolute time can be implemented using the time-stamp
counter (TSC). This counter (as implemented in the
Pentium and P6 family processors) is a 64-bit counter that
is set to zero following the hardware reset of the processor.
Following reset, the counter is incremented every processor
clock cycle. Reading the value of this counter requires only
a single machine instruction and, because this counter is
internal to the processor and the I/O bus is not used, the
operation is very fast. In this implementation, timer
interrupts are still generated with the PIT’s Counter 0.

For P6 processors (Pentium II or higher) the overhead of
the timing services can be greatly diminished by using the
timer included in the Advanced Programmable Interrupt
Controller (Local APIC). The local APIC is included in all
P6 family processors. Although its main function is the
dispatching of interrupts, it also contains a 32-bit
programmable timer for use by the local processor whose
time base is derived from the processor's bus clock.

Accessing the TSC or the Local APIC is much faster than
using the PIT. Table 1 shows the comparison of the
overheads of the different time services implementations on
a target computer with a Pentium III at 500 MHz.

In addition to being more efficient, the resolution of the
time services improves when using more modern devices
like the TSC and Local APIC, as can be seen in Table 2.

Table 1 Comparison of the overheads of the time services
implementations

Table 2 Comparison of the resolution of the time services

implementations

4.3 Installation of MaRTE OS in the host
computer
The basic requirements to install “MaRTE on a bare PC” in
the host computer are the same than for “MaRTE on
Linux”: a Linux computer with a working installation of
the GNAT-GPL-2009 compiler. Just unpack the MaRTE

OS binary tarball and run the minstall script. At this point
you will have a working MaRTE installation set to use the
“linux_lib” architecture.

Using the msetcurrentarch script it is possible to set “x86”
as the default architecture (more on MaRTE OS scripts in
Section 6). For example, if you want to use the “x86”
architecture for a target with a Pentium II processor run the
following command:

You can now build an application for the “x86”
architecture using the mgnatmake script. A executable file
called hello_world will be created:

But this just created executable is not intended to be run on
Linux. You will obtain an error if you try to execute it that
way:

The program is trying to use the whole memory map of the
computer and to access the hardware directly, both
operations are not allowed in a protected operating system
as Linux and causes the segmentation fault. We have to run
our executable in a bare PC different from the host. This
computer is called the target computer in our cross-
development environment.

4.4 Setting up a cross-development environment
As we saw in Figure 6, our development environment has a
host and a target computer. The application is built in the
host and executed in the target; consequently, we need a
mechanism to transfer it from one computer to the other.

There are several alternatives to set up a cross-development
environment. The most convenient alternative is to use the
network to communicate host and target, and this involves
configuring protocols like DHCP, NFS and/or TFTP in the
host and it also requires a booting device in the target
(floppy, hard disk, flash RAM, PXE, etc.).

Lets briefly describe one of the simplest mechanisms to
download the application from the host computer to the
target. It is based on a target with floppy disk and uses the
Etherboot network loader [6].

First of all, you need an Etherboot floppy bootable ROM
image compatible with the Ethernet card of your target. It
can be easily generated at http://rom-o-matic.net/. The
image should be set to use the DHCP and NFS protocols.

The host should be configured as a DHCP server; its
configuration file (usually named as dhcpd.conf) should be
modified to add an entry with the ethernet MAC address of
the target computer together with its assigned IP address
and the location (directory and name) of the program to be

M. Aldea Rivas, M. González-Harbour 269

Ada User Journal Volume 30, Number 4, December 2009

executed. Similarly, the host should be configured as an
NFS server, configured to export the program location. The
executable file produced with the mgnatmake script should
be copied to the exported directory.

The process of booting the target computer is shown in
Figure 7. When the target is started it boots from the floppy
and, at this point, the Etherboot network loader takes over
the computer. The first step of Etherboot is to broadcast a
DHCP request asking for its IP address and the name and
directory of the program to be downloaded. The host has
been configured to reply to that request providing the
desired information. Then, Etherboot downloads the
MaRTE program from the given location using the NFS
protocol and places it at the appropriate position in
memory. Next, Etherboot passes the control to the program,
which performs the initialization of the target computer
and, finally, invokes the user’s main procedure.

