

Ada User Journal Volume 33, Number 1, March 2012

ADA
USER
JOURNAL

Volume 33
Number 1

March 2012

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 5

Conference Calendar 32

Forthcoming Events 40

Special Contribution

 J. G. P. Barnes
“Rationale for Ada 2012: 2 Expressions” 45

Articles

 B. Sandén
“Entity-Life Modeling: Designing Reactive Software Architectures to the Strengths of Tasks” 54

Ada Gems 63

Ada-Europe Associate Members (National Ada Organizations) 68

Ada-Europe 2011 Sponsors Inside Back Cover

2

Volume 33, Number 1, March 2012 Ada User Journal

Editorial Policy for Ada User Journal
Publication
Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims
Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software
engineering issues and Ada-related
activities in Europe and other parts of
the world. The language of the journal
is English.

Although the title of the Journal refers
to the Ada language, any related topics
are welcome. In particular papers in
any of the areas related to reliable
software technologies.

The Journal publishes the following
types of material:

• Refereed original articles on
technical matters concerning Ada
and related topics.

• News and miscellany of interest to
the Ada community.

• Reprints of articles published
elsewhere that deserve a wider
audience.

• Commentaries on matters relating
to Ada and software engineering.

• Announcements and reports of
conferences and workshops.

• Reviews of publications in the
field of software engineering.

• Announcements regarding
standards concerning Ada.

Further details on our approach to
these are given below.

Original Papers
Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.
Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

News and Product Announcements
Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Since not all of
our readers have access to resources
such as the World Wide Web and
Usenet, or have enough time to search
through the information that can be
found in those resources, we reprint or
report on items that may be of interest
to them.

Reprinted Articles
While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it
a wider audience. This includes papers
published in North America that are
not easily available in Europe.
We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries
We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.
Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports
We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews
Inclusion of any review in the Journal
is at the discretion of the Editor.
A reviewer will be selected by the
Editor to review any book or other
publication sent to us. We are also
prepared to print reviews submitted
from elsewhere at the discretion of the
Editor.

Submission Guidelines
All material for publication should be
sent to the Editor, preferably in
electronic format. The Editor will only
accept typed manuscripts by prior
arrangement.
Prospective authors are encouraged to
contact the Editor by email to
determine the best format for
submission. Contact details can be
found near the front of each edition.
Example papers conforming to
formatting requirements as well as
some word processor templates are
available from the editor. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 3

Ada User Journal Volume 33, Number 1, March 2012

Editorial

In this first issue of volume 33 of the Ada User Journal, I would like to refer our readers to a change in the Journal’s Editorial
Team. Marco Panunzio, Journal’s News Editor since December 2008, is leaving the Journal, as he prepares to embark in a
new career. I am sure that you all join me in thanking Marco for his commitment and effort, and wishing him all the success
in this new period of his professional life.

At the same time, I am pleased that Jacob Sparre Andersen, from Denmark, has accepted the challenge to move from the role
of news contributor to the role of editor, volunteering some of his time to the preparation of the Journal; I express thanks and
welcome Jacob to the job. In order to allow for a smooth transition, the News Digest in this issue was jointly produced by
Marco and Jacob.

Continuing with contents of the Journal, the readers will also find the usual Calendar and Forthcoming Events sections,
provided by Dirk Craeynest. The latter with the advance information of the 17th International Conference on Reliable
Software Technologies – Ada-Europe 2012 that will take place next June in Stockholm, Sweden and the call for contributions
to the 2012 SIGAda conference, under the name of High Integrity Language Technology. I would like to particularly point
out the rich program of Ada-Europe 2012, of which I highlight the three keynote talks and the two panels, but also mention
the 15 referred scientific papers and 9 industrial presentations, the rich set of tutorials, and the special Ada in Motion session.
Reasons more than enough for me to exhort all Ada practitioners to attend this year’s Ada-Europe conference

As for the technical contents of the issue, we continue the publication of the Ada 2012 Rationale, with the chapter on
Expressions. This chapter describes and explains the new forms of expressions introduced in the language: if expressions,
case expressions, quantified expressions and expression functions. One of the main reasons for the introduction of these new
forms is to facilitate formulating contracts, but I am certain that these new forms will also prove to be valuable on their own
and will augment the already rich set of Ada features.

The issue also provides an article by Bo Sandén, from the Colorado Technical University, USA, presenting the entity-life
modeling design approach for multitasking software, and its application to Ada. As we all know, building multitasking
software is a challenging chore (being a correct and careful design a cornerstone), thus it is important to have available sound
and simple design approaches.

Finally, we conclude with two gems by Emmanuel Briot, on the implementation of the visitor pattern and overridable class
attributes in Ada.

Our best wishes for (Ada) 2012,

 Luís Miguel Pinho
Porto

March 2012
 Email: lmp@isep.ipp.pt

 5

Ada User Journal Volume 33, Number 1, March 2012

Quarterly News Digest
Marco Panunzio
University of Padua. Email: panunzio@math.unipd.it

Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organizations 5
Ada-related Events 5
Ada-related Resources 6
Ada-related Tools 6
Ada-related Products 13
Ada and GNU/Linux 13
Ada and Java 14
Ada Inside 14
Ada in Context 16

Ada-related
Organizations
Final draft version of the
Ada 2012 standard
From: Thomas Løcke
Date: Thu, 1 Dec 2011
Subject: Final version of the Ada 2012

standard released
URL: http://ada-dk.org/2011/12/

final-version-of-the-ada-2012-standard-
released/

Draft 14 of the Ada 2012 standard is
going to be the final version of what will
end up as Ada 2012, so if you have any
issues with the standard, now is the time
to speak up.
[http://www.ada-auth.org/standards/
ada12.html —mp]
If you want to know more about all the
shiny new stuff in Ada 2012, then I’d
suggest taking a look at the Ada 2012
Language Reference Manual and/or the
Annotated Ada 2012 Language Reference
Manual.
[http://www.ada-auth.org/standards/12rm/
html/RM-TTL.html
 http://www.ada-auth.org/standards/
12aarm/html/AA-TTL.html —mp]
Thanks to Marc C. for bringing this to my
attention.

Ada-related Events
[To give an idea about the many Ada-
related events organized by local groups,
some information is included here. If you
are organizing such an event feel free to
inform us as soon as possible. If you
attended one please consider writing a

small report for the Ada User Journal.
—mp]

FOSDEM 2012 —
Presentations and some
reactions
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Tue, 7 Feb 2012 22:07:00 +0000
Subject: FOSDEM 2012 - Presentations

Ada Developer Room on-line
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc

** All presentations available on-line **

Ada Developer Room at FOSDEM 2012

(Ada at the Free and Open-Source

Software Developers' European Meeting)
Saturday 4 February 2012

Université Libre de Bruxelles (U.L.B.),

Solbosch Campus, Room AW1.121
Avenue Franklin D. Roosevelt Laan 50,

B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

http://www.cs.kuleuven.be/~dirk/ada-

belgium/events/12/120204-fosdem.html

All presentations at the Ada Developer
Room, held at FOSDEM 2012 in Brussels
last Saturday, are available on the Ada-
Belgium web site now:
- "Welcome & Ada-Europe info"
 by Dirk Craeynest - Ada-Belgium
- "An introduction to Ada 2005 and Ada

2012"
 by Jean-Pierre Rosen - Adalog
- "Ada in the on-line multi-user game

Crimeville"
 by Jacob Sparre Andersen - Research &

Innovation
- "The contract model of Ada 2012"
 by Jean-Pierre Rosen - Adalog

- "Multicore programming support in
Ada"

 by José F. Ruiz - AdaCore
- "Lovelace: towards a full Ada OS"
 by Xavier Grave - Ada-France
- "Programming Arduinos in Ada"
 by Jacob Sparre Andersen - Research &

Innovation
- "Programming LEGO MINDSTORMS

robots in Ada"
 by José F. Ruiz - AdaCore
- "Ada on Rails"
 by David Sauvage - AdaLabs
- "PPETP: a P2P streaming protocol

implemented in Ada"
 by Riccardo Bernardini - University of

Udine
Presentation abstracts, copies of slides,
speakers bios, pointers to relevant
information, links to other sites, etc., are
all available on the Ada-Belgium site at
http://www.cs.kuleuven.be/~dirk/ada-
belgium/events/12/120204-fosdem.html
We'd like to also put some pictures and
recordings online that were taken during
the event. If you have material you would
like to share, or know someone who does,
then please contact me.
Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to the many
participants for their interest, and thanks
to everyone for another nice experience!
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Tue, 7 Feb 2012 23:05:10 +0000
Subject: Re: FOSDEM 2012 - Presentations

Ada Developer Room on-line
Newsgroups: comp.lang.ada,

fr.comp.lang.ada,comp.lang.misc
Ada seems to have made a good
impression at FOSDEM 2012 last
weekend.
See among others a brief blog-report on
the talk about programming a Lego
Segway-like robot :
http://legopunk.com/?q=node/104
Also, see some of the reactions on
Twitter:
http://twitter.com/#!/search/Ada%20FOS
DEM

6 Ada-related Tools

Volume 33, Number 1, March 2012 Ada User Journal

Was the best FOSDEM moment the
Lego Segway programmed in Ada?
One of my FOSDEM takeaway; it's
possible to program Arduino using Ada!
Haven't written any Ada for years -
interesting to see the latest developments
Will really need to try Ada out… seems
like a cool old school language…
Programming Lego Mindstorm in Ada.
This is gonna be cool.
Lego Mindstorms and Ada - curious!
at #fosdem, holding an #arduino-like
board with an accelerometer running
#ada and streaming real-time data to the
beamer :)
At FOSDEM, being introduced to #ada.
Seems lovely ;)
In a huge lecture hall listening to talk on
#ada about free and open source
software @fosdem by @AdaCore

All in all, it was nice to see quite some
interest from a very diverse public. And
although this year's DevRoom had 37%
more seats compared to our previous one
(81 vs. 59), plus more competition from
the +-20 parallel tracks, several of our
presentations drew a full room.
Ada is getting "cool"… ;-)

Open Source Days 2012 —
Ada related presentations
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Thu, 23 Feb 2012 21:47:27 +0100
Subject: Ada presentations at Open Source

Days in Copenhagen
Newsgroups: comp.lang.ada
There will be (at least) two Ada related
presentations at Open Source Days in
Copenhagen this year.
+ Programming Arduinos in Ada

Featuring the AVR-Ada compiler and
one or more microcontrollers
programmed in Ada.

+ A completely unfair and biased web
 framework benchmark

Featuring AWS in a prominent place on
the list of the "fastest" web frameworks.

Open Source Days takes place in
Copenhagen March 10th and 11th this
year. Conference web-site:
http://opensourcedays.org/2012/

Ada-related Resources
Ada and JSON
From: Thomas Løcke
Date: Mon, 21 Nov 2011
Subject: Getting down and dirty with Ada

and JSON
URL: http://ada-dk.org/2011/11/getting-

down-and-dirty-with-ada-and-json/

JSON is a pretty neat data-interchange
format. It is lightweight and both easy to
read and write. It is also ever so slowly
becoming the de facto standard for web-
applications, because it is extremely easy
to use with Javascript. As a matter of fact,
JSON is a subset of the object literal
notation of JavaScript so it can be used in
the language with no muss or fuss.
But how does JSON fare when coupled
with Ada?
Pretty good actually. I ventured into the
realm of JSON suspecting I would end up
having to write my own parser/generator,
but as luck would have it, one of my
favorite Ada libraries, GNATColl, turned
out to have support for JSON in its latest
SVN checkout, and even better: It was
pretty good!
I started mucking about with the
GNATColl.JSON package, and after an
initial failure to make it work (due to me
not being able to read properly), I made it
fly. And it flew well. It is both intuitive to
use, and very clean to read. There’s really
nothing bad to say about the JSON
support in GNATColl, except for perhaps
one little thing: It’s still very new, so new
in fact that at the time of writing, there’s
no entry for it in the GNATColl manual.
This is not a huge issue, but it’s worth
taking into consideration.
To really drive home the fact that I
enjoyed working with the
GNATCOLL.JSON package, I wrote a
couple of articles and dropped some test
code at my GitHub page:
My Ada-DK Wiki article Handling JSON
Using GNATColl
My FSFE blog post Ada with as side of
JSON
My JSON_Test example @ GitHub
In short: JSON and Ada programming is a
good match, so before settling on using
XML for your data-interchange needs,
perhaps it’s worth taking a look at JSON?
It is much nimbler and very easy to work
with.
[read the article above at
http://wiki.ada-dk.org/index.php/
Handling_JSON_Using_GNATColl
http://blogs.fsfe.org/thomaslocke/2011/11
/18/ada-with-a-side-of-json/
https://github.com/ThomasLocke/
JSON_test
—mp]

Ada in Denmark on Google+
From: Thomas Løcke
Date: Fri, 23 Dec 2011
Subject: Ada in Denmark @ Google+
URL: http://ada-dk.org/2011/12/ada-in-

denmark-google/
If you’re active on the excellent Google+
network, you might be interested in

knowing that you can now follow the Ada
in Denmark Google+ page.
[https://plus.google.com/u/0/
109362349065401961880 —mp]
Obviously we’ll post links to Ada news
both here and on the Google+ page, but
we also plan on using the page for
photos/videos from the open Ada-DK
meetings, and hopefully for some fun
interaction with other Ada programmers.
It would be pretty awesome if we could
build a network of Ada’ists on Google+,
so come join the revolution!

Red-black tree with SPARK
correctness proofs
From: Phil Thornley

<phil.jpthornley@gmail.com>
Date: Fri, 24 Feb 2012 09:06:59 -0000
Subject: ANN: SPARK: A red-black tree

with correctness proofs
Newsgroups: comp.lang.ada
A SPARK package implementing a red-
black tree is now available and
correctness proofs have been completed
for the code. (SPARK correctness is, of
course, partial correctness as there are no
proofs of termination of the operations.)
The archive can be downloaded from the
Data Structures page at:
http://www.sparksure.com/
The readme for the release is:
http://www.sparksure.com/resources/
rb_tree_V0_1_ReadMe.txt
In this version the Ada code is complete
and all the mandatory SPARK
annotations for information flow analysis
are included, but the optional proof
annotations within the operations in the
package body have been excluded. (I have
completed these, but they are not yet in a
publishable form.)
The tree elements store a single integer
value. A skeleton implementation of an
Ordered_Set package is included to show
how the tree package can be used to
create ordered containers for arbitrary
element types. The only additional
requirement is for a Key function for the
element type, returning an integer value,
where equivalent elements are defined as
those that have the same value for Key.
If you find this code useful then please let
me know (there is an email address with
the material in the archive). In particular I
am keen to know whether anyone would
like to have the annotations and rules that
complete the correctness proofs.

Ada-related Tools
Matreshka 0.2.0
From: Vadim Godunko

<vgodunko@gmail.com>

Ada-related Tools 7

Ada User Journal Volume 33, Number 1, March 2012

Date: Sat, 7 Jan 2012 14:43:41 -0800
Subject: Announce: Matreshka 0.2.0
Newsgroups: comp.lang.ada
We are pleased to announce new major
release of Matreshka. New release
includes:
- XML Base support
- XML Catalogs support
- IRI/URI utilities
- Windows-1250 and Windows-1252

codecs
- module to access to UML models
Complete list of new features is available
http://forge.ada-ru.org/matreshka/wiki/
ReleaseNotes/0.2.0
Source code is available for download
http://forge.ada-ru.org/matreshka/wiki/
Download
[see also "Matreshka 0.1.1" in AUJ 32‑3
(Sep 2011), p.136 —mp]

Tables for Ada v1.11
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sun, 22 Jan 2012 11:24:28 +0100
Subject: ANN: Tables for Ada v1.11
Newsgroups: comp.lang.ada
The library provides an implementation of
tables searched using string keys case-
sensitive and insensitive. Tables support
search for names of unknown length, i.e.
to parse a string using the table.
http://www.dmitry-kazakov.de/
ada/tables.htm
The new version provides Fedora and
Debian packages for both 32- and 64-bit
architectures.
[see also "Tables for Ada v1.11" in AUJ
28-2 (Jun 2007), p.74 —mp]

Simple components for Ada
v3.13
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 23 Jan 2012 19:20:03 +0100
Subject: ANN: Simple components v3.13
Newsgroups: comp.lang.ada
The library provides implementations of
- smart pointers and persistency layers

backed by a database,
- containers and data structures: directed

graphs, sets, maps, stacks, tables, string
editing, unbounded arrays,

- expression analyzers and parsers,
- lock-free data structures,

synchronization primitives (events, race
condition free pulse events, arrays of
events, reentrant mutexes, deadlock-free
arrays of mutexes),

- pseudo-random non-repeating numbers,

- symmetric encoding and decoding,
block and storage streams,

- IEEE 754 representations support.
http://www.dmitry-kazakov.de/ada/
components.htm
New in this release:
- minor bug fixes in the packages

Generic_Blackboard and
Strings_Edit.Symmetric_Serialization;

- adaptation to 64-bit targets;
- Fedora and Debian packages are

provided for both 32- and 64-bit
architectures.

[see also "Simple components for Ada
v3.12" in AUJ 32-4 (Dec 2011), p.212
—mp]

GTKAda contributions
v2.11
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 23 Jan 2012 21:24:15 +0100
Subject: ANN: GtkAda Contributions v2.11
Newsgroups: comp.lang.ada
The library is a contribution to GtkAda. It
deals with the following issues:
- Tasking support;
- Custom models for tree view widget;
- Custom cell renderers for tree view

widget;
- Multi-columned derived model;
- Extension derived model (to add

columns to an existing model);
- Abstract caching model for directory-

like data;
- Tree view and list view widgets for

navigational browsing of abstract
caching models;

- File system navigation widgets with
wildcard filtering;

- Resource styles;
- Capturing resources of a widget;
- Embeddable images;
- Some missing subprograms;
- Improved hue-luminance-saturation

color model;
- Simplified image buttons and buttons

customizable by style properties;
- Controlled Ada types for GTK+ strong

and weak references;
- Simplified means to create lists of

strings;
- Spawning processes synchronously and

asynchronously with pipes;
- Capturing asynchronous process

standard I/O by Ada tasks and by text
buffers;

- Source view widget support.

http://www.dmitry-kazakov.de/ada/
gtkada_contributions.htm
This version is compatible with the
GtkAda version 2.24.0.
[see also "GTKAda Contributions v2.10"
in AUJ 32-4 (Dec 2011), p.214 —mp]

Paraffin 2.4
From: Brad Moore

<brad.moore@shaw.ca>
Date: Sat, 11 Feb 2012 11:17:21 -0700
Subject: ANN: Paraffin 2.4
Newsgroups: comp.lang.ada
Paraffin is a set of Ada 2005 generics that
may be used to add parallelism to iterative
loops and recursive code.
Paraffin also includes a suite of useful
parallel utilities that utilize the Paraffin
generics. These include generics for;
1) generic to integrating a function in

parallel
2) generic to apply quicksort algorithm in

parallel to an array
3) generic to apply fast fourier transform

to an array of data.
4) generic Red-Black tree container that

performs some operations in parallel.
5) function to solve matrices using Gauss-

Jordan Elimination
Paraffin 2.4 modifications include:
- Added a reusable utility to solve a

matrix of linear equations using Gauss-
Jordan Elimination.

- Added test_matrix test driver for
parallel/sequential matrix solvers

- Red-Black Tree containers fully
implemented now. (Delete, and Contains
calls work)

- Split Red-Black Tree container into
separate generics

 o Sequential
 o Work sharing
 o Work Seeking
 o Stack Safe Work Seeking
- The Red Black Tree generic was

previously intended mostly as a test
driver for Paraffin Recursive generics.
Now the generic has been completed to
a state where it can be reused on its own
as as generic container.

- Changed use of Unchecked_Conversion
for Recurse subprogram access to use
'Unrestricted_Access instead. This
cleaned the code up considerably in this
area. One issue to look into, is that
'Unrestricted_Access is a non-standard
attribute. It is supported by both GNAT
and the ICC compiler however. It may
not be supported by other Ada 2005
compilers. Unfortunately,
Unchecked_Conversion in this case is
not portable either, and may not even
continue to work with the existing

8 Ada-related Tools

Volume 33, Number 1, March 2012 Ada User Journal

compilers, so it was thought that using
'Unrestricted_Access was the best option
for now. Will investigate to see if there
is a possibility for a better solution, or
providing a portable mechanism in a
future version of Ada.

[download Paraffin from
http://sourceforge.net/projects/paraffin/
see also "Paraffin" in AUJ 32-1 (Mar
2011), p.8 —mp]

Interval arithmetic v1.10
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Mon, 13 Feb 2012 18:42:36 +0100
Subject: ANN: Interval arithmetic for Ada

v1.10
Newsgroups: comp.lang.ada
The package provides an implementation
of interval arithmetic.
http://www.dmitry-kazakov.de/ada/
intervals.htm
This version is packaged for Fedora and
Debian, 32- and 64-bit x86 architectures.
[see also "Interval Arithmetic for Ada
v1.8" in AUJ 31‑2 (Jun 2010), p.87
—mp]

Visual Ada Developer 7.6
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Mon, 2 Jan 2012 04:05:36 -0800
Subject: Announce: Visual Ada Developer

VAD 7.6
Newsgroups: comp.lang.ada
Visual Ada Developer (VAD) 7.6 is now
available
http://users1.jabry.com/adastudio/
index.html
VAD is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License
as published by the Free Software
Foundation; either version 2 of the
License, or (at your option) any later
version.
VAD is distributed in the hope, that it will
be useful, but WITHOUT ANY
WARRANTY; without even the implied
warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR
PURPOSE.
VAD 7.6 Common description.
1. VAD (Visual Ada Developer) is a
Tcl/Tk oriented Ada-95(TCL) GUI
builder portable to difference platforms,
such as Windows NT/Vista/7,
Unix(Linux), eComStation(Os/2) and
Mac.
You may use it as IDE for any Ada
(C,C++,TCL) project.
VAD generated Ada sources, you may
compile and build executable or generate
TCL script to interpret with Tcl/Tk

VAD 7.6 was tested in Windows
32bit/64bit and Linux x86 Debian 5
2. Used software
GNAT GPL 2011 Ada-05 compiler (or
any others 95, 2005 or 2012)
[complete list of used software stripped
—mp]
[see also "Visual Ada Developer 7.4" in
AUJ 31‑3 (Sep 2010), p.158 —mp]

Ada industrial control
widgets v1.1
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Tue, 24 Jan 2012 22:02:51 +0100
Subject: ANN: Ada industrial control

widgets v1.1
Newsgroups: comp.lang.ada
The library provides means for designing
high-quality industrial control widgets for
Ada applications. The software is based
on GtkAda and cairoada, Ada bindings to
GTK+ and cairo. The key features of the
library:
- Widgets composed of transparent layers

drawn by cairo;
- Fully scalable graphics;
- Support of time controlled refresh policy

for real-time and heavy-duty
applications;

- Caching graphical operations;
- Stream I/O support for serialization and

deserialization;
- Ready-to-use gauge, meter, oscilloscope

widgets;
- Editor widget for WYSIWYG design of

complex dashboards.
http://www.dmitry-kazakov.de/ada/
aicwl.htm
This release introduces waveform layers
and multi-channel oscilloscope widgets
for rendering massive amounts of data in
real-time, with data sampled
asynchronously to rendering. The
oscilloscope widget can be used for
plotting purpose as well. The widget
supports graph papers, annotated axes,
auto- and manual scaling, visual zooming,
zooming undo/redo buffers, mouse
hovering. All widgets support rendering
of snapshots on the surfaces supported by
cairo, e.g. into a PDF or SVG file. The
library is fullycompatible to the GtkAda
versions 2.14, 2.18 and 2.24. It is
packaged for Debian and Fedora, 32- and
64-bit x86 platforms.
[see also "Ada industrial control widget
library v1.0" in AUJ 32‑1 (Mar 2011),
p.11 —mp]

GWindows (11-Feb-2012)
From: Gautier de Montmollin

<gdemont@users.sourceforge.net>
Date: Sat, 11 Feb 2012 07:05:15 -0800

Subject: Ann: GWindows installer, 11-Feb-
2012

Newsgroups: comp.lang.ada
Hello,
A short announce about a new release of
GWindows, a GUI framework for
Windows.
For years this framework has been
maintained and developed (especially, it
builds for both 32 and 64 bit!), but only
available through a SVN checkout.
Now there is a setup program, GWindows
Setup 11-Feb-2012.exe, that facilitates the
access to that fantastic framework. In
particular, you can choose easily between
ANSI and Unicode flavours.
Look here for download:
http://sf.net/projects/gnavi/
Note that the setup program is 100% in
Ada, and of course made with GWindows
on the GUI side.
[see also "GWenerator 0.99" in AUJ 31‑1
(Mar 2009), p.11 —mp]

External logging support for
AWS
From: Thomas Løcke
Date: Fri, 11 Nov 2011
Subject: Adding external logging support to

AWS
URL: http://ada-dk.org/2011/11/adding-

external-logging-support-to-aws/
As you know, I like the AWS (Ada Web
Server) project a lot, and I have on
previous occasions submitted patches to
them, when I felt I had a contribution
worthwhile bothering the AWS
developers with.
This is one such occasion.
Together with a bunch of Ada-DK guys,
I’ve started a new business […], and we
plan on using AWS heavily, and one of
the small “annoyances” we stumbled on,
was the fact that AWS could only log it’s
activity and error log data to a local file.
This is both potentially inefficient under
heavy load, and it is a real security issue if
the server is compromised, because the
attacker then have easy and unlimited
access to the log data.
So we really wanted to enable AWS to
send its log data to something like
syslogd, and as luck would have it,
another AdaCore package could help us
do just that: GNATColl. This little marvel
of a package can talk to syslogd, so now
all that was needed was a way to connect
AWS to said functionality.
And that’s just what I’ve done. Or rather,
I’ve written a patch that gives AWS users
the ability to send access and/or error log
data to an external procedure.
This procedure can then make use of
GNATColl’s Traces.Syslog package to
handle the log data. Obviously this also

Ada-related Tools 9

Ada User Journal Volume 33, Number 1, March 2012

opens up the possibility of sending the log
data to wherever it might suit a given
AWS user. You don’t have to use
GNATColl.
It’s a very flexible and basic system
really. My hope is that even if the AWS
developers dismiss my patch, for one
reason or another, they’ll at least consider
adding the functionality to AWS, because
it really is a deal breaker […] if AWS
can’t do logging to an external service
such as syslogd.
We’ll be keeping our fingers crossed.
[find the patch at
https://gist.github.com/1348697 —mp]

AWS patched for the 28c3
hash vulnerability
From: Thomas Løcke
Date: Fri, 20 Jan 2012
Subject: AWS patch the 28c3 hash

vulnerability
URL: http://ada-dk.org/2012/01/aws-patch-

the-28c3-hash-vulnerability/
January the 3rd.and 9th. I posted two
short messages to the AWS mailing list,
asking whether AWS was susceptible to
this attack […]. I got no answer, but from
looking at the hash function used, I was
pretty sure AWS was just as vulnerable as
all the other web technologies. This was
confirmed at the January open Ada-DK
meeting, where we spent some time
checking out the code.
Things were also stirring at the #ada
Freenode IRC channel, and January the
17th.
Marcelo Freitas put together a test, and
actually found 46656 hash collisions
simply by bruteforcing the
Ada.Strings.Hash function, which is what
AWS used at the time.
Those 46656 collision were enough to
keep one core running at 100% for 3
minutes, using a simple “Hello World”
AWS server.
Marcelo sent his findings to the AWS
developers, and shortly thereafter these
fixes were pushed to the AWS Git
repository:
Implement a secure string hash routine.
[https://forge.open-do.org/plugins/
scmgit/cgi-bin/gitweb.cgi?
p=aws/aws.git;a=commitdiff;h=9f1405b7
9f48cc0c98b97b7c84dee6c1107dae8a
—mp]
Use AWS.Utils.Hash secure string hash
routines.
[https://forge.open-do.org/plugins/
scmgit/cgi-bin/gitweb.cgi?
p=aws/aws.git;a=commitdiff;h=d22ec0db
402027f87476d197ef02af24784c0faf
—mp]
The power of Open Source software is
amazing. This fix went in the same day

Marcelo had reported the issue. That is
just plain awesome.
AWS now ranks proudly among the few
web technologies where this problem has
been fixed.

