

Ada User Journal Volume 36, Number 2, June 2015

ADA
USER
JOURNAL

Volume 36

Number 2

June 2015

Contents
Page

Editorial Policy for Ada User Journal 58

Editorial 59

Quarterly News Digest 60

Conference Calendar 78

Forthcoming Events 85

Bicentennial Ada Lovelace Articles

 J. Fuegi and J. Francis
“Lovelace & Babage and the Creation of the 1843 'Notes'” 89

Article from the Industrial Track of Ada-Europe 2015

 M. Martignano, A. Jung, T. Lehmann and C. Schmidt
" Source Code Analysis of Flight Software using a SonarQube based Code Quality Platform" 99

Article

 S. Baird, C. Dross, Y. Moy, T. Taft and F. Schanda
"Support of Ravenscar in SPARK 2014" 105

SPARK 2014 Rationale: Ghost Code, Object Oriented Programming and Functional Update

 Y. Moy 113

Ada-Europe Associate Members (National Ada Organizations) 116

Ada-Europe Sponsors Inside Back Cover

58

Volume 36, Number 2, June 2015 Ada User Journal

Editorial Policy for Ada User Journal
Publication

Ada User Journal — The Journal for
the international Ada Community — is
published by Ada-Europe. It appears
four times a year, on the last days of
March, June, September and
December. Copy date is the last day of
the month of publication.

Aims

Ada User Journal aims to inform
readers of developments in the Ada
programming language and its use,
general Ada-related software engine-
ering issues and Ada-related activities.
The language of the journal is English.

Although the title of the Journal refers
to the Ada language, related topics,
such as reliable software technologies,
are welcome. More information on the
scope of the Journal is available on its
website at www.ada-europe.org/auj.

The Journal publishes the following
types of material:

 Refereed original articles on
technical matters concerning Ada
and related topics.

 Invited papers on Ada and the Ada
standardization process.

 Proceedings of workshops and
panels on topics relevant to the
Journal.

 Reprints of articles published
elsewhere that deserve a wider
audience.

 News and miscellany of interest to
the Ada community.

 Commentaries on matters relating
to Ada and software engineering.

 Announcements and reports of
conferences and workshops.

 Announcements regarding
standards concerning Ada.

 Reviews of publications in the
field of software engineering.

Further details on our approach to
these are given below. More complete
information is available in the website
at www.ada-europe.org/auj.

Original Papers

Manuscripts should be submitted in
accordance with the submission
guidelines (below).

All original technical contributions are
submitted to refereeing by at least two
people. Names of referees will be kept
confidential, but their comments will
be relayed to the authors at the
discretion of the Editor.

The first named author will receive a
complimentary copy of the issue of the
Journal in which their paper appears.

By submitting a manuscript, authors
grant Ada-Europe an unlimited license
to publish (and, if appropriate,
republish) it, if and when the article is
accepted for publication. We do not
require that authors assign copyright to
the Journal.

Unless the authors state explicitly
otherwise, submission of an article is
taken to imply that it represents
original, unpublished work, not under
consideration for publication else-
where.

Proceedings and Special Issues

The Ada User Journal is open to
consider the publication of proceedings
of workshops or panels related to the
Journal's aims and scope, as well as
Special Issues on relevant topics.

Interested proponents are invited to
contact the Editor-in-Chief.

News and Product Announcements

Ada User Journal is one of the ways in
which people find out what is going on
in the Ada community. Our readers
need not surf the web or news groups
to find out what is going on in the Ada
world and in the neighbouring and/or
competing communities. We will
reprint or report on items that may be
of interest to them.

Reprinted Articles

While original material is our first
priority, we are willing to reprint (with
the permission of the copyright holder)
material previously submitted
elsewhere if it is appropriate to give it

a wider audience. This includes papers
published in North America that are
not easily available in Europe.

We have a reciprocal approach in
granting permission for other
publications to reprint papers originally
published in Ada User Journal.

Commentaries

We publish commentaries on Ada and
software engineering topics. These
may represent the views either of
individuals or of organisations. Such
articles can be of any length –
inclusion is at the discretion of the
Editor.

Opinions expressed within the Ada
User Journal do not necessarily
represent the views of the Editor, Ada-
Europe or its directors.

Announcements and Reports

We are happy to publicise and report
on events that may be of interest to our
readers.

Reviews

Inclusion of any review in the Journal
is at the discretion of the Editor. A
reviewer will be selected by the Editor
to review any book or other publication
sent to us. We are also prepared to
print reviews submitted from
elsewhere at the discretion of the
Editor.

Submission Guidelines

All material for publication should be
sent electronically. Authors are invited
to contact the Editor-in-Chief by
electronic mail to determine the best
format for submission. The language of
the journal is English.

Our refereeing process aims to be
rapid. Currently, accepted papers
submitted electronically are typically
published 3-6 months after submission.
Items of topical interest will normally
appear in the next edition. There is no
limitation on the length of papers,
though a paper longer than 10,000
words would be regarded as
exceptional.