Figure 7 Target boot process

For a more extensive information on the booting process
including instructions about how to configure the protocols
in the host, read the “MaRTE OS Boot process (x86
architecture)” document in the MaRTE OS web page. This
document also details how to set up a cross-development
environment for a target with hard disk, flash RAM or
PXE.

5 Supported functionality
MaRTE OS is an implementation of the POSIX.13 minimal
real-time system profile and as such it provides the services
defined in the standard, which can be grouped as:

• Concurrency services supporting the management of
threads.

• Scheduling with real-time policies based on preemptive
fixed priorities, and supporting variants such as FIFO

within priorities, round robin within priorities, or the
sporadic server.

• Synchronization through counting semaphores, mutexes,
and condition variables. Mutexes have support for real-
time mutual exclusion through the priority inheritance or
priority ceiling protocols.

• Signals, as an asynchronous notification mechanism.

• Time management though clocks and timers. A
monotonic clock that cannot have backward jumps is
provided for real-time applications. Timers can be created
to measure the passage of an absolute or relative time and
will generate a signal to notify the application about their
expiration.

• Execution-time clocks and timers are used to measure
execution time, which is needed for real-time analysis,
and to monitor and bound the usage of execution time,
which is crucial to ensure that the results of the
schedulability analysis hold during execution.

• Dynamic memory management, MaRTE OS uses the
TLSF [5] algorithm developed at the Technical
University of Valencia, which is a fast time-bounded
dynamic memory allocator with low fragmentation.

• Device I/O through a simplified device name space and
the standard open/close/read/write/ioctl operations.

In addition, the following service is not defined by the
POSIX standard (due to the difficulty for defining a fully
portable API), but is provided as a necessary service for
embedded applications:

• Interrupt management with the ability to install interrupt
handlers and manage interrupt masking. In MaRTE OS
there is separate accounting for the execution time of
interrupt handlers.

Most of these services are accessed through the equivalent
services defined in the Ada standard and thus the
application developer will use them transparently, without
any need for a specific knowledge. For instance, Ada tasks
are mapped to OS threads and are managed and scheduled
through the Ada language constructs. Mutexes and
condition variables are used to implement Ada’s protected
objects, and therefore synchronization is also achieved
through standard Ada constructs. The same happens with
time management, interrupt management, and dynamic
memory management, for which the Ada services are
transparently mapped to the corresponding MaRTE OS
services by the implementation. Execution time clocks and
timers are accessed through the API defined in Ada’s Real-
Time Annex.

In the case of mixed-language applications, if
interoperability is required between Ada and non-Ada
threads it is necessary to directly use the OS
synchronization primitives (mutexes and condition
variables) from the application level. Foreign threads
should not use protected objects because the Ada runtime
system is unaware of them and will not be able to provide
the correct support. The usage of mutexes and condition

270 Ada User Guide on MaRTE OS

Volume 30, Number 4, December 2009 Ada User Journal

variables from the Ada application is done following the
services defined in the standard POSIX-Ada bindings [7].

In addition to the POSIX services, MaRTE OS also
provides extensions that are useful to develop advanced
real-time applications. Some of these extensions are used to
implement the new real-time services defined in Ada 2005,
such as:

• Timed handlers, as a lightweight mechanism to define
small handlers that are executed in interrupt context at the
expiration of a timer. These handlers can also be used in
conjunction with execution time clocks.

• Earliest-Deadline-First (EDF) scheduling. This is a
preemptive dynamic-priority thread dispatching policy
that can be used to maximize the resource utilization in
real-time applications. It requires an implementation of
Baker’s protocol [8] for avoiding unbounded blocking
effects in accessing protected objects.

• Priority-specific dispatching, allowing two-level
scheduling policies, in which several policies can coexist.
This is specially useful in applications mixing different
kinds of timing requirements such as: critical hard real-
time tasks that need to be scheduled under fixed priorities
for predictability purposes; soft real-time tasks that
require high levels of utilization and therefore need an
EDF scheduler running at the intermediate priority bands;
and non-real time tasks running at a low priority level
under a round-robin scheduler that provides fairness
among them.