Ada Server Faces 0.3.0
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Tue, 14 Feb 2012 23:18:42 +0100
Subject: [Ann]: Ada Server Faces 0.3.0 is

available
Newsgroups: comp.lang.ada
Hi all,
Ada Server Faces is a web framework
which uses the Java Server Faces design
patterns (See JSR 252 and JSR 314).
JSF and ASF use a component-based
model for the design and implementation
of a web application.
The presentation layer is implemented
using XML or XHTML files and the
component layer is implemented in Ada
2005 for ASF and in Java for JSF.
A new version of ASF is available which
provides:
- New components used in HTML forms

(textarea, select, label, hidden);
- New components for the AJAX

framework;
- Support for dialog boxes with jQuery

UI;
- Pre-defined beans in ASF contexts:

param, header;
- A complete set of example and

documentation for each tag.
It has been compiled and ported on Linux,
Windows and Netbsd (GCC 4.4, GNAT
2011, GCC 4.6.2).
You can download this new version at
http://code.google.com/p/ada-asf/
downloads/list.
A live demo is available at:
http://demo.vacs.fr
[see also "Ada Server Faces" in AUJ 31‑4
(Dec 2010), p.229 —mp]

QtAda 2.7.4
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Sun, 4 Dec 2011 22:45:20 -0800
Subject: I'm pleased to announce QtAda

version 2.7.4
Newsgroups: comp.lang.ada
Announce: QtAda version 2.7.4 free
edition.
QtAda is Ada-95(05,12) port to Qt4
graphics library Qt version
4.7.3(4.7.4,4.8.0) open source and
qt4c.dll(libqt4c.so) built with Microsoft
Visual Studio 2010 in Windows and
GCC in Linux. Packages were tested with
GNAT GPL 2011 Ada compiler in

Windows 32bit and 64bit and Linux x86
Debian 5.
It supports GUI, SQL, Multimedia, Web,
Network and many others things.
QtAda for Windows and Linux (Unix) is
available from
http://users1.jabry.com/adastudio/
index.html
[…]
From: Leonid Dulman

<leonid.dulman@gmail.com>
Date: Thu, 22 Dec 2011 02:49:01 -0800
Subject: Re: I'm pleased to announce QtAda

version 2.7.4
Newsgroups: comp.lang.ada
[…]
QtAda 2.7.4 Release 2 is now available. I
added QPlugin support, rebuilt shared
library in Linux with Qt 4.7.4, added new
demos. And good news: Qt 4.7.3 is now
ported to eComStation(Os/2) and
precompiled binaries are available on
ADASTUDIO 2011 DVD.
QtAda free edition is available
http://users1.jabry.com/adastudio/
index.htm=l
[see also "QtAda 2.7.0" in AUJ 31‑3 (Sep
2010), p.159 —mp]

Ada binding to the v8
Javascript engine
From: Kylix <likai3g@gmail.com>
Date: Mon, 23 Jan 2012 03:44:18 -0800
Subject: Ann: ada binding to v8(google

javascript engine)
Newsgroups: comp.lang.ada
I made a binding to v8 (google javascript
engine), with some examples, such as a
simple shell.
[…]
[download the software at
http://code.google.com/p/v8a/ —mp]

CUDA/Ada version 0.1
From: Reto Buerki <reet@codelabs.ch>
Date: Tue, 14 Feb 2012 10:15:10 +0000
Subject: ANN: CUDA/Ada version 0.1
Newsgroups: comp.lang.ada
We proudly announce the first release of
CUDA/Ada, a binding to NVIDIA's
CUDA parallel computing platform and
programming model.
The project website is at [1], the current
release 0.1 can be downloaded from [2].
An article documenting the binding as
well as the originating process can be
accessed via the project website.
Additionally, there is also a presentation
about CUDA/Ada.
This project was developed during the
course of the master seminar "Program
Analysis and Transformation" at the
University of Applied Sciences

10 Ada-related Tools

Volume 33, Number 1, March 2012 Ada User Journal

Rapperswil. We would be glad to get
some feedback from the community about
the interest in the topic of GPU
programming with Ada.
We are currently considering the
improvement of CUDA/Ada as part of the
next master seminar if somebody finds
this project useful.
[…]
[1] - http://www.codelabs.ch/cuda-ada/
[2] - http://www.codelabs.ch/download/
[see also "On CUDA and Ada" in this
AUJ issue —mp]

GNAT-AUX updated to
GCC 4.6.2
From: John Marino

<dragonlace.cla@marino.st>
Date: Sun, 8 Jan 2012
Subject: GNAT AUX Synced with GCC 4.6.2
URL: http://www.dragonlace.net/posts/

GNAT_AUX_Synced_with_GCC_4.6.2/
This has been a long time coming, but the
upgrade of GNAT-Aux to version 4.6.2
was not straight-forward. First, two more
languages were added: Fortran and
Objective-C. As a result of adding these
two languages and running their test
suites, platform misconfigurations were
uncovered, and fixing them is a long
iterative process.
The second major change is that custom
tarballs are no longer used. Instead, the
basis for the compiler are official GCC
releases and then GNAT-AUX changes
are applied as patches on top of that. This
has two benefits:
It will be easier to move to GCC 4.7.0
when it is released and it will be easier to
isolate patches to send back to FSF to
permanently incorporate into the code
base.
Both additional languages and patch
isolation have been requested, so this
important upgrade satisfies those requests.
FreeBSD: PR to upgrade ports submitted:
PR 163914
DragonFly, NetBSD, OpenIndiana:
Available on pkgsrc-trunk lang/gnat-aux
It was committed after the 2011Q4 freeze
was complete, so if one needs it before
2012Q1 branch is released, they'll have to
get it from pkgsrc-trunk.
Test results
Test results over 5 languages on 9
platforms are available on this report.
[http://leaf.dragonflybsd.org/~marino/
results/gnataux_test_results.pdf —mp]
From an Ada view, all pkgsrc and ports
platforms still pass 100%.

Alog 0.4
From: Reto Buerki <reet@codelabs.ch>

Date: Tue, 22 Nov 2011 14:46:35 +0000
Subject: Announce: Alog 0.4 released
Newsgroups: comp.lang.ada
We are proud to announce the release of
Alog version 0.4.
Alog is a versatile logging framework for
Ada. This release of Alog contains
improved syslog support and reworked
exception handling among other smaller
cleanups.
For further information visit the new Alog
project page at
http://www.codelabs.ch/alog.

D_Bus/Ada
From: Reto Buerki <reet@codelabs.ch>
Date: Mon, 5 Dec 2011 11:17:30 +0000
Subject: Announce: D_Bus/Ada, talk with

your desktop in Ada
Newsgroups: comp.lang.ada
I'm proud to announce the first release of
D_Bus/Ada.
The D_Bus/Ada library provides an Ada
binding to the D-Bus message bus used
for inter-process communication on most
modern Linux desktop systems.
D_Bus/Ada supports all but two basic
D-Bus types (file descriptor and signature
types are not yet implemented) and all
container types [1].
The current release focuses on the client
side of the D-Bus API but it is also
possible to provide D-Bus services
written in Ada using the service object
interface of D_Bus/Ada.
For further information visit the
D_Bus/Ada project page at [2].
[…]
[1] - http://dbus.freedesktop.org/doc/dbus-
specification.html#type-system
[2] - http://www.codelabs.ch/dbus-ada
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Mon, 05 Dec 2011 12:40:19 +0100
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
> [2] - http://www.codelabs.ch/dbus-ada
At the bottom of the above page, in
section “Examples”, there's a

 with D_Bus.Arguments.Basic;
 with D_Bus.Arguments.Containers;

Then later

 pragma Unreferenced
 (D_Bus.Arguments.Basic);
 pragma Unreferenced
 (D_Bus.Arguments.Containers);

Do you withed both for initialization side
effects ?
From: Reto Buerki <reet@codelabs.ch>

Date: Mon, 5 Dec 2011 12:12:54 +0000
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
No. This is needed to make the basic and
container types known to the D_Bus/Ada
type system. D_Bus/Ada uses generic
dispatching to create Arguments from
low-level D-Bus message arguments.
The example does not use specific
argument extensions, that's why both
packages are Unreferenced.
E.g. if you remove 'with
D_Bus.Arguments.Containers' in this
example you'll get:

raised D_BUS.D_BUS_ERROR :
Unknown type code 'a' in message

The type system does not know how to
deserialize the D-Bus ARRAY(97) type.
From: Yannick Duchêne

<yannick_duchene@yahoo.fr>
Date: Mon, 05 Dec 2011 12:45:09 +0100
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
Also, please, it's always better to show
license terms on-page too, not only in
sources.
License is often the first thing one may
which to check for.
When license terms are exposed on-page
(at least by reference), this avoid the need
to download all the source just to check
for the license.
Actually, the license for this one seems to
be GPL, but the above page does not say
anything about it.
From: Reto Buerki <reet@codelabs.ch>
Date: Mon, 5 Dec 2011 12:27:53 +0000
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
You are certainly right. Thanks for your
feedback! The D_Bus/Ada project page
now contains a 'Licence' section.
> Actually, the license for this one seems

to be GPL, but the above page does not
say anything about it.

The licence of D_Bus/Ada is GMGPL.
From: Tero Koskinen

<tero.koskinen@iki.fi>
Date: Mon, 5 Dec 2011 21:43:30 +0200
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
For those who are wondering what to do
with this, here is an example:
http://iki.fi/tero.koskinen/dbus-ada/notify/

Ada-related Tools 11

Ada User Journal Volume 33, Number 1, March 2012

In summary:

Name_A :
 Arguments.Basic.String_Type :=
 +"ada.notify";
Replaces_ID_A :
 Arguments.Basic.U_Int32_Type :=
 +33;
App_Icon_A :
 Arguments.Basic.String_Type :=
 +"";
Summary_A :
 Arguments.Basic.String_Type :=
 +"Hello";
Body_A :
 Arguments.Basic.String_Type :=
 +"Hello, World from Ada!";
 …
begin

 -- Arguments
 Args.Append (Name_A);
 …
 Result := Connection.Call_Blocking
 (Connection => Conn,
 Destination =>
 "org.freedesktop.Notifications",
 Path =>
 "/org/freedesktop/Notifications",
 Iface =>
 "org.freedesktop.Notifications",
 Method => "Notify",
 Args => Args);

After running the program, you should
see a notification with text "Hello, World
from Ada!" on your GNOME/KDE
desktop.
[…]
PS. For some reason dbus-ada does not
allow me to use/serialize empty arrays, so
I fill the arrays with dummy data in my
code.
From: Reto Buerki <reet@codelabs.ch>
Date: Tue, 6 Dec 2011 08:02:56 +0000
Subject: Re: Announce: D_Bus/Ada, talk

with your desktop in Ada
Newsgroups: comp.lang.ada
[…]
Thanks for this example Tero. With your
permission it is now included in
D_Bus/Ada. I slightly simplified it, see
[1].
[…]
I have to look into this. I'll try to add
support for empty containers in the next
release.
[1] - http://git.codelabs.ch/?
p=dbus-ada.git;a=blob;
f=examples/notify/notify.adb

tg – a test driver generator
for Ada programs
From: Thomas Løcke
Date: Tue, 27 Dec 2012
Subject: tg – a Test driver Generator for

Ada programs
URL: http://ada-dk.org/2011/12/tg-a-test-

driver-generator-for-ada-programs/
Testing software is usually not considered
the most fun part of programming.
For most it’s a chore, something that we
do because we have to, not because we
think it’s fun and exciting, so naturally if
a tool claims to ease this pain, it’s worth
taking a look at. tg is one such tool:
>tg is a program that helps testing

software. If you want to test a piece of
software, that normally means you have
to execute it over and over again,
passing various sets of input data to it,
and verifying that it gives the correct
results for each input. You normally
write a program that does all this
automatically. Such a program is called
a “test driver”.

>tg can generate such test driver
programs, given a very succinct
description of the individual test cases.
tg translates this description into a
complete Ada program. If you compile
this test driver, link it with the software
you want to test, and execute it, it
performs all the test cases and tells you
whether the software under test behaved
as expected or not.

Sounds good, yes? And it gets better
when you read the documentation and see
how simple it is to get going. Check out
this small example or if you’re in the
mood for some more reading, how about
this larger example.
tg is written in Ada 95, and it should
compile “out of the box” with the GNAT
compiler. tg is the brainchild of André
Spiegel.
[http://www.free-software-
consulting.com/projects/tg/ —mp]

A comparison between the
Aunit and Ahven testing
frameworks
From: Thomas Løcke
Date: Wed, 4 Jan 2012
Subject: Aunit vs Ahven
URL: http://ada-dk.org/2012/01/

aunit-vs-ahven/
I’ll be honest with you: I’m not very good
at using testing frameworks.
I know I’m supposed to, but I just can’t
get around to actually doing it.
Luckily for me, not all programmers are
like that, and one of those bright ones is
Stephane Carrez of Java 2 Ada fame.
[http://blog.vacs.fr/index.php? —mp]

His latest article is named Aunit vs.
Ahven and as the name implies, it deals
with the two testing frameworks Aunit
and Ahven.
> AUnit and Ahven are two testing

frameworks for Ada. Both of them are
inspired from the well known JUnit
Java framework. Having some issues
with the Aunit testing framework, I
wanted to explore the use of Ahven.
This article gives some comparison
elements between the two unit test
frameworks. I do not claim to list all
the differences since both frameworks
are excellent.

 Writing a unit test is equally simple in
both frameworks. They however have
some differences that may not be
visible at the first glance.

Stephane list both good and bad points for
both frameworks and ends up concluding
that you don’t have to choose between the
two! Instead you can use his Util.XUnit
package to expose a common interface to
both frameworks.
Here’s the specification for Util.XUnit for
Aunit
[http://code.google.com/p/ada-util/
source/browse/trunk/testutil/aunit/
util-xunit.ads —mp]
and here is Util.XUnit for Ahven
[http://code.google.com/p/
ada-util/source/browse/trunk/testutil/
ahven/util-xunit.ads —mp]
Quite nifty.
[read the original post at
http://blog.vacs.fr/index.php?post/2011/
11/27/Aunit-vs-Ahven —mp]

Ada Utility Library 1.4.0
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Sun, 15 Jan 2012 22:41:33 +0100
Subject: [Ann]: Ada Utility Library 1.4.0 is

available
Newsgroups: comp.lang.ada
Hi all,
Ada Utility Library is a collection of
utility packages for Ada 2005.
It includes:
- A logging framework close to Java log4j

framework,
- Support for properties
- A serialization/deserialization

framework for XML, JSON, CSV
- Ada beans framework
- Encoding/decoding framework (Base16,

Base64, SHA, HMAC-SHA)
- A composing stream framework (raw,

files, buffers, pipes)
- Several concurrency tools (reference

counters, counters, pools)

12 Ada-related Tools

Volume 33, Number 1, March 2012 Ada User Journal

A new version is available which
provides:
- Support for localized date format,
- Support for process creation and pipe

streams (on Unix and Windows),
- Support for CSV in the serialization

framework,
- Integratation of Ahven 2.1 for the unit

tests (activate with --enable-ahven),
- A tool to generate perfect hash function
It has been compiled and ported on Linux,
Windows and Netbsd (gcc 4.4, GNAT
2011, gcc 4.6.2).
You can download this new version at
http://code.google.com/p/ada-util/.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Mon, 16 Jan 2012 00:10:38 -0800
Subject: Re: : Ada Utility Library 1.4.0 is

available
Newsgroups: comp.lang.ada
Hm, I looked at your beans, and I do not
see the value of this.
What's the advantage of returning
components with string names versus
returning them as usual?
First of all, the components are visible.
[…]
From: Georg Bauhaus
Date: Mon, 16 Jan 2012 12:48:15 +0100
Subject: Re: : Ada Utility Library 1.4.0 is

available
Newsgroups: comp.lang.ada
[…]
TTBOMK, beans at the most basic level
will usually exist so that there is a way for
some kind of configurable framework to
automatically write ("serialize") plain old
Ada objects to external storage, and
restore them as Ada objects, as needed.
(There is more, like transactions, or
events sent to beans.) The external storage
typically provides for storing
conventional database types; the storage
can be configured without touching the
programs, and can be anything that meets
some simple requirements, not just
RDMSs. Could be JSON, or XML, too.
JSON is particularly hip if you want
communication with Google terminals,
such as Android devices or browser based
virtual machines, JSON being a Javascript
format (assoc lists).
The easiest way to map plain old objects
to external storage is via symbolic names
understood at both the Ada end and at the
data storage end. The resulting objects
can be used by programs written in other
languages, too. As long as the data items
are complete (no references, say), the data
storage needs only know, for each data
item to be handled, a pair consisting of
the name of data item, and the predefined
type of item, perhaps in some data nest
fashion. Hence, I think,

subtype Polytype is
 Util.Beans.Objects.Object;
-- for illustrating the multi-type nature
overriding
 function Get_Value (
 From : Compute_Bean;
 Name : String) return Polytype;

together with the definition of a mapping
between Polytype, names, and program
types.
<Side-note related="somewhat">Rumor
has it that not all projects are entirely
happy after having moved away from
plain old relational SQL (such as JDBC)
to object storage (such as Hibernate).</>
From: Stephane Carrez

<Stephane.Carrez@gmail.com>
Date: Mon, 16 Jan 2012 21:31:25 +0100
Subject: Re: : Ada Utility Library 1.4.0 is

available
Newsgroups: comp.lang.ada
[…]
The purpose of these Ada beans is to be
able to give access to object values and
object methods from withing a
presentation layer.
The benefit of Ada beans comes when
you need to get a value or invoke a
method on an object but you don't know
at compile time the object or method.
That step being done later through some
external configuration or presentation file.
In this case, you need somehow to
dynamically retrieve the members of an
object (hence the Get_Value) and see
what methods it exposes (hence the
Get_Method_Bindings).
In a presentation page, the Ada bean
values could be referenced as follows:

Height: #{compute.height}
Radius: #{compute.radius}

which triggers a call to Get_Value with
the 'height' or 'radius' names on an object
registered under the name 'compute'.
To learn more on this presentation topic, I
invite you to look at the following article:
http://blog.vacs.fr/index.php?post/2011/
03/21/Ada-Server-Faces-Application-
Example

Units of measurement for
Ada v3.2
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 27 Jan 2012 18:33:52 +0100
Subject: ANN: Units of measurement for

Ada v3.2
Newsgroups: comp.lang.ada
The library is provided for handling
dimensioned values in Ada. The library
supports irregular and shifted
measurement units. String formatting and

GTK+ widgets and cell renderers are
provided.
http://www.dmitry-kazakov.de/
ada/units.htm
Changes to the version 3.1:
- The procedure Put in

Measures_UTF8_Edit has additional
parameters Field, Justify, Fill;

- Fedora and Debian packages are
provided for both 32- and 64-bit
architectures.

[see also "Units of Measurement for Ada
v3.1" in AUJ 31‑3 (Sep 2010), p.162
—mp]

SparForte 1.3
From: Master of Magic

<koburtch@gmail.com>
Date: Sat, 4 Feb 2012 14:37:32 -0800
Subject: ANN: SparForte 1.3 (Release

Candidate)
Newsgroups: comp.lang.ada
SparForte 1.3 (Release Candidate)
Type : Programming Language
Platforms: Linux i386/x86_64/Alpha and
FreeBSD
License: GPL
Home URL:
http://www.pegasoft.ca/sparforte.html
Source URL:
https://github.com/kburtch/SparForte
SparForte is an Ada-based command
shell, template engine and scripting
language. There are 23 built-in packages
and more than 80 example scripts.
The sources on GitHub should be
considered a release candidate for version
1.3. If you are interested, please try it out
and notify me of any bugs you find.
Changes in Version 1.3
- with separate (that is, include files)
- new memcache packages
- new JSON functions and related

pragmas
- support for unit testing
See ChangeLog in the sources for a
complete list.
Started in 2001 as the Business Shell,
SparForte is an open project project.
Because I'm working on this in my spare
time, let me know if you find SparForte
useful. Volunteers are encouraged to
contribute examples, tutorials, new built-
in packages, post examples to Rosetta
Code, etc.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Tue, 07 Feb 2012 17:01:39 +0100
Subject: Re: ANN: SparForte 1.3 (Release

Candidate)
Newsgroups: comp.lang.ada
[…]

Ada and GNU/Linux 13

Ada User Journal Volume 33, Number 1, March 2012

FYI, I managed to compile it without
much trouble in Ubuntu 11.10. I had only
to install the relevant SDL/mysql/pgsql
packages and export GMAKE=make
[…]
From: Julian Leyh <julian@vgai.de>
Date: Thu, 9 Feb 2012 01:17:53 -0800
Subject: Re: ANN: SparForte 1.3 (Release

Candidate)
Newsgroups: comp.lang.ada
FYI, I created an ArchLinux PKGBUILD
of version 1.2.1 (will update as soon as
1.3 is released):
https://aur.archlinux.org/
packages.php?ID=56486
I removed the sound support, because it
requires /dev/dsp, and I was told this
belongs to OSS, which blocks sound IO
while in use.
If anybody knows better or has ideas how
to solve this, please correct me.
(maybe oss as makedepends may work?)

Ada-related Products
AdaCore — Qualification
material for GNATcheck
and GNATcoverage
From: AdaCore Press Center
Date: Tue, 29 Nov 2011
Subject: Qualification Material Available

for GNATcheck and GNATcoverage
URL: http://www.adacore.com/2011/11/29/

qualification-gnatcheck-gnatcoverage/
AdaCore releases components allowing
more agile software certification
NEW YORK, PARIS and TOULOUSE,
France, November 29, 2011 –
Certification Together Conference –
AdaCore, provider of Ada tools and
expertise for the mission-critical, safety-
critical, and security-critical software
communities, today announced the
availability of qualification material for
two tools: GNATcheck, an Ada coding
standard and rule checker; and
GNATcoverage, a non-intrusive structural
code coverage analyzer. These
qualification documents extend existing
AdaCore certification material that
includes the Traceability Analysis
Package, a source-to-object code
traceability study for the GNAT Pro
High-Integrity Edition. These new
products will help the development of
certified applications compliant with the
DO-178B avionics software safety
standard, up to level A, and will apply
equally to DO-178C, the upcoming
revision to DO-178B.
The qualification packages allow
developers to take credit for the use of the
GNATcheck and GNATcoverage tools in
the certification of applications in
accordance with the DO-178B standard,

at level A and below (Table A5 objective
4, and Table A7 objectives 5, 6, and 7,
respectively).
The Traceability Analysis Package
answers the need for the additional
verification work required by DO-178B,
level A, as part of the structural code
coverage activity. It enables the use of the
GNAT Pro compiler to meet Table A7
objective 7, in accordance with the
guidelines described in the Certification
Authority Software Team’s Position
Paper CAST-12. The traceability analysis
material establishes traceability between
source code and object code and provides
additional verification for untraceable
code, as described in section 6.4.4.2.b of
the DO-178B standard.
The analysis is performed on a set of code
patterns that is representative of the
customer’s application.
With this release, AdaCore has taken the
first steps in developing a certification
artifacts management system. Named the
“Qualifying Machine,” it is an agile
framework that supports the development,
maintenance and modification of software
tools and their associated qualification
material.
It facilitates providing multiple versions
of a tool, each supported by its accurate
and up-to-date qualification material.
Modifying the tool to integrate new
features, or fixing reported issues, is now
possible, and requalification can be done
incrementally and in a cost-effective
manner. The ultimate goal is to fully
support an agile, incremental, and
continuous certification process that
automates the most time-consuming
certification activities, such as the
management and verification of
traceability data.
This strategy was described in a recent EE
Times article ‘The “Big Thaw” – An
Agile Process for Software Certification.’
“Offering off-the-shelf qualifiable tools
that evolve and improve along with the
rest of the technology is the challenge we
are in the process of solving.
This will bring the latest and most
innovative features to those who need
them, without compromising the absolute
requirement for safety,” said Cyrille
Comar, President, AdaCore Europe.
About AdaCore
Founded in 1994, AdaCore is the leading
provider of commercial software solutions
for Ada, a state-of-the-art programming
language designed for large, long-lived
applications where safety, security, and
reliability are critical. AdaCore’s flagship
product is the GNAT Pro development
environment, which comes with expert
on-line support and is available on more
platforms than any other Ada technology.
AdaCore has an extensive world-wide
customer base.

See
http://www.adacore.com/home/company/
customers for further information.
Ada and GNAT Pro see a growing usage
in high-integrity and safety-certified
applications, including commercial
aircraft avionics, military systems, air
traffic management/control, railway
systems, and medical devices, and in
security-sensitive domains such as
financial services. The SPARK Pro
toolset, available from AdaCore, is
especially useful in such contexts.
AdaCore has North American
headquarters in New York and European
headquarters in Paris. www.adacore.com
[…]

Adalog — AdaControl
1.13r8
From: J-P. Rosen <rosen@adalog.fr>
Date: Thu, 01 Dec 2011 13:09:14 +0100
Subject: [Ann] AdaControl 1.13r8 released
Newsgroups: comp.lang.ada
A new version of AdaControl is available
from
http://www.adalog.fr/adacontrol2.htm
Apart from a number of new rules (412
checks!) and bug fixes as usual, this
version is now able to process Ada 2005
code without choking. This required
updating a number of rules (for example,
all rules dealing with return must now
handle the extended return statement). A
couple of the new rules deal with
Ada2005 constructs, too.
Note that, as announced before, the files
are now hosted on SourceForge, and that
the bleeding edge version is available
there from the GIT repository. Note also
that it is possible to report issues through
the MantisBT system on SourceForge.
If you are a regular user, please click on
"I use this" from AdaControl's home
page, and/or support it from the
SourceForge page.
Let's build up a community of users!
[see also "AdaLog — AdaControl 1.12r3"
in AUJ 31-3 (Sep 2010), p.163 —mp]

Ada and GNU/Linux
GNAT 4.6 moving to
Debian/testing
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Fri, 17 Feb 2012 09:42:47 +0000
Subject: Re: Transition to gnat-4.6 current

status
Mailing list: debian-ada@lists.debian.org
This is a status update about the transition
to gnat-4.6.
The previous status update is at

14 Ada Inside

Volume 33, Number 1, March 2012 Ada User Journal

http://lists.debian.org/debian-
ada/2011/12/msg00013.html
adabrowse OK
adacgi OK
adacontrol OK
adasockets OK
ahven OK
apq
apq-postgresql
asis OK
gnade OK
gnat OK
gnat-gps OK
gnatpython OK
(renamed to python-gnatpython)
gprbuild OK
libaws OK
libalog
libaunit OK
libflorist OK
libgmpada OK
libgtkada2 OK
(renamed to libgtkada)
liblog4ada OK
libncursesada OK
libtemplates-parser OK
libtexttools OK
libxmlada OK
libxmlezout OK
music123 OK
narval
(ready but build-depends on polyorb)
opentoken OK
pcscada OK
polyorb
(ready but build-depends on gnatpython)
spark OK
topal OK
As you can see, all but a few packages
have now transitioned to gnat-4.6. In a
couple of weeks, I shall request that
packages that still have not made the
transition be removed from testing (but
not unstable) so that other packages can
migrate to testing.
Also, a minor change in Debian Policy for
Ada is forthcoming: we will remove the
virtual package ada-compiler, which is
not really necessary and causes lots of
lintian warnings [1]. So, please go ahead
and upload updates to your packages to
remove dependencies on ada-compiler.
The last step will be to upload a gnat-4.6
that does not Provide: ada-compiler. I
hope to do this last upload in May at the
latest, in time for the freeze in June.
[1] http://lists.debian.org/debian-
ada/2011/12/msg00012.html

Ada and Java
JVM-GNAT GPL 2011 for
Mac OS X Snow Leopard
From: Blady <p.p11@orange.fr>
Date: Sun, 4 Dec 2011 13:14:07 -0800
Subject: JVM-GNAT GPL 2011 binaries for

Mac OS X available
Newsgroups: comp.lang.ada

Hi, I've upload JVM-GNAT GPL 2011
binaries for Mac OS X Snow Leopard on
Source Forge:
http://sourceforge.net/projects/gnuada/
files/GNAT_GPL%20Mac%20OS%20X/
2011-snow-leopard/
In addition to JVM-GNAT from
AdaCore, to build the library and tools,
some patches have been needed from
Stephe Leake (nice from him to put on his
web site http://www.stephe-leake.org/)
All seems to be fine but not with Applet,
I've got an error:

java.lang.ClassNotFoundException:
Applet

Has any one some clue?
Is it due to wrong execution
configuration?
Is it due to wrong compilation?
A simple Ada Applet example can be
found here:
http://blady.pagesperso-orange.fr/
telechargements/jgnat/Essai_Ada.zip

Ada Inside
‘Project P’ and ‘Hi-MoCo’
research projects
From: AdaCore Press Center
Date: Wed, 1 Feb 2012
Subject: ‘Project P’ and ‘Hi-MoCo’

Research Projects Launched
URL: http://www.adacore.com/2012/02/01/

project-p-and-hi-moco/
Open-source research projects combine
model-based integration and qualified
code generation for safety-critical systems
TOULOUSE, France, PARIS and NEW
YORK, February 1, 2012 – ERTS
Congress - AdaCore today announced its
participation in ‘Project P’ and ‘Hi-
MoCo’ (High-Integrity Model Compiler),
two open-source research efforts
supported and partly funded by the French
and Estonian national governments and
the European EUREKA agency. The
combined projects, which started in
October 2011, aim to provide an open-
source, tunable and qualifiable code
generation framework for domain-specific
modeling languages. The key idea is to
allow control engineers (using Simulink,
Stateflow and Scicos/XCos), system
engineers (using SysML/MARTE and
AADL), and software engineers (using
UML) to easily collaborate for system-
level model integration, verification, and
final optimized code generation targeting
the Ada 2012, C/C++ and VHDL
languages.
AdaCore, the technical coordinator of the
projects, is working closely with the IB
Krates team led by Tõnu Näks and
members from IRIT (Institut de

Recherche en Informatique de Toulouse)
led by Marc Pantel, the principal
architects of the ITEA GeneAuto project
and technology on which Project P and
Hi-MoCo are based.
AdaCore, IB Krates, and IRIT will be the
principal contributors to the code
generation technology at the heart of the
toolset being developed. Together with
Frédéric Pothon of ACG Solutions and
chair of the Tool Qualification subgroup
of the DO-178C committee, the three
companies will play a major role in the
cross-domain qualification effort
spanning the avionics, space, and
automotive domains. AdaCore’s expertise
in developing and supporting the
certification/qualification of tunable,
open-source commercial-of-the-shelf
(COTS) components and tools that meet
safety and reliability certification
standards such as DO-178 (avionics) and
ECSS-E-ST-40 (space) will be especially
relevant.
“The ultimate goal of these projects is to
end the segregation between the control,
system and software engineers,” said
Franco Gasperoni, Managing Director of
AdaCore. “A major bottleneck in the
model-driven development of software for
avionics, space, and automotive systems
is the integration of heterogeneous models
and the lack of comprehensive
verification and code generation
technologies. Project P and Hi-MoCo aim
to solve this problem by developing an
open-source, tunable and qualifiable code
generation framework for heterogeneous
models, while making cross-domain
qualification material available.”
“The current state-of-the-art is to perform
integration on generated sources,”
concluded Matteo Bordin, project
manager of the Project P and Hi-MoCo
efforts at AdaCore. “We are proposing to
do this at the model level to verify
integration issues well before models are
mature enough for code generation.”
About Project P
Project P is a three-year research project
financially supported within the French
FUI 2011 funding framework. Headed by
Continental Automotive France, it
involves the collaboration of 19 partners,
including major industrial users from the
avionics, automotive and space domains
(Airbus, Astrium, Continental
Automotive, Rockwell Collins, Safran,
Thales Alenia Space and Thales
Avionics), technology providers
(AdaCore, Altair, STInformatique, Scilab
Enterprise), service companies (ACG
Solutions, Aboard Engineering, Atos
Origins) and research centers (ENPC,
IRIT-INPT/CNRS, INRIA, ONERA, Lab-
STICC/Université de Bretagne Sud).
Additional information can be found at
http://www.open-do.org/projects/p.
About Hi-MoCo

Ada Inside 15

Ada User Journal Volume 33, Number 1, March 2012

Hi-MoCo is a two-year research project
financially supported within the Eurostar
2011 funding framework. It supports the
collaboration of IB Krates (Estonia),
IRIT, and AdaCore.
[…]

Eurocopter selects GNAT
Pro for Military Helicopter
ARINC 653 Project
From: AdaCore Press Center
Date: Tue, 29 Nov 2011
Subject: Eurocopter Selects GNAT Pro for

Military Helicopter ARINC 653 Project
URL: http://www.adacore.com/2011/11/29/

arinc-653-project/
NEW YORK, PARIS and TOULOUSE,
France, November 29, 2011 –
Certification Together Conference –
AdaCore, provider of Ada tools and
expertise for the mission-critical, safety-
critical, and security-critical software
communities, today announced that
Eurocopter has chosen the GNAT Pro
High-Integrity Edition for development of
an ARINC-653 demonstrator for military
helicopters.
The demonstrator will provide military
interfaces and operational functions
within a time- and memory-partitioned
ARINC-653 architecture.
The GNAT Pro High-Integrity Edition for
DO-178B will be used to port military
avionics operational functions and Ada
software drivers onto an ARINC-653
platform. The objectives of the project are
twofold: to demonstrate Integrated
Modular Avionics (IMA) capabilities at
the test rig level in the military domain,
and to provide an ARINC-653 platform to
capture technical and process
requirements for following IMA military
projects.
The GNAT Pro High-Integrity Edition for
DO-178B is an enhanced version of the
GNAT Pro Ada development
environment, designed for building safe
and secure software. In addition to some
of its toolchain features, specifically
developed for the highest levels of safety,
it includes qualifiable tools (coding
standard checker, static stack size
analyzer) that help reduce the cost of
developing and certifying systems that
have to meet safety standards such as DO-
178B. Key to achieving this goal is the
product’s fully configurable and
customizable run-time library. Units can
be selected in an a la carte fashion, thus
limiting the run-time library to just those
units that are required for the Ada features
used in the application, while also making
it possible to adapt their implementation,
if desired.
[…]
About Eurocopter

Established in 1992, the Franco-German-
Spanish Eurocopter Group is a division of
EADS, a world leader in aerospace,
defense and related services. The
Eurocopter Group employs approximately
17,500 people. In 2010, Eurocopter
confirmed its position as the world’s
number one helicopter manufacturer in
the civil and parapublic market with a
turnover of 4.8 billion Euros, orders for
346 new helicopters and a 49 percent
market share in the civil and parapublic
sectors. Overall, the Group’s helicopters
account for 33 percent of the total
worldwide civil and parapublic fleet.
Eurocopter’s strong worldwide presence
is ensured by its 30 subsidiaries and
participations on five continents, along
with a dense network of distributors,
certified agents and maintenance centers.
There are currently 11,200 Eurocopter
helicopters in service and some 2,900
customers in 147 countries. Eurocopter
offers the largest civil and military
helicopter range in the world.

Indirect information on Ada
usage
[Extracts from and translations of job-ads
and other postings illustrating Ada usage
around the world. —mp]
Job offer [France]: Embedded Software
Engineer
In the department for the development
and maintenance of embedded software
for on-board systems […] (Ariane 5,
Vega, ATV, or other demonstrators), you
will work in the development team.
Tasks and responsibilities
You will participate to the following
activities:
- Specification and formalization of

requirements;
- Design, implementation and test of

products;
- Project reviews of software for the

aforementioned products.
Required skills
You hold an Engineering MSc with a
specialization in Embedded Real-Time
Systems, and you have previous
experience with the following:
- Unix environment
- C, C++ and Ada programming

languages
- Advanced software design methods

(UML/SysML, SCADE, formal
methods, model-based engineering)

- Run-time execution profiles (C-
SMART, T-SMART, etc.)

[…]
[translated from French —mp]
Job offer [France]: Embedded Software
Engineer

[…]
You will work in a project team for the
development of future IMA (Integrated
Modular Avionics) systems […]
You will be in charge of developing
safety- and security-critical applications
using a V life-cycle (design,
implementation and unit tests) and use
methodologies that conforms with the
constraints of the domain (DO-178B
standard).
You have a scientific 5-year degree and
you have previous experience in the
development of safety-critical software
(embedded or real-time) and in adhering
to development standards.
You have good knowledge of one of the
following languages: C/C++/Ada
The knowledge of the specification
language B or of modeling with SCADE
is an asset.
Your professional skills and your
contribution to the project will enable the
progress of your career towards Project
Lead or Senior Expert positions.
[…]
[translated from French —mp]
Job offer [France]: Embedded Software
Architect
[…]
You will work in a site specialized in the
design and production of electronic on-
board and ground systems (monitoring &
control, signaling).
The activity concerns the definition and
conception of electronic and
telecommunication solutions for future
railway systems.
Your task:
Working in the "Software Architecture"
team of the Engineering department, you
will participate in the development of our
electronic systems.
Considering our client requirements:
- You will define the specification and the

software architecture of the product;
- You will lead the development;
- You will have the role of senior expert

among the development teams.
Your profile:
You are an engineer in industrial
informatics, and you have at least 3-years
experience in the design and modeling of
systems with UML or SADT/SART. You
master RTOS such as Linux, QNX or
µC/OS, the languages C or Ada, and you
are knowledgeable of open software.
You have good experience in the
development of critical systems.
[…]
[translated from French —mp]

16 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

Job offer [United Kingdom]: Software
Engineer
[…]
The On Board Software Group require a
hardworking and enthusiastic engineer
who will be responsible for participating
in Technology Research and
Development activities for future
missions. This will involve:
- Contributing innovative ideas to

improve future spacecraft software
development projects.

- Developing business opportunities with
internal and external technical staff.

- Developing software to flight or
demonstrator standards as required

- Producing requirements and design
documentation to ESA [European Space
Agency —mp] standards

- Preparing and presenting papers at
technical conferences

Essential skills:
-The ideal candidate must have an

engineering, computer science or
scientific degree (min 2.1)

Specific knowledge is required in:
- Real-time software systems and

computer science
- Modern software engineering methods

and tools
Experience is required in:
- Programming languages C or Ada and

Java
- Object-oriented design methods
- Embedded systems and development
- Real-time operating systems
Desirable skills:
- SPARC microprocessors
- Communication systems protocols
- UML
- Hardware design and development e.g.

use of VHDL
- ESA space programmes and applications
- Software development standards

(preferably ECSS-E40)
- Proposal Preparation
- Giving Technical presentations
[…]
Job offer [United Kingdom]: Software
Engineer
[…] seeking experienced Software
Engineers to join an established team,
who are responsible for upgrading
simulation software used to train Royal
Navy Maritime Operators in a "synthetic
environment".
Due to expanding workload for
equipment upgrades, additional Software
Engineers are required on the project. […]

Job Details
- To monitor, assess and produce

innovative real-time computing product
concepts, demonstrators, standards and
specifications, both bespoke and 'off the-
shelf'.

- To evolve from the software
requirements a design and test
philosophy in order to produce a top
level and detailed design that will be
used as a baseline for the maintainable
software implementation including the
prediction of software size and
performance.

- To produce unit and integration test
descriptions that incorporate the
appropriate test philosophies.

- To produce fully tested code units in the
appropriate software language that fully
implement all requirements on the Client
hardware, using the software detailed
design as the baseline.

Responsibilities
Reporting to the Software Development
Lead, the successful candidates will be
part of the team responsible for the
upgrade of a number of simulations.
The role will include:
- Requirements analysis and definition
- Software Design and Development
- Software Implementation using a variety

of languages including C, C#, Ada
83/95.

- Integration and Acceptance
- Supporting site acceptance activities
- Configuration Management and

Software Build (Subversion)
- Customer liaison
- Defect Management
Job offer [United Kingdom]: Software
Engineer
Software Engineer - War Game
Simulation Key Responsibilities:
- To support Requirements Capture,

Functional Specification and Software
Design

- Development of software using native
languages or other software packages

- Design test procedures, and perform
Verification and Test of software

- Provision of software consultancy and
advice to clients

- Perform and deliver allocated project
tasks, to quality, time and budget
requirements, as directed by project
manager and/or team leader

- Diligent and accurate work ethic,
recognising that many of the
applications we work on are safety-
related

- Communicate effectively with
colleagues and clients.

Software Engineer - War Game
Simulation Qualifications and
Experience:
- Numerate degree (Computer Science or

Mathematics preferred)
- Good Knowledge of one or more of the

following programming languages: C,
C++, C#, Ada, Visual Basic or Java in
the Visual Studio .NET environment

- Experience of PC based software
development

- Enthusiastic proponent of full software
life-cycle best practice (requirements
capture, design, documentation, testing,
etc.)

- Experience of war gaming or simulation
model development

- Experience of database development
using SQL Server

- Experience of GUI development
- Experience of safety-related software
- Experience of embedded, real time

systems
- We will also be interested in hearing

from any candidates with experience of
Formal Methods or Compiler
Development.

Ada in Context
On CUDA and Ada
From: Dirk Craeynest

<dirk@vana.cs.kuleuven.be>
Date: Fri, 16 Dec 2011 07:05:53 +0000
Subject: NVIDIA opens up CUDA compiler

for other languages
Newsgroups: comp.lang.ada
Just read the following announcement:
<quote>
NVIDIA Opens Up CUDA Compiler
GPU maker NVIDIA is going to make its
CUDA compiler runtime source code, and
internal representation format public,
opening up the technology for different
programming languages and processor
architectures. […]
Read More: http://www.hpcwire.com/ct/
uz5609392Biz12256180
</quote>
The full announcement says the LLVM
compiler infrastructure will be used as the
vehicle for the public CUDA source code.
The main idea seems to be to allow others
to use the technology (among others) with
programming languages that NVIDIA is
not pursuing themselves.
Interesting for Ada?
From: Adrian-Ken Rueegsegger

<ken@codelabs.ch>
Date: Fri, 16 Dec 2011 14:43:56 +0100
Subject: Re: NVIDIA opens up CUDA

compiler for other languages

Ada in Context 17

Ada User Journal Volume 33, Number 1, March 2012

Newsgroups: comp.lang.ada
[…]
If I understood the article correctly this
requires a working LLVM-Frontend for
Ada. I do not know what the status of the
current implementation [1] is but maybe
somebody more knowledgeable about
LLVM with regards to Ada could
comment on that and give their take?
Incidentally Reto Buerki and me have
been working on an Ada-Binding for
CUDA. Those interested in using CUDA
from Ada might want to check out the
project website [2] and the source
repository [3].
The low-level thin-binding is complete
and we added some abstractions on top of
that. Many ideas/goals were inspired by
the excellent Python binding pyCUDA
[4]. We have not made a release yet since
we are currently working on the
documentation. If you give CUDA/Ada a
try we would be happy if you would let us
know what you think.
[…]
[1] - http://llvm.org/docs/
GCCFEBuildInstrs.html#ada
[2] - http://www.codelabs.ch/cuda-ada/
[3] - http://git.codelabs.ch/
?p=cuda-ada.git
[4] - http://mathema.tician.de/software/
pycuda
[see also " CUDA/Ada version 0.1" in this
AUJ issue —lmp]
From: jonathan

<johnscpg@googlemail.com>
Date: Fri, 16 Dec 2011 07:08:47 -0800
Subject: Re: NVIDIA opens up CUDA

compiler for other languages
Newsgroups: comp.lang.ada
[…]
I haven't had a chance to try it yet, but the
new LLVM 3.0 has been out a few weeks,
along with the new Ada front end
http://dragonegg.llvm.org/
They say:
> Patching and building GCC is no longer

required: the plugin should work with
your system GCC (version 4.5 or 4.6;
on Debian/Ubuntu systems the gcc-4.5-
plugin-dev or gcc-4.6-plugin-dev
package is also needed).

which sounds encouraging.
From: Rugxulo <rugxulo@gmail.com>
Date: Mon, 19 Dec 2011 15:35:34 -0800
Subject: Re: NVIDIA opens up CUDA

compiler for other languages
Newsgroups: comp.lang.ada
[…]
Clang does not have an Ada frontend. It's
a "C language"-based compiler only, e.g.
C / C++ / Objective C / Objective C++.
LLVM is the backend, hence the (now
deprecated, no longer updated, not

available in LLVM 3.0) LLVM-GCC
(GCC 4.2) compiler was needed to
compile Ada source code while targeting
the LLVM backend.
DragonEgg is a plugin for GCC proper
(specifically, 4.5.x or 4.6.x) which targets
the LLVM backend. Since GCC (only,
and not Clang) has an Ada frontend /
compiler, you must use that.

Raspberry PI and Ada
From: Simon Wright

<simon@pushface.org>
Date: Tue, 10 Jan 2012 12:16:06 +0000
Subject: Raspberry Pi
Newsgroups: comp.lang.ada
This Armv6-based linux-on-a-credit-card
[1] for $25 ($35 with Ethernet) is going to
be available soon, with Debian (amongst
others).
I see that Debian stable […] has armel
support for GNAT and emacs but not
GPS.
Sounds hopeful?!
[1] http://www.raspberrypi.org/
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Tue, 10 Jan 2012 06:24:21 -0800
Subject: Re: Raspberry Pi
Newsgroups: comp.lang.ada
[…]
gnat-gps 4.3-5 is available on armel in
Debian 6 "Squeeze".
gnat-gps 5.0-4 is available on armel in
Debian unstable (but took 9 hours and 20
minutes to build…)
> Sounds hopeful?!
 [1] http://www.raspberrypi.org/
Interesting! This looks like something
even Richard Stallman would approve
of :)
From: Simon Wright

<simon@pushface.org>
Date: Tue, 10 Jan 2012 16:23:41 +0000
Subject: Re: Raspberry Pi
Newsgroups: comp.lang.ada
I was taking the info from the bottom of
http://packages.debian.org/stable/devel/
gnat-gps which doesn't show armel. But
good to know it _is_ available!
> gnat-gps 5.0-4 is available on armel in

Debian unstable (but took 9 hours and
20 minutes to build…)

Much easier to see the availability in
unstable/devel, thanks (esp. for all that
build time! I hope it was unattended…)

On elaboration circularity
with generics
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sat, 14 Jan 2012 07:09:18 -0800

Subject: Elaboration circularity with
generics

Newsgroups: comp.lang.ada
Consider:

-- p.ads:
package P is
 procedure Proc;
end P;

-- p.adb:
with P.Q;
package body P is
 package P_Int is
 new P.Q (T => Integer);
 procedure Proc is
 begin
 P_Int.Proc;
 end Proc;
end P;

-- p-q.ads:
generic
 type T is private;
package P.Q is
 procedure Proc;
end P.Q;

-- p-q.adb:
package body P.Q is
 procedure Proc is
 begin
 null;
 end Proc;
end P.Q;

-- test.adb:
with P;
procedure Test is
begin
 null;
end Test;

The idea is that P.Q is a child, helper unit
for P and P.Q is used in the body of P.
Ideally it should be a private child, but
these cannot be generic (why?).
Forget the Proc procedures, they do not
contribute to the actual problem, but
where needed to have meaningful source
units.
The problem above is:

$ gnatmake test
gcc -c test.adb
gcc -c p.adb
gcc -c p-q.adb
gnatbind -x test.ali
error: elaboration circularity detected
info: "p (body)" must be elaborated
before "p (body)"

18 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

info: reason: implicit Elaborate_All in
unit "p (body)"
info: recompile "p (body)" with -
gnatwl for full details
info: "p (body)"
info: must be elaborated along
with its spec:
info: "p (spec)"
info: which is withed by:
info: "p.q (spec)"
info: which is withed by:
info: "p (body)"

gnatmake: *** bind failed.

Why this circular dependency? It does not
exist if P.Q is not generic.
My initial version of P.Q was a regular
package and I have found this problem
after turning it into a generic package.
A simple workaround is to make P_Q
instead of P.Q, but I would like
understand where the circularity comes
from. The -gnatwl option says that some
Elaborate_All is introduced at the
instantiation of P.Q, but I see no reason
for circularity there.
From: Martin Dowie

<martin@thedowies.com>
Date: Sat, 14 Jan 2012 10:13:13 -0600
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
I think a better way is to make the
instantiation another child, e.g.

package P.Q.Integers is
 new P.Q (Integer);
pragma Preelaborate (P.Q.Integers);

Then it is available to other packages that
may need it too.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sat, 14 Jan 2012 08:17:25 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
A unit can only be instantiated if it is fully
elaborated.
I guess GNAT chose the elaboration order
P'Spec, P.Q'Spec, P'Body (crash since
P.Q'body is not elaborated).
This dependence is not present for
nongeneric units.
Perhaps addition of pragma
Elaborate_Body to P.Q helps.
From: Simon Wright

<simon@pushface.org>
Date: Sat, 14 Jan 2012 22:46:31 +0000
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada

[…]

with P.Q;
pragma Elaborate (P.Q); << does the
 trick for me
package body P is

I have to say that elaboration problems
are often mindboggling (the best I
remember was when GNAT 3.09 reported
an elaboration cycle of 157 where there
were only 156 units in the program).
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sun, 15 Jan 2012 08:55:57 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
Of course this works, but in my opinion,
Elaborate_Body is better because it has
to be applied just once to P.Q, whereas
Elaborate has to be applied on every unit
withing P.Q.
As a general rule of thumb I think
Elaborate_Body should be applied
whenever a unit provides functions that
are used in the spec of other units
providing initial values or constants, such
like:

package P is
 pragma Elaborate_Body; -- prevents
 -- elaboration error when F is
 -- called
 function F (…) return T;
end P;

with P; -- no need for "pragma
 Elaborate (P);"
package Q is
 V: [constant] T := P.F (…);
end Q;

From: Simon Wright
<simon@pushface.org>

Date: Mon, 16 Jan 2012 15:09:18 +0000
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
> […] As a general rule of thumb I think

Elaborate_Body should be applied
whenever a unit provides functions that
are used in the spec of other units
providing initial values or constants,
[…]

That may be true in general, but *in this
case* it does not solve the problem […]
-gnatE still succeeds (provided you
remember to rebuild the world!)
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Mon, 16 Jan 2012 09:15:04 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]

Ha, yes, because of the implicit
Elaborate_All implied by the nonstandard
behaviour of GNAT (I didn't think of this
connection).
Obviously with standard Ada behaviour
(-gnatE), GNAT can find a good order
without the pragma (there is no
Elaborate_All in this case).
But I think the rule of thumb should be
followed nevertheless. (It's only a rule of
thumb because Elaborate_Body is
sometimes impossible.)
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sat, 14 Jan 2012 08:26:59 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
> Ideally it should be a private child, but

these cannot be generic (why?).
Of course it can:

private generic
package P.Q is

[…]
But such a private generic can only be
instantiated within the hierarchy of P (of
course).
From: Georg Bauhaus
Date: 14 Jan 2012 22:01:32
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
The circularity vanishes with -gnatE, and
the warning message changes, too. So I
guess the circularity is a consequence of
GNAT's default, static elaboration order
algorithm. IIRC, some, though not all of
this algorithm is explained in the manual
(else in the source text).
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Sun, 15 Jan 2012 09:15:18 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
Does it mean that the compiler can refuse
legal code just because its internal
algorithm is biased?
As I understand, there is no language-
related reason for the circularity. That is,
there is no ARM paragraph that would
say that in this particular program there
will be a cyclic elaboration dependency
(otherwise I would appreciate some
pointers).
[…]
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Sun, 15 Jan 2012 09:43:34 -0800
Subject: Re: Elaboration circularity with

generics

Ada in Context 19

Ada User Journal Volume 33, Number 1, March 2012

Newsgroups: comp.lang.ada
[…]
No, this isn't a bug. The elaboration order
is not completely defined.
If the compiler cannot find a valid order,
it may reject the program.
The programmer then has to help the
compiler with pragmas.
A compiler is not required to try out all
sorts of elaboration orders.
This is for simplifying the compiler.
There are about O(n!) orders.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Mon, 16 Jan 2012 09:34:44 -0500
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
By default, GNAT uses a static
elaboration model. This is a non-standard
mode -- it does not follow the rules in the
Ada RM.
If you want the standard mode, you have
to turn it on explicitly.
I suggest you read the section about
elaboration in the GNAT docs -- it's rather
long, but it should explain everything.
One advantage of the static elaboration
model is that you don't get any run-time
elaboration checks. Another is that you
don't need to put elaboration control
pragmas all over the place. (On rare
occasions, you might need one.) But the
static elaboration model is (necessarily)
more restrictive in that it will disallow
certain cases that are allowed by the
standard (dynamic) model.
[…]
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 16 Jan 2012 09:02:13 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
I think some clarification may help.
There's a rule in 10.2(18) that says "there
shall be a total order of the library_items
that obeys the above rules". This rule is
simple enough that any compiler should
be able to follow it; so if there is a total
order and a compiler cannot find it, the
compiler definitely has a bug.
However, the compiler is *not* required
to try to find an elaboration order that will
guarantee that Program_Error is not
raised at runtime. Technically, a program
that follows the language rules but is
certain to fail as soon as it's run should
not be rejected by the compiler, since it's
a legal Ada program. But it's useful for
compilers to report errors in such cases.
This may make it "non-standard" in some
sense, but I wouldn't consider it a bug if

the behavior is documented and an option
is provided to follow the standard
technically.
From: Maciej Sobczak

<maciej@msobczak.com>
Date: Mon, 16 Jan 2012 13:29:54 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
What I'm concerned about is portability.
If the compiler is allowed to refuse my
program even though there is no
paragraph saying that my program is
illegal, then perhaps some other compiler
will compile it without any trouble.
Which means that my program will not be
portable, even though it might not touch
any implementation limits or other
similarly valid reasons.
From: Adam Beneschan

<adam@irvine.com>
Date: Mon, 16 Jan 2012 13:52:34 -0800
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
[…]
The problem is that without any
additional Elaborate pragmas, a compiler
could compile the program, but it
would be useless as it would raise
Program_Error right away. Another
compiler might build the program and
choose a different elaboration order that
doesn't raise Program_Error. Neither of
these compilers would be wrong, since
the language doesn't specify the exact
elaboration order when there is more than
one that obeys the Elaborate pragmas and
other language rules. So your program as
written isn't portable at all; and even
though technically a compiler should
accept the program, if you're concerned
about portability then you should be
grateful that GNAT (in its non-standard
mode) rejected the program and alerted
you to the portability problem in your
code. I don't think you have a legitimate
complaint about GNAT here, at least not
on portability grounds.
From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Mon, 16 Jan 2012 17:25:03 -0500
Subject: Re: Elaboration circularity with

generics
Newsgroups: comp.lang.ada
> […] If the compiler is allowed to refuse

my program even though there is no
paragraph saying that my program is
illegal,…

That's not the problem. If your program is
legal (I didn't look at it carefully), then all
Ada compilers will accept it. In particular,
GNAT will accept it in standard-
conforming mode. You didn't use the
standard-conforming mode.
The problem (a language problem) is that
in standard-conforming mode, different

Ada compilers are allowed to choose
different elaboration orders. One order
might work, and another order might raise
Program_Error.
In order to write portable code, you have
to sprinkle elaboration control pragmas all
over the place (mostly pragma
Elaborate_All).
And doing that by hand is a super-human
task. That's a language problem -- you
can't blame any particular Ada compiler.
Note that GNAT has a switch that will tell
you where to put pragma Elaborate_All.
Again, I suggest reading the elaboration
section of the GNAT docs -- it explains
all this stuff in great detail.
[…]

On pure functions
From: Martin Dowie

<martin@thedowies.com>
Date: Thu, 12 Jan 2012 02:44:56 -0800
Subject: Pure function aspect?...
Newsgroups: comp.lang.ada
Now Ada has bitten the bullet and
allowed "in out" mode parameters in
functions, is it time to allow users to
contract the other extreme and allow a
function to be declared Pure (no state
changes, not even hidden ones)? e.g.

package P is
 type T is tagged private;
 function Pure_F (Self : T)
 return Integer
 with Pure;
 function Impure_F (Self : T)
 return Integer;
private
 type T is tagged record
 I : Integer := 0;
 end record;
end P;

Functions with a Pure contract would be
allowed to call other functions with pure
contracts, read values/parameters but
promise to change nothing (not even via
'tricks' a la random number generator!!).
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Thu, 12 Jan 2012 18:00:05 -0600
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
We've argued this for a long time within
the ARG, and we haven't been able to get
a real consensus. This discussion goes
back to Ada 79 (which is even before I
got involved in Ada) -- early drafts of Ada
had both functions (which were what we
now call pure) and value-returning
procedures (which were not). The concern
was that there was not a clear line
between them, and moreover there are
many sorts of functions that are

20 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

"logically" pure but still do change things
(the "memo function" being the banner
carrier for that idea).
Personally, I would be happy to have
strong checks on such functions, and I
don't much care about what gets left out
(it's not that important, and any such
functions are not task-safe anyway, so it is
already a good idea to avoid them in Ada
code). But not everyone agrees. We just
had another version of this discussion in
Denver; we ended up adopting an
undetectable bounded error for this case
(in the case of assertions, including
preconditions, et. al.).
I had tried an alternative approach for
Ada 2012, by suggesting the addition of
checked global in/out contracts to
subprograms. Eventually, this was
dropped from Ada 2012 as being
insufficiently mature. My understanding
is that AdaCore is experimenting with a
version of it in their formal methods
research, so it isn't necessarily gone
forever (which is good, considering the
amount of time I put in on it). You can
see the last proposal at
http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai05s/ai05-0186-1.txt.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 13 Jan 2012 09:45:46 +0100
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
I think that the problem may be resolved
by considering the contexts where the
function is pure. There is no absolutely
pure functions, any one is impure because
it returns something, pumps stack etc. The
result is taken out of consideration, so are
local variables etc. There should be some
syntax for specifying what is not touched
at the given level of "purity" and what is.
A related issue is a requirement that
functions impure only in their results and
locals were evaluated at compile time
when arguments are statically known.
[Needed for handling dimensioned values
and similar static checks, e.g. matrix
dimensions checks etc]
From: Stefan.Lucks <Stefan.Lucks@uni-

weimar.de>
Date: Fri, 13 Jan 2012 11:48:55 +0100
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
> I had tried an alternative approach for

Ada 2012, by suggesting the addition of
checked global in/out contracts to
subprograms. Eventually, this was
dropped from Ada 2012 as being
insufficiently mature.

Very regrettable!
But reading the AI makes one understand
why this is so complicated. There are
class-wide-operations. If any pure

function (or rather, any side-effect-free
function or procedure) is going to use
them, these need their own aspect
annotations. These are the descendants
from Ada.Finalization.*. There are
instances of generic subprograms. Even if
the generic subprogram is side-effect-free
by itself, the side-effect-freeness of the
instance is likely to depend on the side-
effect-freeness of the generic
parameters…
However, another reason, why the AI
became so complex, seems to be the
attempt to rather precisely specify side-
effects, instead of providing just the
ability to declare "no side effects". Now it
is too late, but a simplified approach,
allowing only "with Global in out =>
null;" with the option to extend this later
would have been acceptable for Ada
2012. :-/
BTW, why do you write "with Global in
out => (null);" with brackets?
From: Martin Dowie

<martin@thedowies.com>
Date: Fri, 13 Jan 2012 03:01:35 -0800
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
Care to mock up an example of the levels
you had in mind?
Is it something like (and stealing Randy's
"Global"):

function F1 (P1 : T1; P2 : T2)
 return Boolean
 with Pure => (Global, P1); -- promise
 -- to not change globals or parameter
 -- P1, might tamper with P2

function F1 (P1 : T1; P2 : T2)
 return Boolean
 with Pure => (all); -- promise to not
 -- change anything (other than
 -- subprogram local objects)

function F1 (P1 : in out T1)
 return Boolean
 with Pure => (Global); -- promise to
 -- not change anything other than
 -- subprogram local objects or
 -- parameters

A function with no pure aspect might be
equivalent to:

function F1 (P1 : T1; P2 : T2)
 return Boolean
 with Pure => (null); -- no promise to
 -- not change anything local, global
 -- or parameter

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 13 Jan 2012 18:12:58 +0100
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada

[…]
Global = Standard (the topmost Ada
package is Standard).
A body is impure in some nested context
and pure outside it. So the meaning is not
pure-in-A, but rather pure-outside-A,
while impure inside A. E.g.

with Pure => (out Foo)
-- Pure outside the specification of Foo,
-- can change parameters

with Pure => (out body Foo)
-- Pure outside the body of Foo,
-- cannot change parameters

with Pure => (in Standard)
-- Pure everywhere = static, constant

type Func is not null
 access function (X : Float)
 return Float
 with Pure => …;
function Integrate (F : Func)
 return Float
 with Pure => (out Integrate and
 out Func);
 -- Pure outside the specification of
 -- Integrate everywhere
 -- Func is pure as well

> A function with no pure aspect might be

equivalent to:
 function F1 (P1 : T1; P2 : T2) return

Boolean
 with Pure => (null); -- no promise to

not change anything local, global or
parameter

function F1 ...
 with Pure => (out Standard)
 -- impure, out Standard = empty set =
 -- null

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 13 Jan 2012 18:00:46 -0600
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
> However, another reason, why the AI

became so complex, seems to be the
attempt to rather precisely specify side-
effects, instead of providing just the
ability to declare "no side effects".

[…]
There has been strong opposition to a
"checked" pure function declaration (I had
floated that first, and it went nowhere),
and global in out => null is essentially the
same thing. The reason is the "memo
function" idea (more sensibly, a function
that logs its calls but is otherwise pure) is
not allowed. I was trying to do something
broader that could get more support.

Ada in Context 21

Ada User Journal Volume 33, Number 1, March 2012

And just declaring "no side-effects"
without checking it is actively harmful in
my opinion because, perversely, it makes
a program less safe. That's because the
compiler is going to take advantage of
this declaration to remove calls
(especially in contracts and assertions),
and if the call in fact has side-effects,
doing that is not safe (and can easily lead
to bugs or even erroneous execution).
(And if you aren't going to let the
compiler take advantage of this
knowledge, declaring it is pointless.)
I have some lengthy examples of this
problem that are too long to present here
(and at least get any other work done), but
trust me, it is very real.
The lack in global in out isn't a deal
breaker for Ada 2012, simply because it is
also missing exception contracts. And we
need (at least) both of those to have
enough completeness to really reason
formally about Ada programs.
Hopefully, future versions of Ada will
take up both of these again.
From: Martin Dowie

<martin@thedowies.com>
Date: Mon, 16 Jan 2012 02:48:28 -0800
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
[…]
You mean people want a method of
saying "these state changing calls are
unimportant"?

with Logger; -- Perhaps allowing
-- 'limited with' if only needed in
-- the aspect?
package … is
 function Foo (P1 : Integer)
 return Integer
 with Pure => all or
 (Logger.Report (S : String) and
 Logger.Report (S : String;
 I : Integer));
…

I think you'd need to enumerate all
'ignorable' state-changing calls.
Or perhaps a short-hand:

with Logger; -- Perhaps allowing
-- 'limited with' if only needed in
-- the aspect?
package … is
 function Foo (P1 : Integer)
 return Integer
 with Pure => all or (package
 Logger);
…
> […] The lack in global in out isn't a

deal breaker for Ada 2012, simply
because it is also missing exception
contracts.

Something like:

function Foo (P1 : Integer)
 return Integer or raise Program_Error
 or My_Defined_Error;

Getting a bit long winded but I guess you
just need all that sort of information.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Wed, 18 Jan 2012 19:17:45 -0600
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
> […] You mean people want a method of

saying "these state changing calls are
unimportant"?

Something on that line. The global in/out
proposal handling that in terms of
allowing the specification of what state is
modified. If that state doesn't conflict with
other routines, then optimization is still
possible.
But one of the important points is that
side-effects really ought to prevent
optimization (and assumptions) unless the
compiler (or proof tool) can actually
prove they don't matter. A call that is
being logged, for instance, probably
shouldn't be eliminated even if the results
are the same (because you couldn't easily
relate the actual calls to the source code).
One can argue the other side of this, too,
and it's obvious there are no easy answers.
In which case I prefer to stay as close to
the "canonical" semantics as possible.
> […] Getting a bit long winded but I

guess you just need all that sort of
information.

Well, clearly it would be an aspect (like
the other contracts), and each exception
ought to be able to have an optional
postcondition as well (which defines
when the exception might be raised). So
more like:

function Foo (P1 : Integer)
 return Integer
 when Pre => …
 Post => …
 Raises => Program_Error,
 Storage_Error,
 My_Defined_Error
 when P1 not in Even,
 Global in => null,
 Global out => null;

The exception contract would require that
the compiler prove that Constraint_Error
and Tasking_Error are not propagated.
(The same would be true for
Storage_Error, but that would be
impossible for the vast majority of
compilers). I'm also proposing a way to
name a group of exceptions, so you
wouldn't have to write huge sets
repeatedly. (All of the exceptions in
package IO_Exceptions could be named
"IO_Exceptions" so it wouldn't be
necessary to write about them
individually.)