• The ability to create thread sets or groups, to be used for
instance to create clocks that measure the execution time
of a group of threads. These clocks can in turn be used to
create timers and timed handlers to implement advanced
scheduling policies or to detect and bound the effects of
timing violations by a group of threads.

With these services MaRTE OS provides full support for
the Ada 2005 real-time services with the exception of non-
preemptive scheduling.

Other extensions are provided by MaRTE OS which are not
defined in the Ada standard. The most important one is
application-defined scheduling [9], which is a group of
services intended to allow an application to install its own
scheduler for the OS threads (and therefore for Ada tasks).
This is particularly interesting to implement advanced
scheduling policies being defined by the real-time research
community.

6 Usage
In the utils/ directory, MaRTE OS provides a set of scripts
that allows building applications and configuring and
compiling MaRTE and its related libraries. When using
MaRTE it is convenient to have this directory in the PATH
environment variable in order to have direct access to these
basic commands.

6.1 Setting the current architecture
As we seen before, using the same installation of MaRTE
we can create applications for the three architectures:

“linux”, “linux_lib” and “x86”. The active architecture (i.e.,
the one the applications are going to be generated for) is
chosen using the msetcurrentarch script.

When used without parameters, msetcurrentarch returns the
current and the available architectures.

The main use of the msetcurrentarch script it to change the
current architecture. In order to configure “linux” as the
default architecture execute:

To choose “linux_lib”:

And to choose “x86”:

For the “x86” architecture, the -mproc flag allows
specifying the processor to be used:

• i386: any Intel x86-compatible processor. The PIT is used
for the timers and for the clock.

• pi: Pentium I or above. The PIT is used for the timers and
the TSC is used as the clock.

• pii: Pentium II or above. The LocalAPIC timer is used for
timers and the TSC is used as the clock.

6.2 Making applications
The main script to build an Ada application is mgnatmake.
This script is the MaRTE equivalent to the standard
gnatmake command for the GNAT compiler. The script
can be invoked with the same arguments that are used with
gnatmake. Examples of valid mgnatmake invocations are:

In these examples the -gnato option enables overflow
checking. The -g option specifies that debugging
information should be added to the executable file, while
-largs obj.o tells the linker to also link the specified object
file.

Internally the mgnatmake script invokes gnatmake with the
appropriate arguments and binder and linker switches
depending on the current architecture. In particular,
mgnatmake links the user's application code with the
appropriate MaRTE OS and/or Linux libraries as shown in
Figure 2 and Figure 5.

In case you need to perform compiling, binding and linking
phases independently, MaRTE OS also provides the
mgnatbind and mgnatlink scripts.

M. Aldea Rivas, M. González-Harbour 271

Ada User Journal Volume 30, Number 4, December 2009

The other basic script to make applications is mgcc. It is the
MaRTE replacement for gcc and, consequently, it can be
used to compile Ada files and, of course, to compile and
build C applications:

6.3 Recompiling MaRTE OS
When MaRTE OS is installed from the binary tarball the
kernel and libraries are compiled using full optimization
options. For most users this default configuration is enough
and they do not need to recompile MaRTE OS again.
However, there are some reasons why an advanced user
could be interested on recompiling MaRTE OS:

• In order to change the maximum number of resources
allowed in a MaRTE application and other configuration
parameters.

• In case you are making some modifications to MaRTE
OS or adding some new functionality.

• If you want to compile the kernel with some compiler
switches different than the default ones.

• If you want to enable some debug checks and messages in
the kernel.

• If you are installing a new device driver in the system.
• If you want to use the “tasks_inspector” tool which

allows obtaining a graphical trace of the task execution.

In the “MaRTE OS User’s Guide” included in the MaRTE
tarball you will find information about configuration
parameters, device drivers, debug checks, etc.

The script provided by MaRTE to compile the kernel,
libraries and drivers is mkmarte. This script accepts
gnatmake and/or gcc switches.