I of course have no idea how far any of
this will get, it won't be taken up for a
while and won't be standardized for years,
and in any case, it is all optional. No one
is going to be required to have complete
contracts (I suspect that will be going too
far).
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 19 Jan 2012 11:09:28 +0100
Subject: Re: Pure function aspect?...
Newsgroups: comp.lang.ada
> […]function Foo (P1 : Integer) return

Integer
 when Pre => …
 Post => …
 Raises => Program_Error,

 Storage_Error,
 My_Defined_Error

 when P1 not in Even,
The problem here is that the exception
contracts do not obey the law of excluded
middle. I.e. raise A or not raise A is not
necessarily true. The syntax should
distinguish promises (not to raise A) with
obligations (to raise A). In the above you
have a negated promise not raise
Program_Error, i.e. Foo *may* raise
Program_Error, but it is not required to do
so. On the contrary, My_Defined_Error is
an obligation, Foo is *required* to raise it
when the condition is not met.
This is "intuitionistic logic," a bit
complicated thing, but necessary here.
The simplest way to handle it would be to
have:

function Foo …
 <a-nice-name-for-possible-exceptions>
 => X,
 <necessary-exceptions> => Y

Y is a subset of X. Foo never raises
anything from not X.
Inference of contracts of possible
exceptions is simple. A conservative
estimation is a union of all exception sets
of called subprograms for which no
handler is present.
For necessary exceptions it is in general
impossible to do (equivalent to halting).
So it looks more appropriate for SPARK
than for Ada.
> Global in => null,
 Global out => null;
> The exception contract would require

that the compiler prove that
Constraint_Error and Tasking_Error are
not propagated. (The same would be
true for Storage_Error, but that would
be impossible for the vast majority of
compilers).

Storage_Error should be a conditional:

may_raise Storage_Error when
 Standard_Pool'Free_Space < 1024;

22 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

Actually any exception should be. E.g.

procedure Sort (X : in out Data;
 F : Order_Func)
 may_raise Program_Error when
 Order_Func may_raise
 Program_Error;
 -- Sort does not raise Program_Error
 -- by itself

> I'm also proposing a way to name a
group of exceptions, so you wouldn't
have to write huge sets repeatedly. (All
of the exceptions in package
IO_Exceptions could be named
"IO_Exceptions" so it wouldn't be
necessary to write about them
individually.)

It is time to make exception a proper
discrete type with another type for sets of
exceptions. It would be nice to have a tree
order of exceptions, i.e. extensible sets of
exceptions too.
> […] No one is going to be required to

have complete contracts (I suspect that
will be going too far).

No need to have complete contracts
because there is a gray area between 'may
raise' and 'must raise'.

On expression functions vs.
body of functions
From: Martin Dowie

<martin@thedowies.com>
Date: Fri, 16 Dec 2011 04:25:09 -0800
Subject: Ada2012 : When to use expression

functions rather than function bodies?
Newsgroups: comp.lang.ada
Are there any good arguments for *not*
replacing all simple, single line functions
that don't [directly] access package body
state information with expression
functions?
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 16 Dec 2011 14:24:15 +0100
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
1. Readability
2. Proper encapsulation (to have interface

and implementation separated)
3. Re-use (the same function must be

refactored)
4. Maintainability (because of 1..3)
5. Safety (proper bodies are defined on

the context where they have no access to
the caller's context, otherwise than
through parameters)

6. Deployment (proper bodies can be put
into a library, have versions etc)

7. It is not Ada
From: Randy Brukardt

<randy@rrsoftware.com>

Date: Fri, 16 Dec 2011 19:03:46 -0600
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
> […]
Umm, an expression function is just
another (shorter) way to write a function
body, so it hard to imagine that there is
any difference. Using them to replace a
function body *in place* is completely
harmless.
I suppose you are talking about the use of
expression functions directly in a
specification (without an explicit body),
which is a totally separate issue. There, I
tend to agree with you in the sense that
they ought to be used in moderation. The
intent was to use them for things like
accessors for private components where
there is no real value to the separate body.
For those sorts of uses, the issues you talk
about above don't arise. (How could you
"refactor" Obj.Field??). Moreover,
everything in the private part is part of the
implementation anyway; you're still
enforcing that separation so long as the
expression functions are in the private
part.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 16 Dec 2011 10:03:07 -0800
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
If you're talking about a function that is
declared in the visible part of a package
specification, and talking about replacing
the declaration with an expression
function, then it would usually be a bad
idea to replace it. The visible part should,
ideally, express what the package is
intended to accomplish, at a conceptual
level. So unless the expression is, itself,
part of the concept (a rare case), it's an
implementation detail that should not be
present in the visible part of a package. A
good test here, I think, is: "Is it possible
that at some later point, I may change the
expression returned by an expression
function because I've added new features
to the package or because I've changed
the implementation to improve its
efficiency or fix problems?" If the answer
is yes, then the expression is probably an
implementation detail and not part of the
package's "concept", and the function
shouldn't be an expression function. I
think this is approximately what Dmitry
means by "proper encapsulation".
Offhand, I don't see any problem with
replacing simple function *bodies* with
expression functions. But I haven't
studied the new rules carefully, so I
couldn't tell you if there are some
"gotchas" in the language rules that would

cause the semantics or the impact on other
language rules to be different.
In most cases, it's probably OK to replace
a function specification in the *private*
part of a package with an expression
function if the body is simple. But the
encapsulation argument could still apply
if the function is intended to be usable by
child packages.
From: Georg Bauhaus
Date: 17 Dec 2011 12:26:21
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
A pragma Pure is, I think, helpful when
writing expression functions in particular
if it forces thinking about the kind of
functions one is writing: expression
functions that have effects other than
computing the result value seem out of
(some) style.
From: Martin Dowie

<martin@thedowies.com>
Date: Fri, 16 Dec 2011 14:36:12 -0600
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
The most common usage I can image is
functions used in Pre/Post conditions:

package Foos is
 type Foo is tagged private;
 …
 procedure Bar (Self : in out Foo)
 with Pre => Is_Valid (Self);
 function Is_Valid (Self : Foo)
 return Boolean;
 …
private
 …
 function Is_Valid (Self : Foo)
 return Boolean is (<validate_Self>);
 …
end Foos;

There isn't really an expectation that
Is_Valid would be of use to a user of
package Foos.
But I guess the same idiom could be used
for other 'simple' functions…public
declaration, private expression function
implementation, leaving the package body
of more interesting stuff.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 16 Dec 2011 13:34:51 -0800
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]

Ada in Context 23

Ada User Journal Volume 33, Number 1, March 2012

I don't see a problem (from a proper
encapsulation standpoint) with putting the
expression function in the private part.
Like I said before, though, I haven't
studied the new rules enough to know
whether there could be any other
problems caused by the language rules.
Offhand, it seems possible that if the
expression involves a call to a function in
another package, there could be cases
where moving the definition from the
body to the specification could fail
because a different elaboration order is
required.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 16 Dec 2011 15:08:13 -0800
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
On thinking about it further: A good
reason *not* to put an expression function
in the private part of a specification, if the
function is an "implementation detail", is
that if the details of the implementation
are mostly in the package body (in
procedures or in more complex
functions), then moving some of it
arbitrarily to the private part, which is
separate from the package body and is
often in a different source file, can impair
readability and maintainability. When a
programmer is trying to maintain a
package, either by adding new features,
improving performance, or fixing
problems, it's helpful for related pieces of
information about the package's
implementation to be near each other.
Otherwise, it's too easy to miss
something. And moving one
implementation detail to a package's
private part while other details are still in
the body increases the chance of missing
something.
So yes, I think there is a good argument
for *not* mechanically moving all simple
functions to the package specification as
expression functions, even into the private
part. The programmer needs to think
about readability/maintainability issues
such as I've described.
From: Adam Beneschan

<adam@irvine.com>
Date: Fri, 16 Dec 2011 14:52:01 -0800
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
> […] Are there any good arguments for
expression functions?
Quote from AI05-0177-1
(http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ai05s/
ai05-0177-1.txt?rev=1.13):
With the advent of pre and postconditions
(see AI05-0145-1), and conditional

expressions (see AI05-0147-1),
expressions in specifications are going to
grow much larger and become more
complicated. It is important that parts of
such expressions can be abstracted.
Abstraction of expressions is usually done
by introducing functions. However, this
puts the expression in the body, rather
than the specification. This has several
negative side-effects:
- Hiding of the expression from the

compiler and other tools that primarily
process specifications;

- Requiring the body to exist in order to
do static analysis of the pre/post
conditions (meaning static analysis
cannot be performed early in the
development of a system or on the use
of skelton [sic] placeholder packages).

- Introduction of otherwise unnecessary
bodies and/or otherwise unnecessary
inline body dependencies (increasing
system build times).

Apparently the ARG thought this was a
good argument. I'm not endorsing it
personally -- I don't have a particular
opinion -- but it appears sensible on its
face.
From: Randy Brukardt

<randy@rrsoftware.com>
Date: Fri, 16 Dec 2011 19:21:45 -0600
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
One of the things we learned when
thinking about Preconditions and the like
is that there is such a thing as too much
encapsulation. The entire point of
preconditions is that they be
understandable to the client, so the client
(caller) knows what they must ensure
before calling the routine.
You could write all of your preconditions
like:

procedure Do_It (A, B : in out Integer)
 with Pre => Do_It_Precondition (A, B);

but no one would have any idea what the
precondition is. After all, an important
part of the point of preconditions is to
change what currently is specified in
English in the comments in a more formal
way that can be checked (statically and
dynamically).
So it is best to use as little encapsulation
as possible in preconditions and the like,
breaking them down to the primitive
operations of the type(s) involved.
But preconditions can get very long, and
the need to simplify them for readability
surely exists. Thus expression functions
provide a middle ground. They're also
handy for simple accessor functions
(which can give the effect of read-only
components of a private type).

There also is one more fact: an expression
function can almost always be inlined
(beware of recursion, though), and that
can be done automatically when it makes
sense (no need for pragmas or body
dependencies -- inlining is something the
compiler should be deciding upon
anyway, it is stupid for users to have to
declare something that should always be
done if it makes sense -- and not be done
when it doesn't make sense).
From: Georg Bauhaus
Date: 17 Dec 2011 12:45:38
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
I'm guessing that Dmitry will suggest

procedure Do_It (A, B: Int_Sats_Pre)
 with Pre => True;

will be safer and will convey the idea of
the precondition better: it is in the type
system.
Whether this approach is feasible in
general I don't know.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Sat, 17 Dec 2011 14:11:35 +0100
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
Not really. The key question is whether
Do_It_Precondition is statically
checkable. Note also that it is not always
possible to break a [true] precondition
into a set of *independent* subtype
constraints. As an example consider:

function "+" (Left, Right : Dimensioned)
 return Dimensioned;

The precondition here (IFF measurement
units have to be checked statically) is that
Left and Right have the same unit.
If the measurement units cannot be
checked statically THEN the precondition
is "true" and the contract of "+" includes
Unit_Error.
Argument against Do_It_Precondition is
same as against a formula:
declarations should include minimum
executable code. The language of
declarations (types algebra operations)
must be clearly, visibly separated from
the object (executable) language. All
cases when executable code slips

procedure Foo
 (Default : Integer := Get);
 -- What is the default here? When the
 -- default is read from standard input?

Pure and static expressions are OK
because the context is irrelevant.

24 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 19 Dec 2011 17:34:42 -0600
Subject: Re: Ada2012 : When to use

expression functions rather than function
bodies?

Newsgroups: comp.lang.ada
[…]
Right. We had this (sub)discussion in the
ARG. It seemed better to extend subtype
constraints for parameters rather than the
heavier mechanism of preconditions. But
the counter argument is that a constraint
can act only on a single parameter, while
a precondition might involve multiple
parameters.
Dmitry shows a good example.
BTW, we recently added a rule stating
that it is a bounded error to call a function
from a contract (precondition, predicate,
etc.) that has a side effect that changes the
value of some other contract of the same
evaluation. The latter part is a sop to the
people who insist that we have to support
"benign" side-effects (such as "memo
functions"). (IMHO, there are no benign
side-effects, but there are strong opinions
to the contrary out there.)
The effect is that the vast majority of
contracts will be "pure" expressions, so
Dmitry will be happier. (The state-of-the-
art will not allow static checking of these
things today in general, but as the
technology improves that should become
possible without having to rewrite your
code).

On task abortion
From: tonyg <tonythegair@gmail.com>
Date: Wed, 25 Jan 2012 02:11:55 -0800
Subject: task abortion
Newsgroups: comp.lang.ada
I want to be able to abort a task if it has
not responded for a while, and then start a
new one in its place.
I have a pointer going to the concerned
task.
Each task has a 'stop accept' in its
rendezvous which forces it out of its loop
so that it ends, but if the task has frozen
for some reason then I want to abort.
I would be interested how to do this and
folks strategies for keeping on top of
tasks.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Wed, 25 Jan 2012 11:43:14 +0100
Subject: Re: task abortion
Newsgroups: comp.lang.ada
[…]
What are you going to achieve by that?
Consider the scenarios:
1. The task crashed, it is already

terminated then.
2. The task is looping somewhere:

2.a. What about the resources it owns?
Local resources are usually freed when
the task is aborted. But if you have some
globally allocated memory, semaphores
etc, they all get lost unless freed by
some local controlled objects, "holders"
releasing the resources upon finalization,
as they leave the scope upon task abort.
Now:

2.b. What if the task is frozen in an abort-
deferred thing? Finalization is such a
thing. Abort-deferred stuff cannot be
aborted. Note that system I/O is most
likely non-abortable. I.e. you would not
be able to abort Ada.Text_IO.Get_Line
or recv on a socket etc anyway.

All in one, aborting tasks doing complex
stuff is not likely to work in a reasonable
way. Aborting tasks doing simple stuff is
not needed, such tasks impose no
problems anyway. Ergo, it is not likely
you would need to abort any task.
If you decided for aborting, you would
have to redesign almost everything and in
an extremely careful way in order to make
tasks logically abortable.
That means to make continuation possible
and meaningful after aborting some tasks.
Now a guess: making the tasks right and
thus preventing a need aborting them,
would probably be far less efforts…
From: Anh Vo <anhvofrcaus@gmail.com>
Date: Thu, 26 Jan 2012 08:47:16 -0800
Subject: Re: task abortion
Newsgroups: comp.lang.ada
[…]
Just in case your task disappear which I
do not expect it will, you can use package
Ada.Task_Termination to query the
reason (Normal, Abnormal,
Unhandled_Exception) it dies.

Freezing/pausing a task
From: Pablo Rego <pvrego@gmail.com>
Date: Thu, 17 Nov 2011 07:33:24 -0800
Subject: Freezing a task
Newsgroups: comp.lang.ada
Is is possible to freeze a task?
I mean, if I have a task

task body My_Task is
begin
 accept Start;
 loop
 Put ("1");
 Put ("2");
 Put ("3");
 …
 Put ("n");
 end loop;
end My_Task;

is there a way that I can "freeze" the task
in its current state?
If, for instance, the execution finished
executing Put ("2");, how can I freeze it

and later I can turn it to continue? I want
to freeze from outside the task, and also
from outside, order it to continue.
I could sure implement, if I had the spec
like

type State_Type is (RUN, FROZEN);

task type My_Task (State : State_Type)
is
 entry Start;
end My_Task;
--
the body:

task body My_Task is
begin
 accept Start;
 loop
 Put ("1");
 Put ("2");
 Put ("3");
 …
 Put ("n");

 loop
 if State = RUN then exit; end if;
 end loop;
 end loop;
end My_Task;

but it would not be the case because I had
to wait for the nth Put instruction line
(i.e., the task would not be actually
frozen, because the inside loop would be
running).
And T.E.D. from stackoverflow suggested
me something that I could infer as

task type My_Task (Start : Start_Type)
 is
 entry Start;
 entry Run;
end My_Task
--
task body My_Task is
begin
 accept Start;
 loop
 Put ("1");
 Put ("2");
 Put ("3");
 …
 Put ("n");

 if State = FROZEN then
 accept Run;
 State := RUN;
 end if;
 end loop;
end My_Task;

Is there a more elegant way to do this?
[…]

Ada in Context 25

Ada User Journal Volume 33, Number 1, March 2012

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 17 Nov 2011 17:00:40 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
> Is is possible to freeze a task?
Yes, by
1. an entry call to another task or a

protected object;
2. executing a select or accept statement.
From: Simon Wright

<simon@pushface.org>
Date: Thu, 17 Nov 2011 16:00:17 +0000
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
Programmatically, no. Your choices for
inter-task comms are (a) the rendezvous,
(b) polling some shared resource (e.g. a
protected object), (c) something using
sockets.
Or you could unilaterally abort the task,
which would be the end of it.
[…]
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 17 Nov 2011 17:22:57 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
If using select statement for accepting
entry calls then:

 Paused : Boolean := False;
begin
 loop
 if Paused then
 accept Release;
 Paused := False;
 else
 select
 accept Pause;
 Paused := True;
 else
 … -- Do stuff
 end select;
 end if;
 end loop;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 17 Nov 2011 17:53:42 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
P.S. there is a deadlock in above if
improperly used from outside. It is simple
to fix.
It is worth to note that one of the
rationales behind protected objects
introduced in Ada 95, was to ease things
like above. The same done with a

protected object would be simpler, safer
and reusable (within the task) too.
From: Stefan Lucks <stefan.lucks@uni-

weimar.de>
Subject: Re: Freezing a task
Date: Thu, 17 Nov 2011 17:53:46 +0100
Newsgroups: comp.lang.ada
[…]
What do you really want? Why do you
want a task to freeze?
If you just want to freeze a task to ensure
another more important task isn't slowed
down (and unfreeze when the other task is
done) a MUCH more elegant way to do
this is to use task priorities.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 17 Nov 2011 18:08:17 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
Maybe, however it would not work as the
given example does I/O.
Unless you have access to very high level
OS priorities (which you normally don't)
you won't be able to stop the system
services, drivers and interrupt routines
doing I/O on behalf of the task. Not that
you really wanted it anyway…
IMO, in probably 90% all cases playing
with priorities is a bad idea. The rest 10%
require a very careful upfront analysis.
From: Adam Beneschan

<adam@irvine.com>
Date: Thu, 17 Nov 2011 09:13:53 -0800
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
Aside from the other suggestions, you
might want to look into
Ada.Synchronous_Task_Control and
Ada.Asynchronous_Task_Control. I'm
not really clear on what you're trying to
accomplish, so it's hard for me to say
whether those are appropriate solutions
for you. I think that the other methods that
have been suggested--an entry call on
another task or on a protected object, or
an ACCEPT statement--would be
preferable if they get the job done.
From: Christoph Grein

<christoph.grein@eurocopter.com>
Date: Thu, 17 Nov 2011 10:01:11 -0800
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
> Aside from the other suggestions, you

might want to look into
Ada.Synchronous_Task_Control and
Ada.Asynchronous_Task_Control.

Synch might do the job, asynch is (for
GNAT) only implemented on bare boards.
From: Pablo Rego <pvrego@gmail.com>
Date: Thu, 17 Nov 2011 17:34:48 -0800
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada

Well, answering also Jeff, Adam and
Stefan, there are some bots which are
shared by some tasks, and each task
controls just one subsystem reciprocally
(i.e. this one is controlled at one timeslot
by just one task), but other tasks can
"steal" the thread, so they can assume the
control over that ones. But each task has
also a different heuristics, so when it
assumes a bot, it behaves different, but I
want them to be restored to any other
previous controllers.
Due to this I needed to "pause" that task. I
guess Dmitry answer could be used very
well for this (but also Simon's).
From: Jeffrey Carter <jrcarter@acm.org>
Date: Thu, 17 Nov 2011 23:04:54 -0700
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
> […] and if I would want to add an abort

entry? What should I do?
Depends on when you want to be able to
stop the task. I'd guess

select
 accept Pause;
 Paused := True;
or
 accept Stop;
 exit;
else
 -- Do stuff.
end select;

"abort" is a reserved word, so it can't be
the name of the entry. A protected object
seems cleaner, though:

protected Control is
 procedure Process;
 -- Instruct the task to start processing,
 -- or to resume processing after
 -- being paused.
 procedure Stop;
 -- Tell the task to terminate.
 procedure Pause;
 -- Tell the task to pause processing.
 entry Get (Stop : out Boolean);
 -- Used by the task to wait until
 -- it should do something.
 -- Stop will be True if the task should
 -- terminate; False if it should
 -- do stuff.
private -- Control
 …
end Control;

task body T is
 Stop : Boolean;
begin -- T
 loop
 Control.Get (Stop => Stop);
 exit when Stop;
 -- Do stuff.
 end loop;

26 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

end T;

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Fri, 18 Nov 2011 09:47:58 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
Note that the above has a deadlock when
you call to Pause or Release twice.
It is easy to correct, but a protected object
solution would be more robust. See the
Jeffrey's response, however, I would use
an exception rather than output parameter:

Pending_Abort : exception;
protected type Control is
 procedure Process;
 procedure Pause;
 procedure Stop;
 entry Get;
private
 Paused : Boolean := False;
 Exiting : Boolean := False;
end Control;

protected body Control is
 procedure Process is
 begin
 Paused := False;
 end Process;
 procedure Pause is
 begin
 Paused := True;
 end Pause;
 procedure Stop is
 Exiting := True;
 end Stop;
 entry Get when not Paused
 or Exiting is
 begin
 if Exiting then
 raise Pending_Abort;
 end if;
 end Get;
private
 Paused : Boolean := False;
 Exiting : Boolean := False;
end Control;

task body T is
begin
 loop
 Control_Instance.Get;
 … -- Do stuff
 Control_Instance.Get;
 … -- Do other stuff
 Control_Instance.Get;
 … -- Do yet another stuff
 end loop;
exception
 when Pending_Abort =>

 null;
end T;

You don't need Start entry of the task. Just
make Paused initially true.
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 18 Nov 2011 09:56:24 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
> Well, answering also Jeff, Adam and

Stefan, there are some bots which are
shared by some tasks, and each task
controls just one subsystem reciprocally
(i.e. this one is controlled at one
timeslot by just one task), but other
tasks can "steal" the thread, so they can
assume the control over that ones.

This is what rendezvous are for. If the
task A and the task B must cooperatively
do some stuff (= control a bot), they just
engage a rendezvous and perform that
stuff upon the rendezvous. That would
effectively block one of them.
P.S. I don't understand this design. Why
do not you have a pool of tasks and assign
a free one for each operation to be
performed on the bot? Once completed
the operation, the task returns to the pool.
From: Simon Wright

<simon@pushface.org>
Date: Fri, 18 Nov 2011 10:05:10 +0000
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
> however, I would use an exception

rather than output parameter
I like that. Will give it strong
consideration for a design update (of
course, it wouldn't do for a SPARK
implementation; personally I'd like to see
SPARK allow provably-handled
exceptions (though I suspect the problem
is with "provably")).
From: Georg Bauhaus
Date: Fri, 18 Nov 2011 12:41:41 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
In case I want an interrupt to stop (and
release) the task, will an exception, such
as Pending_Abort from the example,
work? Because, IIUC, when the protected
procedure handling the interrupt raises
Pending_Abort, then this has no effect (as
the procedure is a handler, LRM C.3(7)).
Is this correct?
Maybe the handler procedure might just
adjust the status of the object so as to take
note of the interrupt.
When the task then calls an entry such as
Get from the example, and the entry raises
an exception, it will have an effect. But

then, this will interrupt the task only
later…
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 18 Nov 2011 14:42:06 +0100
Subject: Re: Freezing a task
Newsgroups: comp.lang.ada
[…]
> In case I want an interrupt to stop (and

release) the task, will an exception,
such as Pending_Abort from the
example, work?

Since the entry point Get is to be called
on the context of a task, Pending_Abort
will never propagate on the context of an
interrupt.
> When the task then calls an entry such

as Get from the example, and the entry
raises an exception, it will have an
effect. But then, this will interrupt the
task only later…

This is exactly the implementation. BTW
this is also the case for the terminate
alternative, which is accepted when the
task is ready to accept it.

On the visibility of entries of
a protected object
From: Jacob Sparre Andersen

<sparre@nbi.dk>
Date: Thu, 09 Feb 2012 12:56:06 +0100
Subject: Publishing selected entries in a

protected object?
Newsgroups: comp.lang.ada
I have a package containing a protected
object, and I would like to publish _one_
of this object's entries in the specification
of the package.
Since I want to be able to use the entry in
a select statement, I can't just encapsulate
it in a procedure and make that available
in the package specification.
And if I move the declaration of the
protected object to the package
specification, but move the other entries
to the private part of the protected object,
I can't access the other entries from the
private part of my package.
Is there a pattern I can use?
Thanks in advance,
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Thu, 9 Feb 2012 14:42:19 +0100
Subject: Re: Publishing selected entries in a

protected object?
Newsgroups: comp.lang.ada
[…]
Not exactly, but…

type I is protected interface;
procedure A (X : in out I) is abstract;

protected type Foo is new I with
 overriding entry A; -- "Public entry"

Ada in Context 27

Ada User Journal Volume 33, Number 1, March 2012

 entry B; -- "Private entry"
end Foo;

Now, if only the interface I is visible, then
that would be close to what you wanted.
P.S. Alas, but the following is illegal:

 [protected] type Foo is new I
 with private;
private
 protected type Foo is new I with …
 end Foo;

From: Georg Bauhaus
Date: Thu, 09 Feb 2012 14:59:51 +0100
Subject: Re: Publishing selected entries in a

protected object?
Newsgroups: comp.lang.ada
[…]
Using synchronized interfaces should
work?

package Semi is
 type Half is synchronized interface;
 procedure Grab (PO : in out Half)
 is abstract;
 function MakePO return Half'Class;
private
 protected type Full is new Half with
 overriding entry Grab;
 entry Foo;
 end Full;
end Semi;

function MakePO return Half'Class is
begin
 return Result : Full;
end MakePO;

From: Jeffrey Carter <jrcarter@acm.org>
Date: Thu, 09 Feb 2012 12:29:59 -0700
Subject: Re: Publishing selected entries in a

protected object?
Newsgroups: comp.lang.ada
[…]

package P is
 protected Public is
 entry E;
 end Public;
end P;

package body P is
 protected Hidden is
 entry E;
 entry Internal;
 private -- Hidden
 …
 end Hidden;

 protected body Public is
 entry E when True is
 -- null;
 begin -- E
 requeue Hidden.E [with abort];

 end E;
 end Public;
 …
end P;

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 9 Feb 2012 19:29:39 -0600
Subject: Re: Publishing selected entries in a

protected object?
Newsgroups: comp.lang.ada
> Using synchronized interfaces should

work?
It will often work, but there are some
problems. We couldn't get the design of
the Queue containers to work out
properly, and we ended up with the
horrifically ugly "Implementation"
package.
I think that can be fixed, but it will require
some new capabilities for protected types,
and those may cause other problems. Oh
well, Ada has to have some problems or
the ARG wouldn't need an editor, and
then I'd have to find some real work. ;-)

On Vectors and the array
type
From: Ada BRL

<ada.brl.2011@gmail.com>
Date: Sat, 21 Jan 2012 10:19:06 -0800
Subject: Efficiency and overhead:

Ada.Containers.Vectors.vector versus
array type

Newsgroups: comp.lang.ada
Hello everyone!
I need some hints about
Ada.Containers.Vectors.vector
efficiency.
I'm developing a multi-threaded real time
application in Ada.
I need a "collection" of objects (every
object has a lot of records like task
objects, GNAT.Sockets and so on…);
This collection is accessed several times
during the execution.
In the meantime I don't have to insert and
delete any items during the execution, I
just need to instantiate N object when the
application starts and then the number of
objects will remain the same throughout
the execution.
Since I know how many object will be
inside the collection I thought to use, as
the collection I need, the "array standard
type".
In the meanwhile the
Ada.Containers.Vectors.vector object is
far more practical, simple and has even
more interesting and useful functions like
iterators and so on.
For this reason, since I don't have any
experience in Ada, I ask you all what can
you suggest me to use.

If there is no such difference in
efficiency/overhead between array types
and Ada.Containers.Vectors.vector I'll
definitely use the latter.
From: Simon Wright

<simon@pushface.org>
Date: Sat, 21 Jan 2012 18:40:52 +0000
Subject: Re: Efficiency and overhead:

Ada.Containers.Vectors.vector versus
array type

Newsgroups: comp.lang.ada
[…]
It's bound to take longer to, for example,
iterate over a Vector than to loop over an
array. The question is, how much longer?
And is that acceptable for your proposed
usage?
I'd have thought the actual operations you
want to do on your objects would be
independent of the storage mechanism, so
maybe you could use the Vectors first, do
some measurements, and see if that will
be adequate.
I'd start by something like creating an
Indefinite_Vector of Strings, populating it
with say 1000 strings, and seeing how
long it takes to iterate over it. I'd expect it
to be sub-microsecond per element, on a
modern processor (but I could be wrong!)
One thing to be wary of: an object with an
embedded task will be limited, which
means you can't hold it directly in any of
the standard Containers; you'd have to
hold access-to-object (or access-to-
object'Class if you have tagged types).
This means you'll need to do storage
management yourself, perhaps using
Ada.Finalization.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 21 Jan 2012 12:11:31 -0700
Subject: Re: Efficiency and overhead:

Ada.Containers.Vectors.vector versus
array type

Newsgroups: comp.lang.ada
[…]
This sounds perfect for an array. What is
called a "vector" in the standard container
library is an unbounded array. One uses
an unbounded data structure when one
doesn't know how large the structure will
be until run time in such a way that one
cannot declare a bounded structure; one
uses a bounded structure (an array, in this
case) in most other cases.
There's an additional reason you probably
want an array rather than a vector: since
your objects contain tasks, they are
limited. You can't store limited objects in
a vector, so you'll have to allocate them
on the heap and store accesses to them in
the vector. This introduces additional
complexity to your code that would not
appear when using an array. Also, since a
vector is unbounded, it is also stored on
the heap and accessed through an access
value, making a vector involve double
indirection.

28 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

Usually the syntax for dealing with an
array is clearer than the equivalent using a
vector (in current Ada; the next version of
the standard will include changes to make
them more equivalent).

On initialization of array
size
From: Nasser M. Abbasi
Date: Sat, 04 Feb 2012 05:00:11 -0600
Subject: can one create an array of a size

determined by a constant value of a
function?

Newsgroups: comp.lang.ada
Quick question for the experts:
I was looking at C++11 standard, where it
show how one can allocate an array of
some size. The size is determined by a
function call. This is done at compile time
though where the compiler can determine
the result of the function, like this:
http://en.wikipedia.org/wiki/
C%2B%2B11#cite_note-2
"constexpr int get_five() {return 5;}
int some_value[get_five() + 7]; // Create
an array of 12 integers. Legal C++11
This allows the compiler to understand,
and verify, that get_five is a compile-time
constant."
constexpr is new and was added in c++11
Is it possible to do something like this in
Ada?
I am not sure now how useful or common
such a feature would be actually, but was
just wondering how it will look in Ada.
From: Jeffrey Carter <jrcarter@acm.org>
Date: Sat, 04 Feb 2012 11:47:29 -0700
Subject: Re: can one create an array of a

size determined by a constant value of a
function?

Newsgroups: comp.lang.ada
[…]
With Ada, you can declare an array with a
size not known at compile time:

function Get return Positive is
 -- null;
begin -- Get
 return Integer
 (Ada.Calendar.Seconds
 (Ada.Calendar.Clock));
end Get;

S : String (1 .. Get);

From: Robert A Duff

<bobduff@shell01.TheWorld.com>
Date: Sat, 04 Feb 2012 13:36:35 -0500
Subject: Re: can one create an array of a

size determined by a constant value of a
function?

Newsgroups: comp.lang.ada
[…]

You can't declare that a function will
return a compile-time-known value. But if
the goal is efficiency, you don't need to --
the compiler can figure it out. For
example, compile the program below with
"gcc -O2", and look at the generated
assembly.
You'll see that Get_Five has vanished,
and the array is allocated just as if you
had said "1..12" -- the expression
"Get_Five+7" is evaluated at compile
time.
If Get_Five were separately compiled,
you might need pragma Inline.
If Get_Five returned something not
known at compile time, then the
calculation would be done at run time,
and a dynamic array would be allocated
on the stack.

with Text_IO; use Text_IO;
procedure Main is

 function Get_Five return Integer;
 function Get_Five return Integer is
 begin
 return 5;
 end Get_Five;

 Some_Value: array (Integer range 1 ..
 Get_Five + 7) of Integer;

begin
 for X in Some_Value'Range loop
 Some_Value(X) := X;
 end loop;

 Put_Line(Some_Value(12)'Img);
end Main;

Block diagrams for Ada
code
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Sat, 21 Jan 2012 02:27:21 -0800
Subject: Block diagrams for Ada code?
Newsgroups: comp.lang.ada
Dear all,
I need to draw a "block diagram"
overview of a fairly complex Ada code
and I was wondering if there was some
more or less "standard" symbols to denote
things like packages, tasks and protected
objects.
The only thing that comes to my mind is
UML, but maybe I would prefer
something more Ada-specific. Any ideas?
From: Niklas Holsti

<niklas.holsti@tidorum.fi>
Date: Sat, 21 Jan 2012 12:41:58 +0200
Subject: Re: Block diagrams for Ada code?
Newsgroups: comp.lang.ada
[…]

HRT-HOOD has some graphical symbols
for things like that. Google for it, or see
ciclope.fi.upm.es/display/docs/
HRT-HOOD.pdf.
For a design tool, check
http://www.ellidiss.com/.
From: Martin Dowie

<martin@thedowies.com>
Date: Sat, 21 Jan 2012 06:34:17 -0600
Subject: Re: Block diagrams for Ada code?
Newsgroups: comp.lang.ada
[…]
You could look out Ada Structure Graphs.
These were big in the early 90's and did a
great job of describing Ada 83 but I
haven't looked them up since.
Did find this link:
http://www.threesl.com/pages/reference/
diagrams/ada-structure-graph.php
From: Marc Criley
Date: Sat, 21 Jan 2012 07:31:54 -0800
Subject: Re: Block diagrams for Ada code?
Newsgroups: comp.lang.ada
[…]
SciTools' "Understand"
(http://www.scitools.com/index.php)
product does block and control flow
diagrams, browsing, metrics, and just a
whole lot. It's been my "go to" tool when
I've had the need to dig into a legacy code
base, including repositories of upwards of
a million SLOC. They have first class
support for Ada, as well as the other
languages they support, and their
technical support has been amongst the
best in the business from my experience.
It's probably priced to high for the
average one man shop user at $995, but a
trial download
(http://www.scitools.com/download) does
include a 2-week evaluation license.

Stack information on
exception raising
From: tonyg <tonythegair@gmail.com>
Date: Fri, 20 Jan 2012 07:03:44 -0800
Subject: Tracing procedural calls when an

exception is raised
Newsgroups: comp.lang.ada
When using the GNAT compiler is there a
way to get hold of the procedure or
function stack when an exception is
called?
I am using at the moment

Ada.Exceptions.Exception_Information
 (Error)

within an exception handler and I am
looking for better information
From: Riccardo Bernardini

<framefritti@gmail.com>
Date: Fri, 20 Jan 2012 07:08:48 -0800
Subject: Re: Tracing procedural calls when

an exception is raised
Newsgroups: comp.lang.ada

Ada in Context 29

Ada User Journal Volume 33, Number 1, March 2012

[…]
Yes, you need to use a special option at
compile time and then addr2line. See
http://gcc.gnu.org/onlinedocs/
gcc-4.1.2/gnat_ugn_unw/Tracebacks-
From-an-Unhandled-Exception.html
From: Simon Wright

<simon@pushface.org>
Date: Fri, 20 Jan 2012 16:44:44 +0000
Subject: Re: Tracing procedural calls when

an exception is raised
Newsgroups: comp.lang.ada
[…]
Are you using Mac OS X? if so, see
http://goo.gl/XGpQf
From: Dmitry A. Kazakov

<mailbox@dmitry-kazakov.de>
Date: Fri, 20 Jan 2012 18:16:09 +0100
Subject: Re: Tracing procedural calls when

an exception is raised
Newsgroups: comp.lang.ada
> […] using Debian :)
Then see:

GNAT.Traceback.Symbolic.
Symbolic_Traceback

It should work under Debian.
You can even let the GPS open the file
and jump to the specified source line from
the traceback.

RESTful web API and AWS
From: p34cekeeper

<wavefront.arbiter@gmail.com>
Date: Wed, 17 Aug 2011 04:51:18 -0700
Subject: RESTful web API using AWS?
Newsgroups: comp.lang.ada
I'm currently tasked with developing a
RESTful web API as a front-end for what
amounts to a bunch of bog-standard RDB
operations. I'm currently using PHP,
which, as it stands is making me feel ill.
While investigating other (more
orthogonal) technology choices (erlang,
Scala, etc.), I happened to come across
Ada Web Server. I suppose my question
is: is AWS up to the job? Has anyone here
done this before?
It seems to me like AWS' dispatcher
mechanisms are ideal for this purpose,
because they don't make assumptions
about what you want to do with the
incoming HTTP request (I'm tired of
frameworks that force you into a ham-
fisted, code generating MVC
implementation).
Any input from experienced Ada
engineers would be greatly appreciated.
From: Georg Bauhaus
Date: Wed, 17 Aug 2011 14:43:27 +0200
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
I'd suggest asking on the low volume
mailing list, too.

There is an AWS paper written by J.-P.
Rosen might be of interest, if you haven't
seen it yet.
It was recently linked from
http://www.reddit.com/r/ada/
[…]
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 17 Aug 2011 06:14:56 -0700
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
[…]
The short answer is: yes. Feel free to ask
more specific questions here or on the
AWS mailing list.
Shameless_Plug : begin
AWS comes in source-only form; you
have to compile and install it on your
development and on all your target
machines. In contrast, Debian [1] contains
the precompiled package libaws2.7-dev
which takes the hassle of installation and
deployment away. You might want to try
that for a _very_ quick installation of a
complete Ada development platform
including compiler and lots of goodies.
[1] http://www.debian.org
end Shameless_Plug;
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Wed, 17 Aug 2011 08:33:38 -0700
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
[…] You'll also be interested in the
packages libgnadesqlite3-1-dev,
libgnadeodbc1-dev and libapq-
postgresql1-dev, which contain Ada
bindings to SQLite, UnixODBC and
PostgreSQL respectively.
From: Alex R. Mosteo

<alejandro@mosteo.com>
Date: Wed, 17 Aug 2011 18:01:02 +0200
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
[…]
Just to add another success history for
your peace of mind. I've not done web
APIs with AWS, but two interfaces to
quite different programs (one p2p, other
mobile robotics), and AWS is of
outstanding quality. Particularly if you
like Ada, it's a no-brainer choice.
[…]
From: Marcelo Coraça de Freitas

<marcelo.batera@gmail.com>
Date: Thu, 18 Aug 2011 06:40:02 -0700
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
[…]
There is also APQ for MySQL and ct_lib
(Sybase/SQL Server) in Debian
repositories IIRC.
As using AWS for RESTful API, I have
some experience in developing it myself.

It's awesome not to be forced to link to a
file or something of the sorts. You can
organize your code as you wish.
If you want to work with JSON data, take
a look at the KOW Lib project at
http://framework.kow.com.br.
There is KOW_Lib.Json, which I have
been using for quite some time now.
Happy coding! :)
From: Ludovic Brenta <ludovic@ludovic-

brenta.org>
Date: Thu, 18 Aug 2011 07:29:32 -0700
Subject: Re: RESTful web API using AWS?
Newsgroups: comp.lang.ada
[…]
No, not in Debian unfortunately. Adrian-
Ken Ruegsegger has only packaged apq
and apq-postgresql so far; the other
modules are only available from
upstream[1] ATM.
[1] http://framework.kow.com.br/

How to read the Windows
login username in Ada 95
From: Tom Moran <tmoran@acm.org>
Date: Wed, 9 Nov 2011 05:05:27 +0000
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
> Is there a function in Ada 95 which

returns me a String containing the
logged username in an Windows
application? Thanks.

No. Not all Ada applications run in a
Windows environment.
In Windows, you can call function
GetEnvironmentVariable and get the
value of the environment variable
"USERNAME".
From: Pascal Obry <pascal@obry.net>
Date: Wed, 09 Nov 2011 11:44:14 +0100
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
[…]
No, for a portable solution you can use:

POSIX.Process_Identification.
Get_Login_Name

Available on Florist (GNU/Linux) and
wPOSIX (Windows).
From: Pablo Rego <pvrego@gmail.com>
Date: Wed, 9 Nov 2011 12:47:57 -0800
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
Well, answering myself, we could use

function GetUsername return String is
 function GetEnv (Variable : String)
 return Interfaces.C.Strings.chars_ptr;
 pragma Import (C, GetEnv, "getenv");

30 Ada in Context

Volume 33, Number 1, March 2012 Ada User Journal

 Command : constant String :=
 "USERNAME";
 Answer_Ptr : constant
 Interfaces.C.Strings.chars_ptr :=
 GetEnv (Command);
 Answer : constant String :=
 Interfaces.C.Strings.Value
 (Answer_Ptr);
begin
 return Answer;
end GetUsername;

Not pure Ada, but fits very well.
Thank to all suggestions.
From: Pablo Rego <pvrego@gmail.com>
Date: Wed, 9 Nov 2011 17:16:51 -0800
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
> For a pure Ada version why not use

Ada.Environment_Variables?
The problem is that
Ada.Environment_Variables is an Ada
2005 package, cannot use it.
From: Adam Beneschan

<adam@irvine.com>

Date: Wed, 9 Nov 2011 16:02:51 -0800
Subject: Re: Read Windows login username

in Ada 95
Newsgroups: comp.lang.ada
> In Windows, you can call function

GetEnvironmentVariable and get the
value of the environment variable
"USERNAME".

Doesn't always work (and neither does
using Ada.Environment_Variables).
I just tried it and found that GetUserName
returns my login name, while
Ada.Environment_Variables says that
"USERNAME" doesn't exist.
It may be an unusual setup--I'm logging
into an Windows XP system remotely
through the GoodTech telnet server. But
you may as well use the function that
works more reliably.
This worked for me, but it could use more
error checking:

with Text_IO;
procedure Print_User_Name is
 subtype Buffer_Type is String
 (1 .. 200);

 function GetUserName (
 lpBuffer : access Buffer_Type;
 lpnSize : access Integer)
 return Integer;
 pragma Import (StdCall,
 GetUserName, "GetUserNameA");

 Buf : aliased Buffer_Type;
 Size : aliased Integer;
 Result : Integer;
begin
 Size := Buffer_Type'Length;
 Result := GetUserName (Buf'Access,
 Size'Access);
 Text_IO.Put_Line (Buf (1 .. Size - 1));
end Print_User_Name;

StdCall is how we import Windows API
functions with ICC Ada. Don't know how
GNAT does it--probably the same. Result
should be checked for errors, but I didn't
bother. GetUserName sets Size to the size
of the result including the null terminator,
which is why the next line uses Size - 1.

32

Volume 33, Number 1, March 2012 Ada User Journal

Conference Calendar
Dirk Craeynest
K.U.Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked ♦ is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with ☺ denote events with close relation to Ada.
The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2012

April 03-05 4th NASA Formal Methods Symposium (NFM'2012), Norfolk, Virginia, USA. Topics include:

identifying challenges and providing solutions to achieving assurance in mission- and safety-critical
systems; formal verification, including theorem proving, model checking, and static analysis; model-
based development; techniques and algorithms for scaling formal methods, such as abstraction and
symbolic methods, parallel and distributed techniques, ...; code generation from formally verified
models; significant applications of formal methods to aerospace systems; etc.

April 10-13 7th European Conference on Computer Systems (EuroSys'2012), Bern, Switzerland. Topics include:
all areas of operating systems and distributed systems, including systems aspects of dependable
computing, distributed computing, parallel and concurrent computing, programming-language support
and runtime systems, real-time and embedded systems, security, etc.

☺ April 11-13 15th IEEE International Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC'2012), Shenzhen, China. Topics include: Programming and system engineering
(languages, model-driven development of high integrity applications, specification, design, verification,
validation, maintenance, ...); System software (real-time kernels, middleware support for ORC,
extensibility, synchronization, scheduling, fault tolerance, security, ...); Applications (embedded systems
(automotive, avionics, consumer electronics, etc), real-time object-oriented simulations, ...); System
evaluation (timeliness, worst-case execution time, dependability, end-to-end QoS, fault detection and
recovery time, ...); etc.

April 11-13 19th Annual IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS'2012), Novi Sad, Serbia. Topics include: Dependability, Safety, and Security;
Distributed Systems Design & Architecture; ECBS Infrastructure (Tools, Platforms); Embedded Real-
Time Software Systems; Model-based System Development; Verification & Validation; Reengineering
& Reuse; Evolution & Change; etc.

April 17-19 25th Conference on Software Engineering Education and Training (CSEET'2012), Nanjing, China.
Topics include: Technology Transfer; Student projects and internships; Industry-academia collaboration
models; Software engineering professionalism; Education & training for "real-world" Software
Engineering practices; Evaluation of SE Curricula: Are We Still Relevant?; Training models in industry;
Systems and Software Engineering; Teaching the Business of Software Engineering; etc.

April 23-26 24th Annual Systems and Software Technology Conference (SSTC'2012), Salt Lake City, UT, USA.

May 08-11 9th European Dependable Computing Conference (EDCC'2012), Sibiu, Romania. Topics include:
Hardware and software architecture of dependable systems, Safety critical systems, Embedded and real-
time systems, Impact of manufacturing technology on dependability, Testing and validation methods,
etc.

☺ May 21-25 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS'2012), Shanghai,
China. Topics include: all areas of parallel and distributed processing, such as Parallel and distributed
algorithms; Applications of parallel and distributed computing; Parallel and distributed software,
including parallel and multicore programming languages and compilers, runtime systems, parallel
programming paradigms, programming environments and tools, etc.

Conference Calendar 33

Ada User Journal Volume 33, Number 1, March 2012

☺ May 25 Workshop on Multithreaded Architectures and Applications (MTAAP'2012).
Topics include: programming frameworks for multithreading in the form of languages
and libraries, compilers, analysis and debugging tools to increase the programming
productivity.

May 25 13th International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-12). Topics include: parallel and distributed
computing techniques and codes; practical experiences using various parallel and
distributed systems; loop and task parallelism; scheduling; compiler issues for scientific
and engineering computing; scientific and engineering computing on parallel computers,
multicores, GPUs, FPGAs, ...; etc.

☺ May 29-31 50th International Conference on Objects, Models, Components, Patterns (TOOLS Europe'2012),
Prague, Czech Republic. Topics include: Object technology, programming techniques, languages, tools;
Language implementation techniques, compilers, run-time systems; Distributed and concurrent object
systems, multicore programming; Program verification and analysis techniques; Trusted, reliable and
secure components; Component-based programming, modeling, tools; Model-driven development;
Empirical studies on programming models and techniques; Domain specific languages and language
design; Industrial-strength experience reports; Real-time object-oriented programming and design; etc.

May 31- Jun 1 International Conference on Multicore Software Engineering, Performance, and
Tools (MSEPT'2012). Topics include: from small-scale systems to large-scale parallel
systems; from writing new applications to reengineering legacy applications;
frameworks and libraries for multicore software; parallel software architectures;
modeling techniques for multicore software; programming models for multicore; testing
and debugging of parallel applications; verification techniques for multicore software;
software reengineering for parallelism; development environments and tools for
multicore software; compiler techniques and auto-parallelization on multicore; multicore
software issues in scientific computing; multicore software on mobile and embedded
devices; experience reports; etc.

☺ June 02-09 34th International Conference on Software Engineering (ICSE'2012), Zurich, Switzerland. Theme:
"Sustainable Software for a Sustainable World". Deadline for early registration: April 22, 2012.

June 01 5th Workshop on Refactoring Tools (WRT'2012). Topics include: refactoring engines,
program analyses for refactoring tools, tools for suggesting refactorings, medium- and
large-scale refactorings (e.g., package- or component-level), refactoring for concurrency
and parallelism, etc.

June 02-03 9th International Working Conference on Mining Software Repositories
(MSR'2012). Topics include: mining of repositories across multiple projects;
characterization, classification, and prediction of software defects based on analysis of
software repositories; techniques to model reliability and defect occurrences; search
techniques to assist developers in finding suitable components and code fragments for
reuse, and software search engines; analysis of change patterns and trends to assist in
future development; empirical studies on extracting data from repositories of large long-
lived and/or industrial projects; mining execution traces and logs; etc.

☺ June 09 5th Workshop on Exception Handling (WEH'2012). Topics include: Exceptions in the
software life-cycle (specifications, architectural design, modelling and programming,
verification, debugging, testing, refactoring, variability management, static analysis,
etc); Exception handling for and with new software artefacts (aspects, components, etc);
Exception handling in today's applications (distributed, web-based, cloud, etc);
Empirical studies of exception handling; Design patterns and anti-patterns, architectural
styles, and good programming practice; etc.

June 07-08 4th USENIX Workshop on Hot Topics in Parallelism (HotPar'2012), Berkeley, CA, USA.

June 07-10 21st International Workshop on Algebraic Development Techniques (WADT'2012), Salamanca,
Spain. Topics include: other approaches to formal specification; specification languages, methods, and
environments; model-driven development; integration of formal specification techniques; quality
assurance, validation, and verification; etc.

34 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

♦ June 11-15 17th International Conference on Reliable Software Technologies - Ada-
Europe'2012, Stockholm, Sweden. Sponsored by Ada-Europe, in cooperation with
ACM SIGAda, SIGBED, SIGPLAN.

☺ June 11-16 26th European Conference on Object-Oriented Programming (ECOOP'2012), Beijing, China. Topics
include: all areas of object technology and related software development technologies, such as Analysis
and design methods; Concurrent, parallel, distributed, and real-time systems; Language design and
implementation; Modularity, aspects, features, components, services; Software development
environments and tools; Static and dynamic software analysis; Type systems, formal methods; Software
evolution; etc.

☺ June 13 International Workshop on Languages for the Multi-core Era (LaME'2012). Topics
include: programming language support for concurrency; the development of innovative
or improved concurrency models, languages, run-time systems, libraries and tools for
multicore programming. Deadline for submissions: April 15, 2012 (regular papers), May
20, 2012 (position papers, programming challenge).

June 11-16 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI'2012),
Beijing, China. Events also includes: 3rd Workshop on Experimental Evaluation of Software and
Systems in Computer Science (Evaluate), ACM SIGPLAN 7th Workshop on Programming Languages
and Analysis for Security (PLAS), 2nd ACM SIGPLAN Software Security and Protection Workshop
(SSP), etc.

☺ June 14 1st Asia-Pacific Programming Languages and Compilers Workshop (APPLC'2012).
Topics include: Language designs and extensions; Static and dynamic analysis of
programs; Domain-specific languages and tools; Type systems and program logics;
Checking or improving the security or correctness of programs; Memory management;
Parallelism, both implicit and explicit; Novel programming models; Debugging
techniques and tools; Interaction of compilers and run-time systems with underlying
systems; etc.

June 13-15 37th USENIX Annual Technical Conference (USENIX ATC'2012), Boston, MA, USA. Topics
include: Distributed and parallel systems; Embedded systems; Reliability, availability, and scalability;
Security, privacy, and trust; etc.

June 13-16 7th International Federated Conferences on Distributed Computing Techniques (DisCoTec'2012),
Stockholm, Sweden. Includes the COORDINATION, DAIS, and FMOODS & FORTE conferences.

June 18-22 9th International Conference on Integrated Formal Methods (iFM'2012), Pisa, Italy. Topics include:
the combination of (formal and semi-formal) methods for system development, covering all aspects
from language design through verification and analysis techniques to tools and their integration into
software engineering practice.

June 21-22 Symposium on Languages, Applications and Technologies (SLATE'2012), Braga, Portugal. Topics
include: Programming language concepts and methodologies; Design of novel language constructs and
their implementation; Domain Specific Languages design and implementation; Programming tools;
Programming, refactoring and debugging environments; Dynamic and static analysis: Program Slicing
Compilation and interpretation techniques; Code generation and optimization; Runtime techniques and
Memory management; etc.

June 25-27 11th International Conference on Mathematics of Program Construction (MPC'2012), Madrid,
Spain. Topics of interest range from algorithmics to support for program construction in programming
languages and systems, such as type systems, program analysis and transformation, programming-
language semantics, security, etc.

June 25-28 Federated Events on Component-Based Software Engineering and Software Architecture
(CompArch'2012), Bertinoro, Italy.

June 26-28 3rd International Symposium on Architecting Critical Systems (ISARCS'2012).
Topics include: architectural support for evolution; automotive and avionic systems;
component-based development; critical infrastructures; embedded, mobile, and
ubiquitous systems; industrial case studies, challenges, problems, and solutions;
integrators (wrappers) for dependability; model-driven development; runtime checks;
survivability and error confinement; type checking techniques; etc.

Conference Calendar 35

Ada User Journal Volume 33, Number 1, March 2012

June 27-29 12th International Conference on Application of Concurrency to System Design (ACSD'2012),
Hamburg, Germany. Topics include: (industrial) case studies of general interest, gaming applications,
automotive systems, (bio-)medical applications, internet and grid computing, etc.; synthesis and control
of concurrent systems, (compositional) modeling and design, (modular) synthesis and analysis,
distributed simulation and implementation, ...; etc.

July 01-03 24th International Conference on Software Engineering and Knowledge Engineering (SEKE'2012),
Redwood City, California, USA. Topics include: Integrity, Security, and Fault Tolerance; Reliability;
Component-Based Software Engineering; Embedded Software Engineering; Reverse Engineering;
Programming Languages and Software Engineering; Program Understanding; Software Assurance;
Software dependability; Software economics; Software Engineering Tools and Environments; Software
Maintenance and Evolution; Software product lines; Software Quality; Software Reuse; Software
Safety; Software Security; Software Engineering Case Study and Experience Reports; etc. Deadline for
early registration: May 10, 2012.

☺ July 09-11 GNU Tools Cauldron 2012, Prague, Czech Republic. Sponsored by: AdaCore, Google, IBM. Topics
include: gathering of GNU tools developers.

☺ July 10-13 10th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2012), Madrid, Spain. Topics include: Parallel and Distributed Algorithms, and Applications;
High-performance scientific and engineering computing; Middleware and tools; Reliability, fault
tolerance, and security; Parallel/distributed system architectures; Tools/environments for
parallel/distributed software development; Novel parallel programming paradigms; Compilers for
parallel computers; Distributed systems and applications; etc.

☺ July 11-13 24th Euromicro Conference on Real-Time Systems (ECRTS’2012), Pisa, Italy. Topics include:
avionics, aerospace, automotive applications; embedded devices; hardware/software co-design; compiler
support; component-based approaches; middleware and distribution technologies; programming
languages and operating systems; modelling and formal methods; etc.

July 16-20 36th Annual International Computer Software and Applications Conference (COMPSAC'2012),
Izmir, Turkey. Topics include: Software life cycle, evolution, and maintenance; Formal methods;
Software architecture and design; Reliability, metrics, and fault tolerance; Security; Real-time and
embedded systems; Education and learning; Applications; etc. Deadline for submissions: April 20, 2012
(fast abstracts, posters, doctoral symposium papers).

July 18-20 17th Annual IEEE International Conference on the Engineering of Complex Computer Systems
(ICECCS'2012), Paris, France. Topics include: Verification and validation, Model-driven development,
Reverse engineering and refactoring, Design by contract, Agile methods, Safety-critical & fault-tolerant
architectures, Real-time and embedded systems, Tools and tool integration, Industrial case studies, etc.
Deadline for early registration: May 30, 2012.

☺ August 27-28 17th International Workshop on Formal Methods for Industrial Critical Systems (FMICS'2012),
Paris, France. Co-located with FM'2012. Topics include: Design, specification, code generation and
testing based on formal methods; Methods, techniques and tools to support automated analysis,
certification, debugging, learning, optimization and transformation of complex, distributed, real-time
systems and embedded systems; Verification and validation methods that address shortcomings of
existing methods with respect to their industrial applicability (e.g., scalability and usability issues);
Tools for the development of formal design descriptions; Case studies and experience reports on
industrial applications of formal methods, focusing on lessons learned or identification of new research
directions; Impact of the adoption of formal methods on the development process and associated costs;
Application of formal methods in standardization and industrial forums.

August 27-28 12th International Conference on Quality Software (QSIC'2012), Xi'an, China. Theme: "Engineering
of Quality Software". Deadline for submissions: April 23, 2012 (papers).

August 27-31 18th International Symposium on Formal Methods (FM'2012), Paris, France. Theme:
"Interdisciplinary Formal Methods". Topics include: Interdisciplinary formal methods (techniques, tools
and experiences demonstrating formal methods in interdisciplinary frameworks); Formal methods in
practice (industrial applications of formal methods, experience with introducing formal methods in
industry, tool usage reports, etc); Tools for formal methods (advances in automated verification and
model-checking, integration of tools, environments for formal methods, etc); Role of formal methods in
software and systems engineering (development processes with formal methods, usage guidelines for

36 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

formal methods, method integration, qualitative or quantitative improvements); Theoretical foundations
(all aspects of theory related to specification, verification, refinement, and static and dynamic analysis);
Teaching formal methods (original contributions that provide insight, courses of action regarding the
teaching of formal methods, teaching experiences, educational resources, integration of formal methods
into the curriculum, etc).

September 05-08 38th Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2012),
Cesme, Izmir, Turkey. Topics include: information technology for software-intensive systems. Deadline
for application: April 13, 2012 (PhD Symposium).

☺ Sep 05-08 Track on Embedded Software Engineering (ESE’2012). Topics include: Design and
implementation of embedded software; Programming methodologies and languages for
embedded software; Model-based and component-based approached to embedded
software development; Embedded software verification and validation; Testing and
certification of embedded software; Software-intensive systems applications, e.g., in
automotive, avionics, energy, industrial automation, health care, and telecommunication;
Embedded software architectures; etc.

September 10-12 17th European Symposium on Research in Computer Security (ESORICS'2012), Pisa, Italy. Topics
include: accountability, information hiding, information flow control, integrity, formal security methods,
language-based security, risk analysis and management, security verification, software security, etc.

☺ Sep 10-13 41st International Conference on Parallel Processing (ICPP'2012), Pittsburgh, PA, USA. Topics
include: all aspects of parallel and distributed computing, such as Architecture; Programming Models,
Languages & Environments; Compilers and Run-Time Systems; Applications; etc.

Sep 10 5th International Workshop on Parallel Programming Models and Systems
Software for High-End Computing (P2S2’2012).

Sep 13 International Workshop on Embedded Multicore Systems (EMS’2012). Topics
include: Compilers for heterogeneous embedded multi-core systems; Programming
models for embedded multi-core systems; Embedded OS designs and performance
tuning tools; Formal method for embedded systems; etc.

September 10-13 8th International Conference on Open Source Systems (OSS'2012), Hammamet, Tunisia. Theme:
"Long-Term Sustainability with OSS". Deadline for submissions: May 25, 2012 (panels, tutorials).
Deadline for early registration: June 15, 2012.

September 11-13 19th International Static Analysis Symposium (SAS'2012), Deauville, France. Topics include: abstract
interpretation, bug detection, data flow analysis, model checking, new applications, program
verification, security analysis, type checking, etc.

September 18-20 12th International Workshop on Automated Verification of Critical Systems (AVoCS'2012),
Bamberg, Germany. Topics include: Specification and Refinement, Verification of Software and
Hardware, Verification of Security-Critical Systems, Real-Time Systems, Dependable Systems, Verified
System Development, Industrial Applications, etc. Deadline for submissions: June 1, 2012 (full papers),
July 23, 2012 (short papers). Deadline for registration: July 30, 2012.

September 19-20 6th International Symposium on Empirical Software Engineering and Measurement (ESEM'2012),
Lund, Sweden. Topics include: qualitative methods, empirical studies of software processes and
products, industrial experience and case studies, evaluation and comparison of techniques and models,
reports on the benefits / costs associated with using certain technologies, empirically-based decision
making, quality measurement and assurance, software project experience and knowledge management,
etc. Deadline for submissions: May 20, 2012 (short papers, posters).

☺ Sep 19-23 21st International Conference on Parallel Architectures and Compilation Techniques (PACT'2012),
Minneapolis, Minnesota, USA. Topics include: Parallel architectures and computational models;
Compilers and tools for parallel computer systems; Support for correctness in hardware and software
(especially with concurrency); Parallel programming languages, algorithms and applications;
Middleware and run time system support for parallel computing; Applications and experimental systems
studies; etc.

September 23-30 28th IEEE International Conference on Software Maintenance (ICSM'2012), Riva del Garda, Trento,
Italy. Topics include: reverse engineering and re-engineering, program and system comprehension,
static and dynamic analysis, software migration and renovation, mining software repositories,

Conference Calendar 37

Ada User Journal Volume 33, Number 1, March 2012

maintenance and evolution processes, run-time evolution and update, empirical studies in software
maintenance and evolution, testing in relation to maintenance (i.e., regression testing), etc. Deadline for
submissions: April 15, 2012 (research track abstracts), April 20, 2012 (research track), May 31, 2012
(doctoral symposium), June 25, 2012 (early research achievements track), June 27, 2012 (industry track,
tool demo track).

September 25-28 5th International Conference on Software Language Engineering (SLE'2012), Dresden, Germany.
Topics include: Formalisms used in designing and specifying languages and tools that analyze such
language descriptions; Language implementation techniques; Program and model transformation tools;
Language evolution; Approaches to elicitation, specification, or verification of requirements for
software languages; Language development frameworks, methodologies, techniques, best practices, and
tools for the broader language lifecycle; Design challenges in SLE; Applications of languages including
innovative domain-specific languages or "little" languages; etc. Deadline for submissions: June 4, 2012
(abstracts), June 11, 2012 (papers).