For example, to compile MaRTE for the current
architecture with debug information and assertions enabled
you can execute:

MaRTE OS also provides the mkrtsmarteuc script to
recompile the GNAT run-time for the current architecture.
For example to recompile the run-time system with debug
information you can execute:

7 Future work
The current implementation of MaRTE OS is designed to
run in single processors. Although MaRTE applications can
run in multicore platforms, only one of its cores will be
used. Since multicore platforms are becoming so usual, it is
important to redesign MaRTE OS to take full advantage of
such platforms. Therefore one of the main objectives for

future development of MaRTE OS has been set towards
this end.

Migration to other execution platforms is also in the agenda
for future work. In particular, the ARM family of
processors is quite popular in the embedded systems world
and is a good candidate for this migration effort.

Networking is available in MaRTE OS through real-time
protocols such as RT-EP or CAN-RT-TOP, but the
implementations of these protocols use special-purpose
APIs. It would be useful to implement POSIX sockets as
the API to access these networking services.

Finally, a simple extension is the addition of Ada’s non-
preemptive task dispatching policy, which would allow us
to provide complete support for the Ada 2005 Real-Time
Annex.

Acknowledgements
The authors would like to thank AdaCore for their support
and guidance, and for the help in the adaptation of the run-
time system. Special thanks also to all the many
contributors to MaRTE OS.

References
[1] IEEE Std. 1003.13-2003. Information Technology -

Standardized Application Environment Profile-POSIX
Realtime and Embedded Application Support (AEP).
The Institute of Electrical and Electronics Engineers.

[2] Mario Aldea Rivas, José F. Ruiz. “Implementation of
new Ada 2005 real-time services in MaRTE OS and
GNAT”. Lecture Notes on Computer Science (Vol:
4498), 29-40. June, 2007

[3] M. Aldea, M. González Harbour, José F. Ruiz.
“Implementation of the Ada 2005 Task Dispatching
Model in MaRTE OS and GNAT”. 14th International
Conference on Reliable Software Technologies - Ada-
Europe 2009. Brest, France. June, 2009.

[4] IEEE Std. 1003.1:2004 Edition, Information
Technology —Portable Operating System Interface
(POSIX). The Institute of Electrical and Electronics
Engineers.

[5] TLSF (Two-Level Segregate Fit) allocator.
http://rtportal.upv.es/rtmalloc/

[6] Etherboot network bootloader. http://etherboot.org/wiki/

[7] POSIX.5b (1996). IEEE Std 1003.5b-1996,
Information Technology — POSIX Ada Language
Interfaces — Part 1: Binding for System Application
Program Interface (API) — Amendment 1: Realtime
Extensions. The Institute of Electrical and Engineering
Electronics.

[8] Baker T.P., “Stack-Based Scheduling of Realtime
Processes”, Journal of Real-Time Systems, Volume 3,
Issue 1 (March 1991), pp. 67–99.

[9] Mario Aldea Rivas and M. González Harbour.
“A New Generalized Approach to Application-Defined
Scheduling”. Proceedings of 16th Euromicro
Conference on Real-Time Systems (WiP), Catania,
Sicily (Italy), July 2004.

272

Volume 30, Number 4, December 2009 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Peter Dencker
Steinäckerstr. 25
D-76275 Ettlingen-Spessartt
Germany
Email: dencker@web.de
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. José Javier Gutiérrez
Ada-Spain
P.O.Box 50.403
28080-Madrid
Spain
Phone: +34-942-201-394
Fax: +34-942-201-402
Email: gutierjj@unican.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Saab Systems
S:t Olofsgatan 9A
SE-753 21 Uppsala
Sweden
Phone: +46 73 437 7124
Fax: +46 85 808 7260
Email: Rei.Strahle@saabgroup.com
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: ada@white-elephant.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	News
	Conference Calendar
	Forthcoming Events
	Book review
	Experiences in Evaluating Ada with a Pilot Project
	Couverture: an Innovative Open Framework for Coverage Analysis of Safety Critical Applications
	Generating Component-based AADL Applications with MyCCM-HI and Ocarina
	Ada User Guide on MaRTE OS