September 26-28 11th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2012), Genoa, Italy. Topics include: software methodologies, and tools for robust, reliable, non-
fragile software design; software developments techniques and legacy systems; software evolution
techniques; agile software and lean methods; formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; software reliability, and software diagnosis systems; Model Driven
Development (DVD), code centric to model centric software engineering; etc.

October 01-04 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS'2012), Toronto, Canada. Topics include: Fault-Tolerance and Dependable Systems, Safety and
Security, Formal Methods, etc. Deadline for submissions: April 16, 2012 (abstracts), April 23, 2012
(papers).

October 01-05 10th International Conference on Software Engineering and Formal Methods (SEFM'2012),
Thessaloniki, Greece. Topics include: programming languages, program analysis and type theory;
formal methods for real-time, hybrid and embedded systems; formal methods for safety-critical, fault-
tolerant and secure systems; light-weight and scalable formal methods; tool integration; applications of
formal methods, industrial case studies and technology transfer; education and formal methods; etc.
Deadline for submissions: April 19, 2012 (papers).

October 08-11 31st IEEE International Symposium on Reliable Distributed Systems (SRDS'2012), Irvine,
California, USA. Topics include: distributed systems design, development and evaluation, with
emphasis on reliability, availability, safety, security, trust and real time; high-confidence and safety-
critical systems; distributed objects and middleware systems; formal methods and foundations for
dependable distributed computing; evaluations of dependable distributed systems; etc. Deadline for
submissions: June 25, 2012 (workshop papers).

☺ October 19-26 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2012), Tucson, Arizona, USA. Topics include: the intersection of programming,
programming languages, and software engineering; areas such as programming methods, design and
analysis, testing, concurrency, program analysis, empirical studies, and new programming languages; all
aspects of software construction and delivery, all factions of programming technologies. Deadline for
submissions: April 13, 2012 (OOPSLA research papers, Onward! papers, Onward! essays, Wavefront,
Wavefront Experience, workshops, panels); July 9, 2012 (posters, ACM Student Research competition,
Doctoral Symposium); July 11, 2012 (Dynamic Languages Symposium); July 15, 2012
(demonstrations).

November 12-16 14th International Conference on Formal Engineering Methods (ICFEM'2012), Kyoto, Japan. Topics
include: abstraction and refinement; software verification; program analysis; formal methods for
robotics, cyber-physical systems, medical devices, aeronautics, railway; formal methods for software
safety, security, reliability and dependability; experiments involving verified systems; formal model-
based development and code generation; etc. Deadline for submissions: April 16, 2012 (full papers).

November 18-23 7th International Conference on Software Engineering Advances (ICSEA'2012), Lisbon, Portugal.
Topics include: Advances in fundamentals for software development; Advanced mechanisms for
software development; Advanced design tools for developing software; Software security, privacy,
safeness; Specialized software advanced applications; Open source software; Agile software techniques;

38 Conference Calendar

Volume 33, Number 1, March 2012 Ada User Journal

Software deployment and maintenance; Software engineering techniques, metrics, and formalisms;
Software economics, adoption, and education; etc. Deadline for submissions: July 7, 2012.

♦ Dec 02-06 ACM SIGAda Annual International Conference, Boston, Massachusetts, USA.

December 05-07 33rd IEEE Real-Time Systems Symposium (RTSS’2012), San Juan, Porto Rico. RTSS provides a
forum for the presentation of high-quality, original research covering all aspects of real-time systems
design, analysis, implementation, evaluation, and experiences. Deadline for submissions: May 15, 2012.

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

December 18-21 19th IEEE International Conference on High Performance Computing (HiPC'2012), Pune, India.
Topics include: Parallel and Distributed Algorithms/Systems, Parallel Languages and Programming
Environments, Hybrid Parallel Programming with GPUs and Accelerators, Scheduling, Fault-Tolerant
Algorithms and Systems, Scientific/Engineering/Commercial Applications, Compiler Technologies for
High-Performance Computing, Software Support, etc. Deadline for submissions: May 16, 2012 (papers),
September 16, 2012 (student symposium). Deadline for early registration: November 14, 2012.

2013

☺ January 20-22 40th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL'2013),

Rome, Italy. Topics include: fundamental principles and important innovations in the design, definition,
analysis, transformation, implementation and verification of programming languages, programming
systems, and programming abstractions. Deadline for submissions: April 22, 2012 (co-located events).

March 25-29 12th International Conference on Aspect-Oriented Software Development (AOSD'2013), Fukuoka,
Japan. Topics include: Complex systems; Software design and engineering (evolution, economics,
composition, methodology, ...); Programming languages (language design, compilation and
interpretation, verification and static program analysis, formal languages, execution environments and
dynamic weaving, ...); Varieties of modularity (model-driven development, generative programming,
software product lines, contracts and components, ...); Tools (evolution and reverse engineering,
crosscutting views, refactoring, ...); Applications (distributed and concurrent systems, middleware,
runtime verification, ...); etc. Deadline for submissions: May 7, 2012 (round 1), July 23, 2012 (round 2),
October 8, 2012 (round 3).

40 Forthcoming Events

Volume 33, Number 1, March 2012 Ada User Journal

17t h International Conference on Reliable Software Technologies

Ada-Europe 2012
11-15 June 2012, Stockholm, Sweden

www.ada-europe.org/conference2012

Advance Information
The 17th International Conference on Reliable Software Technologies (Ada-
Europe 2012) will take place in Stockholm, Sweden. This conference is the
latest in a series of annual international conferences started in the early
80's, under the auspices of, and organization by, Ada-Europe, the
international organization that promotes the knowledge and use of Ada
and reliable software in general into academia, research and industry.

Ada-Europe 2012 provides a unique opportunity for dialogue and
collaboration between academics and industrial practitioners interesting in
reliable software.

Following tradition, the conference will span a full week, including tutorials and a central three-day technical
program with the latest advances in reliable software technologies and Ada. The core program features 3
keynote talks, 15 refereed scientific papers on topics in the conference theme, 9 industrial presentations and 2
discussion panels. Participants will have ample choice of half-day and full-day tutorials on Monday and Friday.
Tutorials consist of courses given by recognised experts on topics concerning state-of-the-art methods and
technologies for the development of reliable software. A session “Ada in Motion” is also planned to show off
cases of Ada being used in moving equipment, such as Lego Mindstorms robots or Arduino based devices.

Program Highlights
Each day of the core program will open with a keynote talk delivered by one the following eminent speakers:

• Bertrand Meyer, ETH Zurich, Switzerland, Chief Architect of Eiffel Software, “Life with Contracts”
• Göran Backlund, Combitech, Sweden, “What is the Mission of a Software Developer?”
• Jean-Loup Terraillon, ESTEC/ESA, the Netherlands, “Multicore Processors - the Next Generation

Computer for ESA Space Missions”.

The program also features two discussion panels, scheduled in the afternoons of the Tuesday and the
Wednesday of the conference week:

• Panel 1 (Tuesday): “What is Language Technology in Our Time?”, with Tullio Vardanega (University of
Padua) as moderator, in which the invited language specialists will discuss how in their view the role,
nature and contents of language technology has currently become, what the drivers of the change have
been and can be expected to be, and how Ada should respond to them.

• Panel 2 (Wednesday): “Reliable Software, a Perspective from Industry”, with Jørgen Bundgaard (Rovsing
A/S) as moderator, in which the invited panellists will discuss what they see as the most pressing and
challenging industrial needs in the way of software technology to facilitate the production of reliable
software.

Both panel sessions will allow and include open interaction with the conference participants.

Forthcoming Events 41

Ada User Journal Volume 33, Number 1, March 2012

About the Venue

Stockholm, one of the most beautiful capitals in the world, is built
on 14 islands around one of Europe’s largest and best-preserved
mediaeval city centres, located by the Baltic Sea coast. Stockholm is
also Scandinavia’s financial center with the largest gross regional
product and largest presence of international companies.

In 2010, Stockholm was the first city to receive the European Green
Capital award, an initiative of the European Commission, and is
ranked the fourth in the "Cities of Opportunity" analysis, ranking
first in intellectual capital and innovation, health, safety and security
demographics and liveability.

The Ada-Europe 2012 conference will take place at
Näringslivets Hus c, a modern conference centre
situated in the very heart of Stockholm, located near the
Östermalmstorg metro station and close to the Gamla
Stan historic district.

The program of the conference will offer ample time for
interaction and networking, with extensive lunch and
coffee periods, and a banquet being held on Wednesday,
at Östermalms Saluhall d, a marketplace food hall in a
magnificent building from 1888.

Ada-Europe 2012 will build on the success of the 2011
event, in Edinburgh, UK, on June 20-24, which attracted
over 130 delegates coming from Belgium, Brazil, Canada,

Denmark, Egypt, Finland, France, Germany, Israel, Italy, Norway, Poland, Portugal, Russia, Slovakia, South Africa,
Spain, Sweden, Switzerland, The Netherlands, UK and USA, representing more than 20 universities and 50
companies.

Further Information

The conference website at www.ada-europe.org/conference2012 provides full and up-to-date details of
the program, venue and social program, registration, accommodation and travel advice.

For exhibiting and sponsoring details please contact the Conference Chair, Ahlan Marriott, at
ahlan@ada-switzerland.ch.

For local information please contact the Local Chair, Rei Stråhle, at rei@ada-sweden.org.

 SIGAda, SIGBED, SIGPLAN

12

42 Forthcoming Events

Volume 33, Number 1, March 2012 Ada User Journal

ACM SIGAda Annual International Conference

High Integrity Language Technology
HILT 2012

Call for Technical Contributions

Developing and Certifying Critical Software

Boston, Massachusetts, USA
December 2-6, 2012

Sponsored by ACM SIGAda
SIGAda.HILT2012@acm.org

http://www.sigada.org/conf/hilt2012

SUMMARY
High integrity software must not only meet correctness and performance criteria but also satisfy stringent safety
and/or security demands, typically entailing certification against a relevant standard. A significant factor affecting
whether and how such requirements are met is the chosen language technology and its supporting tools: not just
the programming language(s) but also languages for expressing specifications, program properties, domain
models, and other attributes of the software or overall system.
HILT 2012 will provide a forum for experts from academia/research, industry, and government to present the
latest findings in designing, implementing, and using language technology for high integrity software. To this end
we are soliciting technical papers, experience reports (including experience in teaching), and tutorial proposals on
a broad range of relevant topics.
POSSIBLE TOPICS INCLUDE BUT ARE NOT LIMITED TO:
• New developments in formal methods
• Multicore and high integrity systems
• Object-Oriented Programming in high integrity systems
• High-integrity languages (e.g., SPARK)
• Use of high reliability profiles such as Ravenscar
• Use of language subsets (e.g., MISRA C, MISRA C++)
• Software safety standards (e.g., DO-178B and DO-178C)
• Typed/Proof-Carrying Intermediate Languages
• Contract-based programming (e.g., Ada 2012)
• Model-based development for critical systems
• Specification languages (e.g., Z)
• Annotation languages (e.g., JML)

• Teaching high integrity development
• Case studies of high integrity systems
• Real-time networking/quality of service guarantees
• Analysis, testing, and validation
• Static and dynamic analysis of code
• System Architecture and Design including

Service-Oriented Architecture and Agile Development
• Information Assurance
• Security and the Common Criteria /

Common Evaluation Methodology
• Architecture design languages (e.g., AADL)
• Fault tolerance and recovery

KINDS OF TECHNICAL CONTRIBUTIONS

TECHNICAL ARTICLES present significant results in research, practice, or education. Articles are typically 10-
20 pages in length. These papers will be double-blind refereed and published in the Conference Proceedings and
in ACM Ada Letters. The Proceedings will be entered into the widely consulted ACM Digital Library accessible
online to university campuses, ACM’s 100,000 members, and the software community.

EXTENDED ABSTRACTS discuss current work for which early submission of a full paper may be premature. If
your abstract is accepted, a full paper is required and will appear in the proceedings. Extended abstracts will be
double-blind refereed. In 5 pages or less, clearly state the work’s contribution, its relationship with previous work
by you and others (with bibliographic references), results to date, and future directions.

Forthcoming Events 43

Ada User Journal Volume 33, Number 1, March 2012

EXPERIENCE REPORTS present timely results and “lessons learned”. Submit a 1-2 page description of the
project and the key points of interest. Descriptions will be published in the final program or proceedings, but a
paper will not be required.

PANEL SESSIONS gather groups of experts on particular topics. Panelists present their views and then exchange
views with each other and the audience. Panel proposals should be 1-2 pages in length, identifying the topic,
coordinator, and potential panelists.

INDUSTRIAL PRESENTATIONS Authors of industrial presentations are invited to submit a short overview (at
least 1 page in size) of the proposed presentation and, if selected, a subsequent abstract for a 30-minute talk. The
authors of accepted presentations will be invited to submit corresponding articles for ACM Ada Letters.

WORKSHOPS are focused sessions that allow knowledgeable professionals to explore issues, exchange views,
and perhaps produce a report on a particular subject. Workshop proposals, up to 5 pages in length, will be selected
based on their applicability to the conference and potential for attracting participants.

TUTORIALS can address a broad spectrum of topics relevant to the conference theme. Submissions will be
evaluated based on applicability, suitability for presentation in tutorial format, and presenter’s expertise. Tutorial
proposals should include the expected level of experience of participants, an abstract or outline, the qualifications
of the instructor(s), and the length of the tutorial (half day or full day).

HOW TO SUBMIT: Send in Word, PDF, or text format:

Submission Deadline Send to
Technical articles, extended abstracts,
experience reports, panel session
proposals, or workshop proposals

June 29, 2012 Jeff Boleng, Program Chair
jeff@boleng.com

Industrial presentation proposals August 1, 2012 (overview)
October 1, 2012 (abstract)

Tutorial proposals June 29, 2012 John McCormick, Tutorials Chair
mccormick@cs.uni.edu

At least one author is required to register and make a presentation at the conference.

FURTHER INFORMATION
CONFERENCE GRANTS FOR EDUCATORS: The ACM SIGAda Conference Grants program is designed to
help educators introduce, strengthen, and expand the use of Ada and related technologies in school, college, and
university curricula. The Conference welcomes a grant application from anyone whose goals meet this
description. The benefits include full conference registration with proceedings and registration costs for 2 days of
conference tutorials/workshops. Partial travel funding is also available from AdaCore to faculty and students from
GNAT Academic Program member institutions, which can be combined with conference grants. For more details
visit the conference web site or contact Prof. Michael B. Feldman (MFeldman@gwu.edu)

OUTSTANDING STUDENT PAPER AWARD: An award will be given to the student author(s) of the paper
selected by the program committee as the outstanding student contribution to the conference.

SPONSORS AND EXHIBITORS: Please contact Alok Srivastava (asrivastava@yahoo.com) to learn the
benefits of becoming a sponsor and/or exhibitor at HILT 2012.

IMPORTANT INFORMATION FOR NON-US SUBMITTERS: International registrants should be particularly
aware and careful about visa requirements, and should plan travel well in advance. Visit the conference website
for detailed information pertaining to visas.

ANY QUESTIONS?
Please send email to SIGAda.HILT2012@acm.org, or contact the Conference Chair (Ben Brosgol,
brosgol@adacore.com), SIGAda’s Vice-Chair for Meetings and Conferences (Alok Srivastava,
asrivastava@yahoo.com), or SIGAda’s Chair (Ricky E. Sward, rsward@mitre.org).

 45

Ada User Journal Volume 33, Number 1, March 2012

Rationale for Ada 2012: 2 Expressions
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947 4125; email:
jgpb@jbinfo.demon.co.uk

Abstract
This paper describes the introduction of more flexible
forms of expressions in Ada 2012.
There are four new forms of expressions. If
expressions and case expressions define a value and
closely resemble if statements and case statements.
Quantified expressions take two forms using for all
and for some to return a Boolean value. Finally,
expression functions provide a simple means of
parameterizing an expression without the formality of
providing a function body.
These more flexible forms of expressions will be found
invaluable in formulating contracts such as
preconditions. It is interesting to note that Ada now
has conditional expressions over 50 years after their
introduction in Algol 60.
Keywords: rationale, Ada 2012.

1 Overview of changes
One of the key areas identified by the WG9 guidance
document [1] as needing attention was improving the
ability to write and enforce contracts. These were discussed
in detail in the previous paper.

When defining the new aspects for preconditions,
postconditions, type invariants and subtype predicates it
became clear that without more flexible forms of
expressions, many functions would need to be introduced
because in all cases the aspect was given by an expression.

However, declaring a function and thus giving the detail of
the condition, invariant or predicate in the function body
makes the detail of the contract rather remote for the human
reader. Information hiding is usually a good thing but in
this case, it just introduces obscurity.

Four forms are introduced, namely, if expressions, case
expressions, quantified expressions and expression
functions. Together they give Ada some of the flexible feel
of a functional language.

In addition, membership tests are generalized to allow
greater flexibility which is particularly useful for subtype
predicates.

The following Ada issues cover the key changes and are
described in detail in this paper:

 3 Qualified expressions and names

147 Conditional expressions

158 Generalizing membership tests

176 Quantified expressions

177 Expression functions

188 Case expressions

These changes can be grouped as follows.

First there are conditional expressions which come in two
forms, if expressions and case expressions, which have a
number of features in common (147, 188).

Then there is the introduction of quantified expressions
which use for all to describe a universal quantifier and for
some to describe an existential quantifier. Note that some
is a new reserved word (176).

Next comes the fourth new form of expression which is the
expression function (177).

Finally, membership tests are generalized (158) and there is
a minor change regarding qualified expressions (3).

2 If expressions
It is perhaps very surprising that Ada does not have if
expressions as well as if statements. In order to provide
some background context we briefly look at two historic
languages that are perhaps the main precursors to modern
languages; these are Algol 60 [2] and CPL [3].

Algol 60 had conditional expressions of the form

Z := if X = Y then P else Q

which can be contrasted with the conditional statement

if X = Y then
 Z := P
else
 Z := Q

Conditional statements in Algol 60 allowed only a single
statement in each branch, so if several were required then
they had to be grouped into a compound statement thus

if X = Y then
 begin
 Z := P; A := B
 end
else
 begin
 Z := Q; A := C
 end

It may be recalled that statements were not terminated by
semicolons in Algol 60 but separated by them. However, a

46 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

null statement was simply nothing so the effect of adding
an extra semicolon in some cases was harmless. However,
accidentally writing

if X = Y then ;
 begin
 Z := P; A := B
 end;

results in a disaster because the test then just covers a null
statement and the assignments to Z and A always take
place. The complexity of compound statements did not
arise with conditional expressions.

The designers of Algol 68 [4] sensibly recognized the
problem and introduced closing brackets thus

if X = Y then
 Z := P; A := B;
fi;

where fi matches the if. Conditional expressions in Algol 68
were similar

Z := if X = Y then P else Q fi;

An alternative shorthand notation was

Z := (X = Y | P | Q);

which was perhaps a bit too short.

The next major language in this series was Pascal [5]. The
designers of Pascal rejected everything that had been learnt
from Algol 68 and foolishly continued the Algol 60 style
for compound statements and also dropped conditional
expressions. Only with Modula did they realise the need for
bracketing rather than compounding.

The other foundation language was CPL [3]. Conditional
statements in CPL took the following form

if X = Y then do Z := P

if X = Y then do § Z := P; A := B §|

where compound statements were delimited by section
symbols (note that the closing symbol has a vertical line
through it).

From CPL came BCPL, B and C. Along the way, the
expressive := for assignment got lost in favour of = which
then meant that = had to be replaced by == for equality.
And the section brackets became { and } so in C the above
conditional statements become

if (X == Y) Z = P;

if (X == Y) {Z = P; A = B;}

This suffers from the same stray semicolon problem
mentioned above with reference to Algol 60.

Steelman [6] did not require Ada to have conditional
expressions and since they were not required they were not
provided (the requirements were treated with considerable
reverence). A further influence might have been that the
new language had to be based on one of Pascal, Fortran and

PL/I and Ada is based on Pascal which did not have
conditional expressions as mentioned above.

Moreover, the Ada designers felt that the Algol 68 style
with reversed keywords such as fi (or worse esac) for
conditional statements would not be acceptable to the
USDoD or the public at large and so we have end if as the
closing bracket thus

if X = Y then
 Z := P;
 A := B;
end if;

Remember that semicolons terminate statements in Ada
and so those above are all required. Moreover, since null
statements in Ada have to be given explicitly, placing a
stray semicolon after then gives a compiler error.

The absence of conditional expressions is a pain. It leads to
unnecessary duplication such as having to write

if X > 0 then
 P(A, B, D, E);
else
 P(A, C, D, E);
end if;

where all parameters but one are the same. This can even
lead to disgusting coding using the fact that
Boolean'Pos(True) is 1 whereas Boolean'Pos(False) is 0.
Thus (assuming that B and C are of type Integer) the above
could be written as a single procedure call thus

P(A, Boolean'Pos(X>0)*B+Boolean'Pos(X<=0)*C, D, E);

So it is a great relief in Ada 2012 to be able to write

P(A, (if X>0 then B else C), D, E);

A worse problem was when a static expression was
required such as the initial value for a named number as in
the following gruesome code

Febdays: constant :=
 Boolean'Pos(Leap)*29 + Boolean'Pos(not Leap)*28;

which we can now thankfully write as

Febdays: constant := (if Leap then 29 else 28);

Note carefully that there is no end if. One reason is simply
that it is logically unnecessary since there can be only a
single expression after else and also end if would have
been obtrusively heavy (compared say with fi of Algol 68).
However, it was felt that some demarcation was required to
aid clarity and so a conditional expression is always
enclosed in parentheses. If the context already has
parentheses then additional ones are not required. Thus in
the case of a positional call with a single parameter we just
write

P(if X > 0 then B else C);

but if we use named notation then extra parentheses are
required

P(Para => (if X > 0 then B else C));

J. G. P. Barnes 47

Ada User Journal Volume 33, Number 1, March 2012

Note carefully that the term conditional expression in Ada
2012 embraces both if expressions and case expressions
(which are discussed in the next section).

As expected, a series of tests can be done using elsif thus

P(if X > 0 then B elsif X < 0 then C else D);

and expressions can be nested

P(if X > 0 then (if Y > 0 then B else C) else D);

Without the rule requiring enclosing parentheses this could
be written as

P(if X > 0 then if Y > 0 then B else C else D); -- illegal

which seems more than a little confusing.

There is a special rule if the type of the expression is
Boolean (that is of the predefined type Boolean or derived
from it). In that case a final else part can be omitted and is
taken to be true by default. Thus the following are
equivalent

P(if C1 then C2 else True);

P(if C1 then C2);

Such abbreviations appear frequently in preconditions as
was illustrated in the Introduction where we had

Pre => (if P1 > 0 then P2 > 0);

which has the obvious meaning that the precondition
requires that if P1 is positive then P2 must be positive as
well but if P1 is not positive then all is well and we don't
care about P2.

This abbreviated form has the same effect as an implies
operation.

R := C1 implies C2; -- not Ada!

with the following truth table

 C1 = False C1 = True

C2 = False R = True R = False

C2 = True R = True R = True

Some consideration was given to including such an
operation in Ada 2012 (it existed in Algol 60). However,
this is exactly the same as

R := not C1 or C2;

and so somewhat unnecessary. Moreover, although implies
might appeal to some programmers it could lead to
maintenance problems since it might be considered
incomprehensible by many others.

There are important rules regarding the types of the various
dependent expressions in the branches of an if expression.
Basically they have to all be of the same type or convertible
to the same expected type. But there are some interesting
situations.

If the conditional expression is the argument of a type
conversion then effectively the conversion is considered
pushed down to the dependent expressions. Thus

X := Float(if P then A else B);

is equivalent to

X := (if P then Float(A) else Float(B));

As a consequence we can write

X := Float(if P then 27 else 0.3);

and it doesn't matter that 27 and 0.3 are not of the same
type.

If the expected type is class wide, perhaps giving the initial
value for a class wide variable V, then the individual
dependent expressions have that same expected class wide
type but they need not all be of the same specific type
within the class. Thus we might write

V: Object'Class := (if B then A_Circle else A_Triangle);

where A_Circle and A_Triangle are objects of specific types
Circle and Triangle which are themselves descended from
the type Object.

If the expected type is a specific tagged type then various
situations can arise regarding the various branches which
are similar to the rules for calling a subprogram with
several controlling operands. Either they all have to be
dynamically tagged (that is class wide) or all have to be
statically tagged. They might all be tag indeterminate in
which case the conditional expression as a whole is also tag
indeterminate.

Some obscure curiosities arise. Remember that the
controlling condition for an if statement can be any
Boolean type. Consider

type My_Boolean is new Boolean;

My_Cond: My_Boolean := ... ;

if (if K > 10 then X = Y else My_Cond) then -- illegal
 ...
end if;

The problem here is that X = Y is of type Boolean but
My_Cond is of type My_Boolean. Moreover, the expected
type for the condition in the if statement is any Boolean
type so it cannot make up its mind. We could overcome this
foolishness by putting a type conversion around the if
expression.

There are also rules regarding staticness. If all branches are
static then a conditional expression as a whole is static as in
the example of Febdays above. Thus the definition of a
static expression has been extended to permit the inclusion
of static conditional expressions.

The avid reader of the Reference Manual will find that the
term statically unevaluated has been introduced. This
relates to situations where expressions are not evaluated
because a prior expression is static. Consider

X := (if B then P else Q);

48 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

If B, P and Q are all static then the conditional expression
as a whole is static. If B is true then the answer is P and
there is not any need to even look at Q. We say that Q is
statically unevaluated and indeed it does not matter that if
Q had been evaluated it would have raised an exception.
Thus we might write

Average := (if Count = 0 then 0.0 else Total/Count);

and there is no risk of dividing by zero.

Similar rules regarding being statically unevaluated apply
to short circuit conditions, case expressions, and
membership tests.

As might be expected there are rules regarding access types
and accessibility. The accessibility level of a conditional
expression is simply that of the chosen dependent
expression and thus (generally) determined dynamically.

Readers might feel that Ada has embarked on a slippery
slope by introducing more flexibility thereby possibly
damaging Ada's reputation for reliability. Certainly a
number of additional rules have been required but from the
users' point of view these are almost intuitive. It should be
remembered that the difficulties in C stem from a
combination of things

▪ that assignment is permitted as an expression,

▪ that integer values are used as Booleans,

▪ that null statements are invisible.

None of these applies to Ada so all is well.

3 Case expressions
Case expressions have much in common with if
expressions and the two are collectively known as
conditional expressions.

Thus given a variable D of the familiar type Day, we can
assign the number of hours in a working day by

Hours := (case D is
 when Mon .. Thurs => 8,
 when Fri => 6,
 when Sat | Sun => 0);

A slightly more adventurous example involving nested if
expressions is

Days := (case M is
 when September | April | June | November => 30,
 when February =>
 (if Year mod 100 = 0 then
 (if Year mod 400 =0 then 29 else 28)
 else
 (if Year mod 4 = 0 then 29 else 28)),
 when others => 31);

The reader is invited to improve this!

Note the similarity to the rules for if expressions. There is
no closing end case. Case expressions are always enclosed
in parentheses but they can be omitted if the context
already provides parentheses.

If M and Year are static then the case expression as a whole
is also static. If M is static and equal to September, April,
June or November then the value is statically known to be
30 so that the expression for February is statically
unevaluated even if Year is not static. Note that the various
choices are evaluated in order.

The rules regarding the types of the dependent expressions
are exactly as for if expressions. Thus if the case expression
is the argument of a type conversion then the conversion is
effectively pushed down to the dependent expressions.

It is always worth emphasizing that an important advantage
of case constructions is that they give a coverage check.
Thus in the previous paper we had

subtype Pet is Animal
 with Static_Predicate =>
 (case Pet is
 when Cat | Dog | Horse => True,
 when Bear | Wolf => False);

which is much more reliable than

subtype Pet is Animal
 with Static_Predicate => Pet in Cat | Dog | Horse;

because when we add Rabbit to the type Animal, we are
forced to include it in one branch of the case expression
whereas it is all too easy to forget it using an if expression.

4 Quantified expressions
Another new form of expression in Ada 2012 is the
quantified expression. The syntax is

quantified_expression ::=
for quantifier loop_parameter_specification => predicate
| for quantifier iterator_specification => predicate

quantifier ::= all | some

predicate ::= boolean_expression

The form involving iterator_specification concerns
generalized iterators and will be found particularly useful
with containers; it will be discussed in detail in a later
paper. Here we will concentrate on the use of the familiar
loop parameter specification.

The type of a quantified expression is Boolean. So we
might write

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A
has value 0. We might also write

B := (for some K in A'Range => A(K) = 0);

which assigns true to B if some component of the array A
has value 0.

Note that the loop parameter is almost inevitably used in
the predicate. A quantified expression is very much like a
for statement except that we evaluate the expression after
=> on each iteration rather than executing one or more

J. G. P. Barnes 49

Ada User Journal Volume 33, Number 1, March 2012

statements. The iteration is somewhat implicit and the
words loop and end loop do not appear.

The expression is evaluated for each iteration in the
appropriate order (reverse can be inserted of course) and
the iteration stops as soon as the value of the expression is
determined. Thus in the case of for all, as soon as one value
is found to be False, the overall expression is False
whereas in the case of for some as soon as one value is
found to be True, the overall expression is True. An
iteration could raise an exception which would then be
propagated in the usual way.

Like conditional expressions, a quantified expression is
always enclosed in parentheses which can be omitted if the
context already provides them, such as in a procedure call
with a single positional parameter.

Incidentally, predicate is a fancy word meaning Boolean
expression. Older folk might recall that it also means the
part of a sentence after the subject. Thus in the sentence "I
love Ada", the subject is "I" and the predicate is "love
Ada".

The forms for all and for some are technically known as
the universal quantifier and existential quantifier
respectively.

Note that some is a new reserved word (the only one in
Ada 2012). There were five new ones in Ada 95 (aliased,
protected, requeue, tagged and until) and three new ones
in Ada 2005 (interface, overriding and synchronized).
Hopefully we are converging.

The type of a quantified expression can be any Boolean
type (that is the predefined type Boolean or perhaps
My_Boolean derived from Boolean). The predicate must be
of the same type as the expression as a whole. Thus if the
predicate is of type My_Boolean then the quantified
expression is also of type My_Boolean.

The syntax for quantified expressions uses => to introduce
the predicate. This is similar to the established notation in
SPARK [7]. Consideration was given to using a vertical bar
which is common in mathematics but that would have been
confusing because of its use in membership tests and other
situations with multiple choices.

As illustrated in the Introduction, quantified expressions
will find their major uses in pre- and postconditions. Thus a
procedure Sort on an array A of type Atype such as

type Atype is array (Index) of Float;

might have specification

procedure Sort(A: in out Atype)
 with
 Post => A'Length < 2 or else
 (for all K in A'First .. Index'Pred(A'Last) =>
 A(K) <= A(Index'Succ(K)));

where we are assuming that the index type need not be an
integer type and so we have to use Succ and Pred. Note
how the trivial cases of a null array or an array with a
single component are dismissed first.

Quantified expressions can be nested. So we might check
that all components of a two-dimensional array are zero by
writing

B := (for all I in AA'Range(1) =>
 (for all J in AA'Range(2) => AA(I, J) = 0));

This can be done rather more neatly using the syntactic
form

 for quantifier iterator_specification => predicate

as will be discussed in detail in a later paper. We just write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however
many dimensions it has.

5 Expression functions
The final new form to be discussed is the expression
function. As outlined in the Introduction, an expression
function provides the effect of a small function without the
formality of introducing a body. It is important to
appreciate that strictly speaking an expression function is
basically another form of function and not another form of
expression. But it is convenient to discuss expression
functions in this paper because like conditional expressions
and quantified expressions they arose for use with aspect
clauses such as pre- and postconditions.

The syntax is

expression_function_declaration ::=
[overriding_indicator]
function_specification is
 (expression)
 [aspect_specification] ;

As an example we can reconsider the type Point and the
function Is_At_Origin thus

package P is
 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

 function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0)
 with Inline;

 ...
end P;

The expression function Is_At_Origin is a primitive
operation of Point just as if it were a normal function with a
body. If a type My_Point is derived from Point then
Is_At_Origin would be inherited or could be overridden
with a normal function or another expression function.
Thus an expression function can be prefixed by an
overriding indicator as indicated by the syntax.

Expression functions can have an aspect clause and since
by their very nature they will be short, this will frequently
be with Inline as in this example.

50 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

The result of an expression function is given by an
expression in parentheses. The parentheses are included to
immediately distinguish the structure from a normal body
which could start with an arbitrary local declaration. The
expression can be any expression having the required type.
It could for example be a quantified expression as in the
following

function Is_Zero(A: Atype) return Boolean is
 (for all J in A'Range => A(J) = 0);

This is another example of a situation where the quantified
expression does not need to be enclosed in its own
parentheses because the context supplied by the expression
function provides parentheses.

Expression functions can be completions as well as
standing alone and this introduces a number of possibilities.
Remember that many declarations require completing. For
example an incomplete type such as

type Cell; -- an incomplete type

is typically completed by a full type declaration later on

type Cell is
 record ... end record; -- its completion

Completion also applies to subprograms. Typically the
declaration (that is the specification plus semicolon) of a
subprogram appears in a package specification thus

package P is
 function F(X: T); -- declaration
 ...
end P;

and then the body of F which completes it appears in the
body of P thus

package body P is
 function F(X: T) is -- completion
 begin
 ...
 end F;
 ...
end P;

A function body cannot appear in a package specification.
The only combinations are

function declaration F function body F

in spec of P in body of P

in body of P in body of P

None in body of P

Remember that mutual recursion may require that a body
be given later so it is possible for a distinct declaration of F
to appear in the body of P before the full body of F. In
addition to the above the function body could be replaced

by a stub and the proper body compiled separately but that
is another story.

The rules regarding expression functions are rather
different. An expression function can be declared alone as
in the example of Is_At_Origin above; or it can be a
completion of a function declaration and that completion
can be in either the package specification or body. A
frequently useful combination occurs with a private type
where we need to make a function visible so that it can be
used in a precondition and the expression function then
occurs in the private part as a completion thus

package P is
 type Point is tagged private;
 function Is_At_Origin(P: Point) return Boolean
 with Inline;
 procedure Do_It(P: in Point; ...)
 with Pre => not Is_At_Origin;

private

 type Point is tagged
 record
 X, Y: Float := 0.0;
 end record;

function Is_At_Origin(P: Point) return Boolean is
 (P.X = 0.0 and P.Y = 0.0);

 ...
end P;

Note that we cannot give an aspect specification on an
expression function used as a completion, so it is given on
the function specification; this makes it visible to the user.
(This rule applies to all completions such as subprogram
bodies and is not special to expression functions.)

An expression function can also be used in a package body
as an abbreviation for

function Is_At_Origin(P: Point) return Boolean is
begin
 return P.X = 0.0 and P.Y = 0.0;
end Is_At_Origin;

The possible combinations regarding a function in a
package are

function declaration F expression function F

in spec of P in spec or body of P

in body of P in body of P

None in spec or body of P

We perhaps naturally think of an expression function used
as a completion to be in the private part of a package. But
we could declare a function in the visible part of a package
and then an expression function to complete it in the visible
part as well. This is illustrated by the following interesting
example of two mutually recursive functions.

J. G. P. Barnes 51

Ada User Journal Volume 33, Number 1, March 2012

package Hof is

 function M(K: Natural) return Natural;
 function F(K: Natural) return Natural;

 function M(K: Natural) return Natural is
 (if K = 0 then 0 else K – F(M(K–1)));

 function F(K: Natural) return Natural is
 (if K =0 then 1 else K – M(F(K–1)));

end Hof;

These are the Male and Female functions described by
Hofstadter [8]. They are inextricably intertwined and both
are given with completions for symmetry.

Almost inevitably, at least one of the expression functions
in a mutually recursive pair will include an if expression (or
else or else) otherwise the recursion will not stop.

Expression functions can also be declared in subprograms
and blocks (they are basic declarative items). Moreover, an
expression function that completes a function can also be
declared in the subprogram or block.

This is illustrated by the following Gauss-Legendre
algorithm which computes π to an amazing accuracy
determined by the value of the constant K.

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Long_Long_Float_Text_IO;
use Ada.Long_Long_Float_Text_IO;
with Ada.Numerics.Long_Long_Elementary_Functions;
use Ada.Numerics.Long_Long_Elementary_Functions;
procedure Compute_Pi is

 function B(N: Natural) return Long_Long_Float;

 function A(N: Natural) return Long_Long_Float is
 (if N = 0 then 1.0 else (A(N–1)+B(N–1))/2.0);

 function B(N: Natural) return Long_Long_Float is
 (if N = 0 then Sqrt(0.5) else Sqrt(A(N–1)*B(N–1)));

 function T(N: Natural) return Long_Long_Float is
 (if N = 0 then 0.25 else
 (T(N–1)–2.0**(N–1)*A(N–1)–A(N))**2);

 K: constant := 5; -- for example
 Pi: constant Long_Long_Float :=
 ((A(K) + B(K))**2 / (4.0*T(K));
begin
 Put(Pi, Exp => 0);
 New_Line;
end Compute_Pi;

With luck this will output 3.14159265358979324
(depending on the accuracy of Long_Long_Float).

The functions A and B give successive arithmetic and
geometric means. They call each other and so B is given as
a function specification which is then completed by the
function expression.

I am grateful to Brad Moore and to Ed Schonberg for these
instructive examples.

The rules regarding null procedures (introduced in Ada
2005 primarily for use with interfaces) are modified in Ada
2012 to be uniform with those for expression functions
regarding completion. Thus

procedure Nothing(X: in T) is null;

can be used alone as a declaration of a null operation for a
type or as a shorthand for a traditional null procedure thus
possibly completing the declaration

procedure Nothing(X: in T);

Expression functions and null procedures do not count as
subprogram declarations and so cannot be declared at
library level. Nor can they be used as proper bodies to
complete stubs. Library subprograms are mainly intended
for use as main subprograms and to use an expression
function in that way would be somewhat undignified!

Thus if we wanted to declare a useful function to compute
sin 2x from time to time, we cannot write

with Ada.Numerics.Elementary_Functions;
use Ada.Numerics.Elementary_Functions;
function Sin2(X: Float) is -- illegal
 (2.0 * Sin(X) * Cos(X));

but either have to write it out the long way or wrap the
expression function in a package.

6 Membership tests
Membership tests in Ada 83 to Ada 2005 are somewhat
restrictive. They take two forms

▪ to test whether a value is in a given range, or

▪ to test whether a value is in a given subtype.

Examples of these are

if M in June .. August then

if I in Index then

However, the restrictions are annoying. If we want to test
whether it is safe to eat an oyster (there has to be an R in
the month) then we would really like to write

if M in Jan .. April | Sep .. Dec then -- illegal in Ada 2005

whereas we are forced to write something like

if M in Jan .. April or M in Sep .. Dec then

which means repeating M and then perhaps worrying about
whether to use or or or else. Or in this case we could do
the test the other way

if M not in May .. Aug then

What we would really like to do is use the vertical bar as in
case statements and aggregates to select a combination of
ranges, subtypes, and values.

Ada 2012 is much more flexible in this area. To see the
differences it is probably easiest to look at the old and new
syntax. The relevant old syntax for Ada 2005 is

52 Rat ionale for Ada 2012: 2 Expressions

Volume 33, Number 1, March 2012 Ada User Journal

relation ::=
 simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

where the last two productions define membership tests.
The syntax regarding choices in aggregates and case
statements in Ada 2005 is

discrete_choice_list ::= discrete_choice { | discrete_choice}

discrete_choice ::= expression | discrete_range | others

discrete_range ::= discrete_subtype_indication | range

The syntax in Ada 2012 is rather different and changes
relation to use new productions for membership_choice_list
and membership_choice (this enables the vertical bar to be
used in membership tests). And then membership_test in
turn uses choice_expression and choice_relation as follows

relation ::=
 simple_expression [relational_operator simple_expression]
| simple_expression [not] in membership_choice_list

membership_choice_list ::=
 membership_choice { | membership_choice}

membership_choice ::=
 choice_expression | range | subtype_mark

choice_expression ::=
 choice_relation {and choice_relation}
 | choice_relation {or choice_relation}
 | choice_relation {xor choice_relation}
 | choice_relation {and then choice_relation}
 | choice_relation {or else choice_relation}

choice_relation ::=
 simple_expression [relational_operator simple_expression]

The difference between a choice_relation and a relation is
that the choice_relation does not include membership tests.
Moreover, discrete_choice is changed to

discrete_choice ::= choice_expression
 | discrete_subtype_indication | range | others

the difference being that a discrete_choice now uses a
choice_expression rather than an expression as one of its
possibilities.

The overall effect of the changes is to permit the vertical
bar in membership tests without getting too confused by
nesting membership tests.

Here are some examples that are now permitted in Ada
2012 but were not permitted in Ada 2005

if N in 6 | 28 | 496 then -- N is small and perfect!

if M in Spring | June | October .. December then
 -- combination of subtype, single value and range

if X in 0.5 .. Z | 2.0*Z .. 10.0 then -- not discrete or static

if Obj in Triangle | Circle then -- with tagged types

if Letter in 'A' | 'E' | 'I' | 'O' | 'U' then -- characters

Membership tests are permitted for any type and values do
not have to be static. There is no change here but it should
be remembered that existing uses of the vertical bar in case
statements and aggregates do require the type to be discrete
and the values to be static.

Another important point about membership tests is that the
membership choices are evaluated in order and as soon as
one is found to be true (or false if not is present) then the
relation as a whole is determined and the other membership
choices are not evaluated. This is therefore the same as
using short circuit forms such as or else and so gives
another example of expressions which are statically
unevaluated.

There is one very minor incompatibility. In Ada 2005 we
can write

X: Boolean := ...
case X is
 when Y in 1 .. 10 => F(10);
 when others => F(5);
end case;

This is rather peculiar. The discrete choice Y in 1 .. 10 must
be static. Suppose Y is 5, so that Y in 1 .. 10 is true; then if
X is True, we call F(10) whereas if X is false we call F(5).
And vice versa for values of Y not in the range 1 to 10.

This is syntactically illegal in Ada 2012 because a discrete
choice can no longer be an expression and so be a
membership test. This was imposed because otherwise we
might have been tempted to write

X: Boolean := ...
case X is
 when Y in 1 .. 10 | 20 => F(10);
 when others => F(5);
end case;

and this is syntactically ambiguous because it might be
parsed as (Y in 1 .. 10) | 20 rather than Y in (1 .. 10) | 20.
Although it would be rejected anyway because of the type
mismatch. However, syntactic ambiguities are disliked in
Ada.

This is clearly very unlikely to be a problem. Case
statements over Boolean types are pretty rare anyway.

7 Qualified expressions
We conclude this discussion of expressions by considering
some points regarding names and primaries.

In Ada 2005 we have

name ::=
 direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal

primary ::=
 numeric_literal | null | string_litreral | aggregate | name
 | qualified_expression | allocator | (expression)

And in Ada 2012 we have

J. G. P. Barnes 53

Ada User Journal Volume 33, Number 1, March 2012

name ::=
 direct_name | explicit_dereference | indexed_component
 | slice | selected_component | attribute_reference
 | type_conversion | function_call | character_literal
 | qualified_expression | generalized_reference
 | generalized_indexing

primary ::=
 numeric_literal | null | string_litreral | aggregate | name
 | allocator | (expression)
 | (conditional_expression) | (quantified_expression)

The important thing to observe here is that
qualified_expression has moved from being a form of
primary to being a name.

We also note the addition of conditional_expression and
quantified_expression (both in parentheses) as forms of
primary as discussed earlier in this paper and the addition
of generalized_reference and generalized_indexing as
forms of name. These are used in the new forms of iterator
briefly alluded to at the end of the discussion on quantified
expressions and which will be discussed in a later paper.

Returning to qualified expressions, the main reason for
allowing them as names is to avoid unnecessary
conversions as mentioned in the Introduction.

Consider

A: T; -- object of type T
type Art is array (1 .. 10) of T; -- array of type T
function F(X: Integer) return Art;

A function call can be used as a prefix and so a call
returning an array can be indexed as in

A := F(3)(7);

which assigns to A the value of the 7th component of the
array returned by the call of F.

Now suppose that F is overloaded so that F(3) is
ambiguous. The normal solution to such ambiguities is to
use qualification and write Art'(F(3)) as in

A := Art'(F(3))(7); -- illegal in Ada 2005

but this is illegal in Ada 2005 because a qualified
expression is not a name and so cannot be used as a prefix.
What one has to do in Ada 2005 is either copy the wretched
array (really naughty) or add a type conversion (a type
conversion is a name) thus

A := Art(Art'(F(3)))(7);

This is really gruesome; but in Ada 2012, qualification is
permitted as a name so we can simply write

A := Art'(F(3))(7); -- OK in Ada 2012

Although a qualified expression is now classed as a name
rather than a primary, a qualified variable is not considered
to be a variable. As a consequence, a qualified variable
cannot be used as the destination of an assignment or as an
actual parameter corresponding to an out or in out
parameter. This would have added complexity for no useful
purpose. Ambiguity generally involves calls on overloaded
functions, and the result of a function call is always a
constant, so ambiguous names of variables are unlikely!

Other uses might involve strings which can also give rise to
ambiguities. For example

("a string")'Length

is ambiguous (it could be a String or Wide_String). But now
we can write

String'("a string")'Length

which was not permitted in Ada 2005.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions

to the Ada Rapporteur Group from SC22/WG9 for
Preparation of Amendment 2 to ISO/IEC 8652.

 [2] P. Naur (ed.), Revised Report on the Algorithmic
Language ALGOL 60 (1963) Communications of the
Association for Computing Machinery, Vol. 6, p. 1.

[3] D. W. Barron et al (1963) The main features of CPL,
Computer Journal vol. 6, pp 134-143.

[4] A. van Wijngaarden et al (eds) (1973) Revised Report
on the Algorithmic Language – ALGOL 68, Springer-
Verlag.

[5] K. Jensen and N. Wirth (1975) Pascal User Manual
and Report, Springer-Verlag.

[6] Defense Advanced Research Projects Agency (1978)
Department of Defense Requirements for High Order
Computer Programming Languages – STEELMAN,
USDoD.

[7] J. G. P. Barnes (2003) High Integrity Software, The
SPARK Approach to Safety and Security, Addison-
Wesley.

[8] D. R. Hofstadter (1980) Gödel, Escher, Bach: an
Eternal Golden Braid, Basic Books.

© 2012 John Barnes Informatics.

54

Volume 33, Number 1, March 2012 Ada User Journal

Entity-Life Modeling: Designing Reactive Software
Architectures to the Strengths of Tasks
Bo I Sandén
Colorado Technical U., 4435 N. Chestnut St., Colorado Springs, CO 80907, USA; email: bsanden@acm.org

Abstract
Entity-life modeling (ELM) is a design approach for
multitask reactive software, which must respond to
events in the environment as they occur. The
abundant computing power now afforded by
multiprocessors allows us to design such software
differently than in the past. With ELM, the architect
identifies threads of event occurrences in the problem
domain that unfold independently or nearly so, and
bases tasks on such event threads. ELM also provides
design patterns for modeling tasks on activities
defined for state machines, and event-thread patterns
for problems that involve the sharing of problem-
domain resources.
Keywords: multitasking, entity-life modeling,
multiprocessors, event threads, resource sharing,
design of multitask software, multithreading, task
architecture, reactive systems.

1 Introduction
Tasking has long been used in certain kinds of software
such as servers and real-time systems. The new abundance
of processors allows us to design such software in more
elegant ways that makes it more understandable and
maintainable.

We are interested here in systems that exhibit a reactive
behavior [12]. Their reactions to events in the problem
domain can be captured in state models. Taken in a broad
sense, reactive systems include telephone switches,
embedded control systems, and interactive systems ranging
from ATMs to travel-reservation systems [25].

This article presents entity-life modeling (ELM) as a design
approach for reactive software [19, 20, 22]. ELM proposes
certain architectural styles and suggests heuristics for
finding task architectures in those styles. As there is often
little time for upfront designing, ELM produces a task
architecture directly, without first modeling objects or
mapping out a data flow. ELM does not address the
parallelization of algorithms but in no way precludes it;
tasks computing concurrently on different processors are
very much in ELM’s spirit.

While the book Design of Multithreaded Software [22]
defines ELM, this article applies the design approach to
tasking in Ada and uses Ada terminology. It also introduces
a UML diagram showing ELM’s conceptual apparatus
(Figure 1), which is not found in the book. The term

“essential event” is introduced. The garage-door example in
section 2 is new as well.

1.1 Traditional task architectures
Traditionally, multitask reactive software has been
designed around the need to husband limited processor
resources. It is often structured as a set of periodic tasks
with periodic, hard deadlines, and each task’s priority is set
to ensure that it meets its deadlines. Schemes such as rate-
monotonic scheduling can establish a priori whether all
deadlines will be met [13]. The number of missed deadlines
is used as a performance metric. Each input/stimulus visits
one periodic task after the other, and may itself have a hard
deadline. The periodic deadlines must be chosen so that
deadline is also met.

Besides hard deadlines, we also talk about soft deadlines.
Missing a soft deadline is no disaster but may degrade
performance. In a cruise controller for example, which
must adjust the throttle at consistent intervals for a smooth
ride, the planned time for each adjustment can be a soft
deadline [21, 22]. And interactive systems must be
responsive to human input but again without hard
deadlines. In such systems the mean and variance of the
response or service time may be the best performance
metric.

With additional cores and processors, inputs can still have
associated deadlines, but there is much more processing
time to go around: As many computations as there are
processors or cores can proceed simultaneously. For many
applications, the design need no longer center on processor
availability as the overshadowing constraint.

This does not mean that we can blithely assume that
abundant processes and cores will make all resource
conflicts just go away. Even if an input is processed on a
dedicated processor, it can miss its deadline because other
tasks hold on to a shared resource too long. And in some
“cyber-physical systems”, computation may be “deeply
embedded in and interacting with physical processes”
imposing precise timing constraints on the software [16].

Thus, even absent the need for each input to visit one task
after another, we must design multitask reactive software
carefully. Undisciplined tasking can create “wild
nondeterminism” and deadlock [15]. While a sequential
program can be checked against an exhaustive set of test
cases this is not so with tasking where some bugs may
show up only in rare runtime situations that a tester cannot
easily recreate. No less important, there are also general

B. Sandén 55

Ada User Journal Volume 33, Number 1, March 2012

software-engineering goals such as simplicity,
modifiability, and maintainability.

1.2 Entity-life modeling
Entity-life modeling (ELM) is a disciplined design approach
for multitask reactive software. It is dedicated to the
proposition that each essential event occurrence should be
processed to completion by a single task – or by an
event/interrupt handler. This does not mean that a new task
is started for each event occurrence. Having processed one
to completion, a task can go on to handle another
occurrence of the same or a different event and indeed a
whole series of occurrences provided they are not too close
together. For this, ELM defines an event thread as a
chronological sequence of problem-domain event
occurrences that are separated in time.1
The term “event” is taken from state modeling. In a garage-
door controller, click may be the event where a homeowner
hits a clicker button, and top may be where the door hits the
ceiling. Each event has any number of occurrences, as
when the owner of a particular home clicks the button at a
particular time. Such an occurrence is normally followed
by an occurrence of top seconds later.
ELM stipulates that every task must be based on an event
thread. This justifies the task’s existence. But if all the
thread’s occurrences are processed by handlers, no task is
needed.
An ELM architecture is meant to be independent of the
number of processors available. Thus it can use as many
processors as there are tasks, or, at the other extreme, all
tasks can run on a single processor. Clearly, the
performance can be quite different but the architecture does
not have to change.
The relationship between event-thread models and task
architectures is illustrated schematically in Figure 1, which
also shows that tasks have priorities. ELM assumes that
their scheduling is preemptive so that a higher-priority task
in need of a processor can take it over from a lower-priority
task immediately.
1.2.1 Event-thread models and task architectures
Figure 1 shows an event-thread model of a given problem
as a set of event threads. The threads partition the set of
problem-domain event occurrences: Each occurrence
belongs to exactly one event thread. There may be multiple
ways to view a problem, each with its own event-thread
model.

Also shown in Figure 1, a task architecture consists of
tasks and protected objects. It is often called the process or
concurrency view of the full software architecture [7, 14].
ELM uses “task architecture” both for brevity and to
emphasize that it can be quite an independent artifact. It is
self-contained because – except for event/interrupt handling

1 How far apart the occurrences must be is a matter of engineering
judgment [22].

– every instruction must be executed by a task. Each ELM
task architecture is based on an event-thread model.

Figure 1 Basic ELM concepts shown as a UML class diagram

A protected object has protected operations with built-in
exclusion synchronization: each task locks the object before
operating on it. Because an object that is locked for any
length of time can become a bottleneck, every protected
operation in a reactive system should be nearly
instantaneous. Thus no task should keep a protected object
locked while performing a long computation. If all
operations cannot be short, the design must account for
wait states explicitly (2.1). Handlers for interrupts and
timing events are protected procedures in Ada.

Protected objects can also have entries, which provide
condition synchronization: A protected entry let tasks block
on a condition [1]. ELM uses protected objects in various
ways. Thus monitor and semaphore protected objects use
condition synchronization to control the access to problem-
domain resource (3.1, 4.3). We return to state-machine
protected objects in 2.3. Protected objects can also be used
as pragmatic engineering devices.

1.2.2 Event threads and entities
It is not enough for a set of event threads to partition the
occurrences in a problem domain; we must also ensure that
the event-thread model and the task architecture make
sense. For that we need to find event threads that are
intuitively meaningful and easy to grasp and describe. Here
are some examples:

• In a garage-door controller for a home [2], the process
of opening and closing defines an event thread where
the user clicks a remote controller, the door reaches the
top or bottom of its frame, etc. The control software is
built around a single main state machine.

• The cruise controller [21, 22] also has a single main
state machine. It has one event thread related to the
human driver. In addition, it has a thread of time
events governing the actions on the throttle. (A time
event is the event that a certain time has passed since
some other event occurrence.)

• In an elevator bank in a hotel or office building, each
cabin is an instance of an elevator entity type. It travels
up and down, stops, opens and closes its doors, etc.

• In a flexible manufacturing system (FMS), jobs visit
workstations according to their process plans. Much of
a job’s life consists of waiting for exclusive access to a
workstation or a vehicle (Section 4).

56 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

As a matter of heuristics, it is often useful to look for
entities in the problem domain such that each entity’s life
history is an event thread. In the examples above, a car
driver, an elevator, and a job are such entities (or entity
types). Naming an event thread after an entity creates a
common set of expectations of how it should work so if
entities are carefully chosen, we can agree on what belongs
in each event thread. While an entity such as car driver can
be helpful intuitively, it must also be very clear that we are
only talking about the driver’s interaction with a particular
software system and no other doings. Because entities are
auxiliary, the association with event thread is shown
informally in Figure 1.

2 Analysis and design
In ELM analysis and design, event-thread modeling
logically comes first and leads to a task architecture. The
process is never linear, but an idealized flow is as follows:

1. Consider one or more possible event-thread models,
each including all event occurrences in the problem
domain. Capture event threads in state diagrams as
needed (2.1).

2. Validate the feasibility of each model by ensuring that
it covers all event occurrences in the problem (4.2,
5.1). Choose one model.

3. Realize the event-thread model by implementing each
thread either as a task or by means of event/interrupt
handling (2.3).

The next subsections elaborate on these steps.

2.1 Identifying event-thread models
We start by discussing how to identify event threads in a
single state diagram. Entities stand out more clearly in
complex problems, but there too, the life of an entity or
entity type can be captured in a state diagram.

Figure 2 is a state diagram of an automated garage door for
a home [2]. It shows how the complete system with
software embedded must react to various events created by
a user clicking a remote and by sensors around the physical
door.

At each point in time, the door exists in exactly one state
such as Closed (marked as the initial state) or Opening. In
Stopped-opening and Stopped-closing, the door has been
halted partway up or down. Sensing is a superstate with the
substates Closing, Stopped-opening and Opened.

An event such as click can cause a transition to another
state. The event break is when a light beam near the floor is
broken; bottom is when the door reaches its closed position,
etc. (We assume for now that click, break, top, and bottom
create interrupts.)

Besides state transitions, events can also trigger actions.
Thus click/stop indicates that–in certain states–the event
click stops the door motor. The time event S sec in state
Stopped-closing triggers automatic opening after the door
has been still for S seconds.

Conceptually, an action is instantaneous, that is, it takes no
time. For purposes of software design, it is nearly
instantaneous, that is, short enough that no events happen
during the action. What is short enough is an engineering-
judgment call.

Many an action impacts the problem domain irreversibly
and cannot be undone readily; for instance, start down
could make the door crash into some obstacle.

Figure 2 State diagram of a home garage door

State transitions and actions can be conditional: In Figure 2,
click [clear]/start down triggers the action start down and a
transition to Closing only if the light beam across the
garage-door frame indicates that the passage is clear. (For
simplicity, the diagram omits events and event-condition
combinations causing neither transitions nor actions.)

If the system’s reaction to an event is not nearly
instantaneous it must be considered an activity, not an
action. An activity continues throughout a state. It is
indicated by the keyword do as with check optical sensor in
the superstate Sensing: Throughout the superstate, the
sensor is checked say every P seconds to ensure that the
passage is clear. That activity starts immediately as the
superstate is entered and stops upon the occurrence of an
event – such as break – that causes a transition from
Sensing.

In general, other possible activity types include lengthy
computations. Also, ELM considers the wait for a resource
an activity. This is because an activity is often implemented
by a task, which can block on a protected object until the
resource becomes available.

It is necessary in ELM to distinguish between “software”
activities and others. A software activity is one that requires
software involvement throughout its state; a lengthy
computation and a wait for a resource are examples.
Software activities require tasks.

Other activities are called nominal and consist of discrete
actions that can be dealt with by interrupt/event handlers.
An activity such as check optical sensor is nominal if it is
handled by means of timing events, and a software activity
if implemented as a task.

2.1.1 Essential events
Because ELM uses event threads to justify the task
architecture, the events in the threads must be essential to
the problem and not figments of a particular design. Most

B. Sandén 57

Ada User Journal Volume 33, Number 1, March 2012

essential events occur in the problem domain and are
shared with the software; click, break, top, and bottom are
examples. Time events such as S sec are essential if they
are significant in the problem domain no matter the
software design. Time events that trigger the sampling of
problem-domain quantities are essential, for example.

Some essential events occur in the software. If the software
controls domain-resource sharing they include allocation
events, which are where a domain entity acquires a
resource. The completion of a lengthy computation that is
necessary no matter the design is also an essential event.

Note. “Essential event” is a more general term than “shared
event” but is not used in the book [22]. It is clear, however,
that some essential events are not intuitively shared. An
allocation event, for example, is not shared with the
domain, especially if the resource user simply goes on to
wait for another resource.

2.2 Identifying event threads and thread models
In straightforward cases such as the garage door, a single
state model covers the whole problem, and the event
threads can be identified from the state diagram. For
example, we might let a thread clicks include all
occurrences of click, another, bottoms, include the
occurrences of bottom, and a third, tops, the occurrences of
top. The various click occurrences are indeed separated in
time as are the occurrences of bottom and top. A fourth
thread, timer, can include the occurrence of the event S sec.

It is immediately clear though that these event threads are
interdependent. In ELM terms, the threads bottoms and tops
do not co-occur. Here is a definition: Two or more event
threads in a thread model co-occur iff we can find an
arbitrarily short time interval where each of them may have
an event occurrence. For practical purposes, event threads
co-occur if there is a time when, by chance, each can have
an event occurring [20, 22]. ELM recommends that the
designer optimize the event-thread model by combining
non-co-occurring threads. Thus in the garage door, one
event thread door-operation can include the occurrences of
top, bottom, and S sec.

The event thread clicks presents a little practical problem.
While it does not co-occur with door-operation normally, a
user could certainly hit the button just as the door reaches
the top or bottom. Because this situation is exceptional we
include the event click in door-operation. We could also
keep clicks as a separate event thread, but ELM is not out
to force more threads on the designer or make too much of
some trivial aspect of the problem.

Another event thread, sensor-checking, is associated with
the activity check optical sensor where the sensor is polled
every P seconds. The time event P sec is essential, and its
occurrences form the event thread. The threads door-
operation and sensor-checking co-occur: the sensor might
be polled at the same time as the user clicks the remote or
the door hits the floor or ceiling.

An optimal event-thread model is one where all the threads
co-occur. Its threads are as many as the maximum number

of events that can ever occur at once. This number is the
concurrency level of the problem. The garage-door
problem’s concurrency level is two, so a model consisting
of the threads door-operation and sensor-checking is
optimal. (Strictly, this is true only in the superstate Sensing;
elsewhere the level is one.)

ELM does not require optimality because the concurrency
level cannot always be determined readily. Besides, the
designer is free to choose a nonoptimal model that is useful
and intuitive even if some tasks should spend most of their
time waiting for each other. Still, the concurrency level
often has value as a benchmark. For example, if someone
should propose a garage-door solution with five tasks, it is
reasonable to ask whether five event occurrences need ever
be handled at once.

2.3 Realizing an event-thread model in software
In an architecture based on an event-thread model, event
threads can be implemented in two different ways:
according to the concurrent-activities pattern or according
to the sequential-activities pattern. (These are called
design patterns [22], which seems consistent with the
pattern community’s usage [8], but “implementation
patterns” might be intuitively clearer.)

In the concurrent-activities pattern, a state-machine
protected object (Figure 1) keeps the current state,
typically in a private variable. When an event occurs, an
event handler is called. It is one of the object’s operations,
which updates the state variable as necessary and takes any
action triggered by the event.

An activity task is associated with a state-machine
protected object. It implements a software activity (or two
or more non-co-occurring activities). In addition to event
handlers, it can call other operations on the state-machine
object to query the current state or to block until a certain
state is entered. Each co-occurring activity needs its own
activity task. In Figure 1, a dashed line informally shows
that activity tasks are associated with state-machine objects.
If there are no activities at all, the protected object alone
represents the state machine. No tasks are needed.

The garage-door problem fits this pattern. Its state-machine
protected object has handlers for click, top, bottom, and
break, and a timing-event handler for S sec. The polling of
the optical sensor has two possible implementations:

• A single, periodic activity task, check-sensor, blocks
on the state-machine object until the superstate Sensing
is entered. Within that state, it calls break to report
each light-beam breach.

• The state-machine protected object has a timing-event
handler for P sec. This architecture degenerates to a
protected object without tasks.

The sequential-activities pattern works for activities that
do not co-occur. They are arranged one after the other in a
single sequential-activities task (Figure 1). It differs from
an activity task in that it keeps track of the state, which can
often be implicit in the logic rather than kept in a state

58 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

variable. Such task logic can read neatly from top to bottom
like a main program, and can rely on the programming
language’s block structure, scoping rules, and exception
handling as appropriate. Variables are allocated on the
task’s stack.

Like other patterns, those of ELM can “dovetail and
intertwine” [8] in many ways. For instance, an activity task
for a superstate can also be a sequential-activities task and
keep track of the current substate within the superstate.
This happens in the cruise controller. It has a state-machine
protected object and a single activity task that controls the
throttle. In state Cruising, the task repeatedly compares the
current speed with the target speed and actuates on the
throttle when needed. In state Accelerating, it maintains
constant acceleration [21, 22]. This makes for smooth state
changes. (If the driver’s inputs do not create interrupts, an
additional sampler task is needed.)

3 Event-thread patterns
The concurrent-activities and sequential-activities
design/implementation patterns yield simple software
solutions for many single-state-machine problems such as
the garage door and the cruise controller. In more complex
problems, we identify event threads and/or entities in the
problem domain.

In the elevator-bank controller, for example, the life of an
elevator entity can be shown in a state diagram. All cabins
share a repository of out-standing requests for service,
which is populated by sampling as travelers press buttons
[18, 22]. Figure 3 shows a solution where each elevator
task also has a separate repository for calls from its cabin
buttons.

Figure 3 Communication diagram of the elevator software

This is an example of an event-thread pattern, a group of
interacting entities, some of which enter data in a repository
while others act on the data. The repository is consulted as
a cabin approaches and leaves a floor. This pattern
conforms in spirit to an architectural style called repository
[10]. An event-thread pattern is a way to look at the
problem and should not be confused with a
design/implementation pattern, which deals with
programming practicalities. Some even-thread patterns also
map neatly onto the sequential-activities or concurrent-
activities pattern, however

3.1 Event-thread patterns for resource sharing
Two event-thread patterns related to the important issue of
domain-resource sharing have proven quite productive. If
each resource user needs no more than one resource at a
time, the event occurrences can be threaded either by
resource or by resource user. ELM forces us to choose one

view because otherwise, event occurrences involving a
resource-user and a resource would belong to two event
threads. In other words, there are two distinct event-thread
patterns for resource sharing, the resource-user-thread
pattern and the resource-guard-thread pattern as follows
[22]:

A resource-user event thread is the life history of a
resource-user entity in the problem domain and includes
allocation events and events involving the shared resources.
In the FMS problem for instance, jobs are resource-user
entities. So are the elevator entities.

A resource-user event thread is typically implemented as a
sequential-activities task, some of whose activities consist
of waiting for resources. (This relationship is shown
informally in Figure 1.) As the entities’ surrogates, these
tasks call operations on monitor and/or semaphore
protected objects representing resources (Figure 1) and
block until a resource becomes available.

Each resource-guard event thread represents the life
history of a resource entity that services requests one by
one. That leads to an implementation where resource-guard
tasks are stations on a kind of assembly line where one task
forwards an object representing the resource user to the
next task. Queues implemented as protected objects
connect the stations.

The two patterns are dual in that we can choose either a
resource-guard-thread model or a resource-user-thread
model of a given problem. No matter which model we
think of first, it is a good mental habit always to work out
its dual, which may turn out to be radically better [22].

Comparing different possible designs is essential in
engineering [2, 9, 17, 23], and a discussion of alternatives
considered should be part of the rationale for the solution
ultimately chosen. Finding an alternative solution often
takes imagination though, and we cannot even be sure that
one exists [3]. But when the resource-sharing patterns
apply, we can normally produce dual solutions.

4 Ex.: Flexible manufacturing system
The FMS problem illustrates problem-domain resource
sharing. Flexible manufacturing differs from production
lines in that each type of job visits its own series of
workstations as defined by its process plan. In a particular
FMS, multiple workstations of different types are
connected by automated guided vehicles (AGVs) on a
factory floor as shown in Figure 4 [6, 18, 19, 22]. Each
workstation has an in-stand (I), an out-stand (O), and a
robot arm (R) for moving the workpiece between an AGV,
the stands, and the workstation tool.

Each job processes a single workpiece, which starts out and
ends up in a storage bin in the automated storage and
retrieval systems (ASRS). The workpiece is also staged in
its bin when its next workstation is busy. From the bin, a
forklift takes the piece to a storage stand where an AGV
can get it. The piece then visits various workstations. When
it cannot proceed directly from out-stand to in-stand, it is

B. Sandén 59

Ada User Journal Volume 33, Number 1, March 2012

staged in its storage bin. We shall first look at the sharing
of workstations only; we return to the vehicles in 4.3

Figure 4 Layout of a simple FMS

4.1 Resource-user threads representing jobs
The job is a resource-user entity that acquires and releases
exclusive control of workstations in competition with other
jobs. Initially, the workpiece waits in its bin for access to
the in-stand of a workstation of the right type. Once on the
in-stand, it waits for the tool to become available. When
done in the tool it moves onto the out-stand, if necessary
after bumping the previous job off the stand. If completed
or bumped, the job returns to its bin; otherwise it waits until
the in-stand of its next workstation becomes available. The
logic in pseudocode is as follows with assertions about the
job’s whereabouts in italics:

Get information about first job step
 while (job not completed)

Workpiece is in bin
 Acquire workstation in-stand
 while (True)

Workpiece is on storage stand or out-stand
 Travel to in-stand
 Acquire access to tool
 Wait for processing by tool

Workpiece is being worked
 If out-stand busy, bump previous job

Wait for it to clear stand
 Move to out-stand
 Get information about the next job step
 Break from inner loop if job completed
 Attempt to acquire in-stand for next step
 Wait until: In-stand acquired
 or Bumping prompt: Break from inner loop
 Travel to storage bin

The job tasks are sequential-activities tasks with implicit
state representation. It is appropriate to state-diagram the
life of a job, but unlike the state machine in Figure 2, this
one describes a single entity and has no co-occurring
activities–the co-occurrence is instead between different
jobs.

One difficulty inherent in the FMS problem is the situation
where a job waits for either access to an in-stand or a
bumping prompt, whichever comes first. A task
representing the job can use an asynchronous select
statement to block until either event occurs [6, 22].

4.2 Resource-guard threads for workstations
In a dual FMS solution, the jobs are passive, and each
workstation has the following three resource-guard threads,
collectively called workstation threads:

1. An in-stand thread, which finds an eligible job and
moves the workpiece to the workstation. (The
pseudocode is shown in 4.3.2.)

2. A tool thread, which waits for the workpiece to be
done and moves it onto the out-stand.

3. An out-stand thread, which sends a workpiece to
storage if it is done, or else waits for an in-stand or the
bumping prompt. In case of bumping, the thread takes
the workpiece to storage.

This is a valid event-thread model because every event
occurrence (except job creation) is associated with a
workstation. It is optimal because, at some instant, one
workpiece can be on its way to the workstation, a second
one can be done in the tool, and a third on its way to
storage. Consequently, a situation–albeit unlikely–exists
where all the threads have events occurring at the same
time. This solution usually needs fewer tasks than the job-
thread solution because jobs in storage have none.

4.3 Simultaneous exclusive access
When entities need exclusive access to multiple resources
at once, resource-user threads are often the best solution.
An implementation with implicit state representation
exposes the resource acquisition and release clearly.
Simultaneous exclusive access can set the stage for
deadlock, a circular situation where–in the simplest case–
each of two resource users waits indefinitely for a resource
held by the other. In a system such as the FMS, the
architect can use textbook deadlock prevention techniques
to design the architecture to be deadlock free [22].

4.3.1 Deadlock prevention in the FMS example
The bumping in the FMS prevents deadlock by eliminating
indefinite waits. Without bumping, two workstations could
each have a workpiece on its in-stand and out-stand and in
its tool, and each workpiece on an out-stand could be
waiting for the other in-stand. Bumping stops jobs from
keeping an out-stand indefinitely and thereby prevents
deadlock.

Besides workstations, FMS jobs need transportation, which
requires exclusive access to multiple resources at once,

60 Ent i ty-Li fe Model ing: Designing Reactive Software Archi tectures

Volume 33, Number 1, March 2012 Ada User Journal

such as an in-stand, a storage stand, and a forklift. We can
eliminate circularity at this level by stipulating that each
job acquire resources in a given order called a locking
order. This is a partial order where R < S means that if a
job needs exclusive access to resources R and S at once, R
must be acquired before S. The order in-stand < storage
stand < forklift, storage stand < AGV, and in-stand < AGV
works for the FMS. Here is a more complete pseudocode
for the job task type with the locking order observed:

Get information about first job step
while (job not completed)

Workpiece is in bin
 Acquire workstation in-stand
 Acquire storage stand
 Forklift.To_stand;
 while (True)
 Workpiece is on storage stand or out-stand
 Acquire AGV; Travel by AGV to in-stand
 Release AGV, and storage stand or out-stand
 Wait for processing by tool
 Workpiece is being worked
 If out-stand busy, bump previous job, wait for it to clear
 out-stand
 Move to out-stand
 Get information about the next job step
 Break from inner loop if job completed
 Attempt to acquire in-stand of workstation for next step
 Wait until: In-stand acquired
 or Bumping prompt: Break from inner loop
 Acquire storage stand
 Acquire AGV; Travel to storage stand; Release AGV
 Forklift.To_bin;
 Release storage stand

Semaphore protected objects (Figure 1) guard the
workstations and AGVs. The Acquire and Release calls are
in-line, making it plain to see which resources are held and
enforce the locking order. The monitor protected object
Forklift encapsulates entire moves in the operations
To_stand and To_bin. (The AGVs could be handled
similarly.)

4.3.2 Solution with workstation threads
A change from job tasks to workstation tasks barely affects
the protected objects that control access to forklifts and
AGVs. Those objects assume only that each calling task
represents a job. This obviously holds with job tasks, and it
holds with workstation tasks too: They acquire AGVs, etc.,
on jobs’ behalf. While the tasks are resource guards with
respect to the workstations, they are resource-user tasks
with respect to vehicles. As an example, here is the in-stand
task in pseudocode:

while (True)
 Find eligible job
 if job in storage then
 Acquire storage stand
 Forklift.To_stand
 Acquire AGV; Take workpiece to in-stand;
 Release AGV and storage/out-stand

The next section discusses task architectures generally and
uses the FMS example for illustration.
5 Tasks as architectural elements
Because the term “architecture” tends to make us think of
buildings, “software architecture” may conjure up an image
of a static module structure. But unlike a building, a
reactive software system is a machine with dynamic
characteristics [23]. Tasks capture those dynamics. They
are not modules but still loosely coupled building blocks.

ELM tasks can be thought about in problem-domain terms.
For example, the form of each FMS architecture shows
how it manages the real-world problem outside the
software. That way, the task architecture can expose
important problem aspects much as the form given to
physical device can bring out its function.

Because task architecture defines the machinery of
interacting tasks, it allows us to create early running
prototypes with simplified logic to study performance.
Additional scaffolding tasks can simulate the sources of
external impulses and also respond to actions taken by the
software. For example, a task that simulates an AGV can
interact with job tasks or workstation tasks. Such
scaffolding tasks can often be sequential-activities tasks
with implicit state representation [18].

5.1 Conceptual integrity and key ideas
Software architecture is said to have conceptual integrity if
all its parts serve one central purpose. Such architecture
appears to flow from a single mind or perhaps two minds,
“acting uno animo” [3, 4]. Conceptual integrity helps to
make the architecture an “intellectually graspable model”
and sometimes a “reusable and transferable abstraction”
[2]. The integrity can often be manifest in a key idea.

Conceptual integrity is perhaps nowhere more important
than in task architectures. To this end, ELM prescribes
certain styles, which can be significant also in what they
exclude [23]. For example, an FMS architecture can have
job tasks or workstation tasks–not both. Thus, within the
ELM confines, an idea such as “a task per job” determines
an architecture and distinguishes it from possible others.

A simple key idea can carry much meaning because ELM
architectures usually contain far fewer task types than there
are classes in an object-oriented design or transforms in a
dataflow model. Scale is achieved by instantiation, not by
adding element types [17]. By twisting and turning an idea
in our minds, we may come up with a better one; just
figuring out the dual of a resource-sharing solution may
open new, surprising vistas on a problem.

If the key idea is clear enough, someone not involved in the
original design effort can build on it. The FMS solution
where each job pursues its completion came from students
at the Wang Institute [18, 22]. Later, Rob Scott proposed
that instead, workstations procuring jobs to work on could
be seen as the driving forces. That idea together with
ELM’s principles let us visualize such a solution and
validate it as a consistent and worthwhile alternative.

B. Sandén 61

Ada User Journal Volume 33, Number 1, March 2012

6 Conclusion
An abundance of computing power has created new
conditions for the design of reactive software. History
shows that new tools and materials ultimately make us
design to their strengths. Factories once replaced central
steam engines with central electric motors and thereby got
the coal off the premises. But they made a quantum leap
only when all over the plant, power lines to smaller motors
replaced all the belts and pulleys [5].

So it is with tasking. ELM exploits the new hardware to
free tasking from practical constraints and base it instead
on concurrency inherent in the problem. In the same
manner, programming in general has evolved away from
the computer’s physical structure and limitations [11].
Besides, the idea of arranging happenings in the problem
domain into event threads also turns out to be quite
teachable.

We should make software architecture more understandable
to stakeholders somewhat removed from the “code”. To
reach that goal, we should strive to make software as
transparent as clockwork. “[S]imple designs can be
communicated easily; complex designs are hard to explain”
[24]. A task architecture can reveal the software mechanics
without much technical detail. Simple designs can boost
correctness too, for the easier it is to study and discuss an
architecture, the more flaws and inconsistencies we find.
And having fully understood the architecture, a maintainer
can repair and extend it in the style of the original without
fear of upsetting some arcane, delicate balance.

Acknowledgments
Many reviewers and in particular those associated with
Ada-Europe provided highly relevant and much appreciated
feedback.

References
[1] G. R. Andrews (2000), Foundations of Multithreaded,

Parallel, and Distributed Programming, Addison-
Wesley Longman.

[2] L. Bass, P. Clements, and R. Kazman (2003), Software
Architecture in Practice, 2nd Ed. Addison-Wesley.

[3] F. P. Brooks, Jr. (1995), The Mythical Man-Month,
Anniversary Ed., Addison-Wesley.

[4] F. P. Brooks, Jr. (2010), The Design of Design: Essays
from a Computer Scientist, Addison-Wesley.

[5] E. Brynjolfsson, P. Hofmann, and J. Jordan (2010).
Cloud Computing and Electricity: Beyond the Utility
Model, CACM, vol 53 no 5, pp 32-34.

[6] J. R. Carter, and B. I. Sandén (1998), Practical Uses of
Ada-95 Concurrency Features, IEEE Concurrency, vol
6 no 4, pp 47-56.

[7] B. P. Douglass (2009), Real-Time Agility: The
Harmony/ESW Method for Real-Time and Embedded
Systems Development, Addison-Wesley Professional.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides
(1995), Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

[9] D. Garlan and D. Perry (1995), Introduction to the
Special Issue on Software Architecture, IEEE
Transactions on Software Engineering, vol 23 no 4, pp
269-274.

[10] D. Garlan and M. Shaw (1996), Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall.

[11] D. H. Gelernter (1998), Machine Beauty: Elegance
and the Heart of Technology, Basic Books.

[12] D. Harel and A. Pnueli (1995), On the Development of
Reactive Systems, in Logics and Models of Concurrent
Systems, K. R. Apt (ed.), Springer, 477-498.

[13] M. H. Klein, T. Ralya, W. Pollak, R. Obenza, and M.
Gonzalez-Harbour (1993), A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems, Kluwer Academic
Publishers.

[14] Ph. Kruchten (1955), The 4+1 Model of Architecture,
IEEE Software, vol 12 no 6, pp 42-50.

[15] E. A. Lee (2006), The Problem with Threads, IEEE
Computer, vol 39 no 5, pp 33-42.

[16] E. A. Lee (2009), Computing Needs Time, CACM, vol
52 no 5, pp 70-79.

[17] D. E. Perry and A. L. Wolf (1992), Foundations for the
Study of Software Architecture, ACM Software
Engineering Notes vol 17 no 4, pp 40-52.

[18] B. I. Sandén (1994), Software Systems Construction
with examples in Ada, Prentice-Hall.

[19] B. I. Sandén (1997), Modeling Concurrent Software,
IEEE Software, vol 14 no 5, pp 93-100.

[20] B. I. Sandén (2003). Entity Life Modeling: Modeling a
Thread Architecture on the Problem Environment,
IEEE Software, vol 20 no 3, pp 70-78.

[21] B. I. Sandén and J. Zalewski. Designing state-based
systems with entity-life modeling. Journal of Systems
and Software, 79:1 (Jan. 2006), 69-78.

[22] B. I. Sandén (2011), Design of Multithreaded
Software: The Entity-Life Modeling Approach, IEEE
Computer Society Press/Wiley.

[23] R. N. Taylor, N. Medvidovic, and E. M. Dashofy
(2009), Software Architecture: Foundations, Theory,
and Practice, Wiley.

[24] J. Waldo (2006), On System Design. Proc.
OOPSLA’06, October 22-26, Portland, OR, pp 467-
479.

[25] R. J. Wieringa (2003), Design Methods for Reactive
Systems: Yourdon, Statemate, and the UML, Morgan
Kauffman.

 63

Ada User Journal Volume 33, Number 1, March 2012

Ada Gems
The following contributions are taken from the AdaCore Gem of the Week series. The full collection of gems, discussion and
related files, can be found at http://www.adacore.com/category/developers-center/gems/.

Gem #113: Visitor Pattern in Ada
Emmanuel Briot, AdaCore
Date: 07 November 2011

Abstract: The visitor pattern is a design pattern that provides
a way to execute specific methods on an object (the visitor)
depending on the type of another object. Since the exact
subprogram called depends on both types of the objects, this
pattern is often called double dispatching.

Let’s get started…
Imagine that you have a UML model and you want to generate
code from it. A convenient approach is to have a “code
generator” object, which has a set of subprograms to handle
each kind of UML element (one that generates code for a
class, one that generates code for an operation, etc.).
One way to implement this is by using a big series of if
statements, of the form if Obj in CClass’Class then, which is
rather inelegant and inefficient.
Another approach is to use discriminated types. A case
statement on the discriminant is then efficient, and Ada will
check that all discriminant values are covered. The problem is
that then you would need to use case statements for all clients
of the types in your application. Here, we prefer to use tagged
types, to take advantage of Ada’s OOP capabilities, so the case
statement cannot be used.
Let’s consider a specific example. Again, taking the UML
example, assume we have the following types. These are only
very roughly similar to the actual UML metamodel, but will be
sufficient for our purposes. In practice, these types would be
automatically generated from the description of the UML
metamodel.

 type NamedElement is tagged private;
 type CClass is new NamedElement with private;
 type PPackage is new NamedElement with private;

In addition, a visitor class is declared, which will be
overridden by the user code, for instance, to provide a code
generator, a model checker, and so on:

 type Visitor is abstract tagged null record;

 procedure Visit_NamedElement
 (Self : in out Visitor; Obj : NamedElement'Class) is null;
 -- No parent type, do nothing

 procedure Visit_CClass (Self : in out Visitor;
 Obj : CClass'Class) is
 begin
 -- In UML, a "Class" inherits from a "NamedElement".
 -- Concrete implementations of the visitor might want

 -- to work at the "NamedElement" level (so that their
 -- code applies to both a Class and a Package,
 -- for instance), rather than duplicate the work for each
 -- child of NamedElement. The default implementation
 -- here is to call the parent type's operation.

 Self.Visit_NamedElement (Obj);
 end Visit_Class;

 procedure Visit_PPackage (Self : in out Visitor;
 Obj : PPackage'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_PPackage;

We then need to add one primitive Visit operation to each of
the types created from the UML metamodel:

 procedure Visit (Self : NamedElement;
 V : in out Visitor'Class) is
 begin
 -- First dispatching was on "Self" (done by the
 -- compiler).
 -- Second dispatching is simulated here by calling the
 -- right primitive operation of V.

 V.Visit_NamedElement (Self);
 end Visit;

 overriding procedure Visit (Self : CClass;
 V : in out Visitor'Class) is
 begin
 V.Visit_CClass (Self);
 end Visit;

 overriding procedure Visit (Self : PPackage;
 V : in out Visitor'Class) is
 begin
 V.Visit_PPackage (Self);
 end Visit;

All of the code described above is completely systematic, and
as such could and should be generated automatically as much
as possible. The “Visit” primitive operations should never be
overridden in user code in the usual case. On the other hand,
the “Visit_…” primitives of the visitor itself should be
overridden when it makes sense. The default implementation
is provided just so the user has the choice at which level do to
the overriding.
Now let’s see what a code generator would look like. We’ll
assume that we are only interested, initially, in doing code
generation for classes. Other types of elements (such as
operations) will call the default implementation for their

64 Ada Gems

Volume 33, Number 1, March 2012 Ada User Journal

visitor (Visit_Operation, for instance), which then calls the
visitor for its parent (Visit_NamedElement) and so on, until
we end up calling a Visit operation with a null body. So
nothing happens for those, and we don’t need to deal with
them explicitly.
The code would be something like the following:

 type CodeGen is new Visitor with private;

 overriding procedure Visit_CClass
 (Self : in out Codegen; Obj : CClass'Class) is
 begin
 ...; -- Do some code generation
 end Visit_CClass;

 procedure Main is
 Gen : CodeGen;
 begin
 for Element in All_Model_Elements loop
 -- Pseudo code
 Element.Visit (Gen); -- Double dispatching
 end loop;
 end Main;

If we wanted to do model checking, we would create a type
Model_Checker, derived from Visitor, that overrides some of
the Visit_* operations. The body of Main would not change,
except for the type of Gen.
When using this in practice, there are a few issues to resolve.
For instance, the UML types need access to the Visitor type
(because it appears as a parameter in their operations). But a
visitor also needs to see the UML types for the same reason.
One possibility is to put all the types in the same package.
Another is to use “limited with” to give visibility on access
types, and then pass an access to Visitor’Class as a parameter
to Visit.
Here is a full example. This example must be compiled with
the “-gnat05″ switch since it uses Ada 2005 features such as
the limited with clause and prefixed call notation.

with UML; use UML;
with Visitors; use Visitors;
with Ada.Text_IO; use Ada.Text_IO;

procedure Main is
 type Code_Generator is new Visitor with null record;

 overriding procedure Visit_CClass
 (Self : in out Code_Generator;
 Obj : in out CClass'Class) is
 begin
 Put_Line ("Visiting CClass");
 end Visit_CClass;

 Tmp1 : NamedElement;
 Tmp2 : CClass;
 Tmp3 : PPackage;

 Gen : aliased Code_Generator;

begin
 Tmp1.Visit (Gen'Access); -- No output

 Tmp2.Visit (Gen'Access); -- Outputs "Visiting CClass"
 Tmp3.Visit (Gen'Access); -- No output
end Main;

limited with Visitors;
package UML is
 type NamedElement is tagged null record;
 procedure Visit
 (Self : in out NamedElement;
 The_Visitor : access Visitors.Visitor'Class);

 type CClass is new NamedElement with null record;
 overriding procedure Visit
 (Self : in out CClass;
 The_Visitor : access Visitors.Visitor'Class);

 type PPackage is new NamedElement with null record;
 overriding procedure Visit
 (Self : in out PPackage;
 The_Visitor : access Visitors.Visitor'Class);
end UML;

with Visitors; use Visitors;
package body UML is

 procedure Visit
 (Self : in out NamedElement;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_NamedElement (Self);
 end Visit;

 overriding procedure Visit
 (Self : in out CClass;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_CClass (Self);
 end Visit;

 overriding procedure Visit
 (Self : in out PPackage;
 The_Visitor : access Visitors.Visitor'Class) is
 begin
 The_Visitor.Visit_PPackage (Self);
 end Visit;

end UML;

with UML; use UML;

package Visitors is
 type Visitor is abstract tagged null record;

 procedure Visit_NamedElement
 (Self : in out Visitor; Obj : in out NamedElement'Class);
 procedure Visit_CClass
 (Self : in out Visitor; Obj : in out CClass'Class);
 procedure Visit_PPackage
 (Self : in out Visitor; Obj : in out PPackage'Class);
end Visitors;

Ada Gems 65

Ada User Journal Volume 33, Number 1, March 2012

package body Visitors is

 procedure Visit_NamedElement
 (Self : in out Visitor;
 Obj : in out NamedElement'Class) is
 begin
 null;
 end Visit_NamedElement;

 procedure Visit_CClass
 (Self : in out Visitor; Obj : in out CClass'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_CClass;

 procedure Visit_PPackage
 (Self : in out Visitor; Obj : in out PPackage'Class) is
 begin
 Self.Visit_NamedElement (Obj);
 end Visit_PPackage;

end Visitors;

Gem #117: Design Pattern:
Overridable Class Attributes in
Ada 2012
Emmanuel Briot, of AdaCore
Date: 30 January 2012

Abstract: In this Gem we consider how to realize the
capability of “class attributes” (such as supported in Python)
using Ada.

Let’s get started…
Most object-oriented programming languages provide a
facility for declaring variables that are shared by all objects of
a given class. In C++, these are called “static members” (and
use the “static” keyword), and similarly Python has the notion
of “class attributes”.
Let’s consider an example where this is useful. For instance,
let’s say we want to define the notion of a block of text that is
generated by expanding a template (perhaps after we replace
some parameters in that template, as can be done with AWS’s
templates parser, for instance). Once we have computed those
parameters, we might want to generate multiple outputs (for
instance HTML and CSV). Only the template needs to change,
not the computation of the parameters.
Typically, such as in Python, the template could be
implemented as a class attribute of the Text_Block class. We
can then create templates that need the same information but
have a different output simply by extending that class:

 class Text_Block(object):
 template = "somefile.txt"
 def render (self):
 # ... compute some parameters
 # Then do template expansion
 print "processing %s" % self.__class__.template

 class Html_Block(Text_Block):
 template = "otherfile.html"

In this example, we chose to use a class attribute rather than
the usual instance attribute (self.template). This example
comes from the implementation of GnatTracker: in the web
server we create a new instance of Text_Block for every
request we have to serve. For this, we use a registry that maps
the URL to the class we need to create. It is thus easier to
create a new instance without specifying the template name as
a parameter, which would be required if the template name
was stored in the instance. Another reason (though not really
applicable here) is to save memory, which would be important
in cases where there are thousands of instances of the class.
Of course, the approach proposed in this Gem is not the only
way to solve the basic problem, but it serves as a nice example
of one of the new Ada 2012 features.
C++, like Ada, does not provide a way to override a static
class member, so it would use a similar solution as described
below.
Since Ada has no notion of an overridable class attribute, we’ll
model it using a subprogram instead (the only way to get
dispatching in Ada). The important point here is that we want
to be able to override the template name in child classes, so we
cannot use a simple constant in the package spec or body.

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String;
 function Render (Self : Text_Block) return String;

 function Template (Self : Text_Block) return String is
 pragma Unreferenced (Self);
 begin
 return "file_name.txt";
 end Template;

The parameter Self is only used for dispatching (so that
children of Text_Block can override this function). Since we
prefer to compile with “-gnatwu” to get a warning on unused
entities, we indicate to the compiler that it is expected that Self
is unreferenced.
We could make the function Template inlinable, which might
be useful in a few cases (for instance if called from Render in
a nondispatching call), but in general there will be no benefit
because Template will be a dispatching call, which requires an
indirect call and thus wouldn’t benefit from inlining.
And that’s it. We have the Ada equivalent of a Python class
member.
But so far there is nothing new here, and this approach is
rather heavy to write. For instance, the body of Render could
contain code like:

 pragma Ada95;

 function Render (Self : Text_Block) return String is
 T : constant String :=
 Template (Text_Block'Class (Self));
 begin
 .. prepare the parameters for template expansion
 .. substitute in the template and return it
 end Render;

66 Ada Gems

Volume 33, Number 1, March 2012 Ada User Journal

Fortunately, Ada 2012 provides an easier way to write this,
using the new feature of expression functions. Since Template
is a function that returns a constant, we can declare that
directly in the spec, and remove the body altogether. The spec
will thus look like:

 pragma Ada_2012;

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String
 is ("filename.txt");
 function Render (Self : Text_Block) return String;

This is a much lighter syntax, and much closer to how one
would do it in Python (except we use a function instead of a
variable to represent a class member). A child of Text_Block
would override Template using the same notation:

 type Html_Block is new Text_Block with null record;
 overriding function Template (Self : Html_Block)
 return String is ("otherfile.html");

Compared to Python, this is in fact more powerful, because
some of the children could provide a more complex body for
Template, so we are not limited to using the value of a simple
variable as in Python. In fact, we can do this in the spec itself,
by using a conditional expression (another new feature of Ada
2012):

 pragma Ada_2012;

 type Text_Block is tagged null record;
 function Template (Self : Text_Block) return String
 is (if Self.Blah then "filename.html" else "file2.json");
 function Render (Self : Text_Block) return String;

Finally, we can also make the body of Render slightly more
familiar (in terms of object-oriented notation) using the dotted
notation introduced in Ada 2005:

 function Render (Self : Text_Block) return String is
 T : constant String := Text_Block'Class (Self).Template;
 begin
 .. prepare the parameters for template expansion
 .. substitute in the template and return it
 end Render;

Now the call to Template looks closer to how it would appear
in those languages that provide overridable class members.
Some will argue that this doesn’t look like a function call and
thus is less readable, since we don’t know that we are calling a
function. This is a matter of taste, but at least we have the
choice.
There is one thing we have lost, temporarily, in the declaration
of Template. If we compile with -gnatwu, the compiler will
complain that Self is unreferenced. There is currently no way
to add a pragma Unreferenced within an expression function.
This has generated a discussion here at AdaCore and the issue
is not resolved yet. The current two proposals are either to
always omit the unused parameter warning when a function
has a single parameter and it controls dispatching (precisely to
facilitate this class member pattern), or else to use an Ada
2012 aspect for this, as in the following:

 function Template (Self : Text_Block) return String
 is ("filename.html")
 with Unreferenced => Self;

Note also that the use of expression functions in this Gem
requires a very recent version of GNAT: the expression
function feature wasn’t available in older versions, and the
initial implementation had some limitations.

68

Volume 33, Number 1, March 2012 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o K.U. Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
Ada-Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada Switzerland
attn. Ahlan Marriott
White Elephant GmbH
Postfach 327
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents	
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming Events
	Rationale for Ada 2012: 2 Expressions
	Entity-Life Modeling: Designing Reactive Software Architectures to the Strengths of Tasks
	Ada Gems
	National Ada Organizations