 59

Ada User Journal Volume 36, Number 2, June 2015

Editorial

The issue of the Ada User Journal which you are reading is being finalized at the Ada-Europe 2015 conference, in Madrid,
Spain, June 22-26. I would like to congratulate and thank the organizers for a very successful conference, with a rich
program, and a pleasant social and networking atmosphere. In addition to the technical program, and taking the opportunity
that the Ada community converged in Madrid, the conference celebrated the 200th anniversary of Lady Ada Byron Lovelace
with the screening of the documentary “To Dream Tomorrow”, a film about Lady Ada, her work with Charles Babbage, and
“their contributions to computing over a hundred years before the time usually thought to be the start of the Computer Age”.

As announced during the conference, Ada-Europe 2016 will take place in Pisa, Italy, in the week of 13-17 June, 2016. A
great opportunity for Ada and Reliable Software practitioners and enthusiasts to present their work and for the community to
connect in an enjoyable scenario. You can find the preliminary call for contributions in the Forthcoming Events section of
this issue. Recognizing the importance of parallelism, and its impact on future reliable systems, the conference includes a
Special Session on Safe, Predictable Parallel Software Technologies. Note that the program of the conference results from the
contributions of the community, by means of the submission of papers, presentation, tutorials and workshops. I would like to
both encourage, and insist in asking for, your contribution!

Also in the Events section, the Journal provides the announcement of the second UK conference on High Integrity Software
which will take place in Bristol, UK, on November 5, 2015, an event about challenges and solutions in the domain of
trustworthy software engineering for safety, security and business-critical applications. As usual the News Digest and
Calendar sections, prepared by the respective Editors, Jacob Sparre Andersen and Dirk Craeynest, complete the first part of
the issue.

The issue then continues the publication of articles related to the celebration of Ada Bicentennial, reprinting an article by
John Fuegi and Jo Francis, directors of the “To Dream Tomorrow” documentary, originally published in the IEEE Annals of
the History of Computing, October-December 2003, about the relation between Ada and Charles Babbage, and the creation of
the Ada Lovelace's "Notes" describing the Analytical Engine.

As for the technical contents, the Journal continues the publication of contributions from the Ada-Europe 2015 conference
with a paper from its industrial track, authored by a group of authors from Spazio IT, Italy, European Space Agency, The
Netherlands, Inopus, Germany and AIRBUS Helicopters, Germany, on a code quality platform for the analysis of both Ada
and C/C++ flight software.

Afterwards, we publish a document by authors from AdaCore and Altran UK, presenting how it is foreseen to support the
Ravenscar profile in SPARK 2014. Concluding the issue, and continuing with SPARK, and the SPARK 2014 Rationale, the
issue provides an article with contributions on Ghost Code, Object Oriented Programming and Functional Update by Yannick
Moy of AdaCore, France.

 Luís Miguel Pinho
Porto

June 2015
 Email: AUJ_Editor@Ada-Europe.org

60

Volume 36, Number 2, June 2015 Ada User Journal

Quarterly News Digest
Jacob Sparre Andersen
Jacob Sparre Andersen Research & Innovation. Email: jacob@jacob-sparre.dk

Contents

Ada-related Organizations 60
Ada-related Events 60
Ada-related Resources 62
Ada-related Tools 62
Ada-related Products 65
Ada and Operating Systems 67
References to Publications 68
Ada Inside 69
Ada in Context 71

Ada-related
Organizations

Technical Guides - Update
to Ada 2012?

From: Joyce L Tokar
<tokar@pyrrhusoft.com>

Date: Mon, 27 Apr 2015 13:01:53 -0700
Subject: Technical Guides for the use of the

Ada in high integrity systems
Newsgroups: comp.lang.ada

There two technical reports of the use of
Ada in High Integrity Systems:

- ISO/IEC TR 15942:2000, Guidance for
the Use of Ada in High Integrity
Systems: http://www.iso.org/iso/
iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=29575

- ISO/IEC TR 24718:2005, Guide for the
use of the Ada Ravenscar Profile in high
integrity systems:http://www.iso.org/iso/
iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=38828

The purpose of this discussion topic is to
ask you, as members of the Ada
community, if you are using these
Technical Reports. And if you are
interested in seeing these reports updated
to be in alignment with Ada 2012?

Please response to me at
tokar@pyrrhusoft.com

Thank You

Joyce L Tokar, PhD

Pyrrhus Software, LLC

ISO/IEC JTC 1/SC 22/WG 9 Convenor

Ada-related Events
[To give an idea about the many Ada-
related events organised by local groups,
some information is included here. If you
are organising such an event feel free to

inform us as soon as possible. If you
attended one please consider writing a
small report for the Ada User Journal.
—sparre]

Mascot Competition Result

From: David Botton <david@botton.com>
Date: Fri, 27 Mar 2015 12:37:55 -0700
Subject: The winner of the Ada Mascot

Competition is.....
Newsgroups: comp.lang.ada

I am happy to announce the winner of the
Ada Mascot Competition - Entry #5 -
"Lady Fairy" the hummingbird. The
mascot was designed by Leah Goodreau.

http://gnoga.com/mascot.html

Leah writes "My mascot was inspired by
Ada Lovelace's adolescent fascination
with flight and Charles Babbage's
nickname for her, "Lady Fairy." The
coloration of the mascot references the
Asian fairy-bluebird, while the silhouette
is a hummingbird because of their famed
speed and sleekness."

If have asked Leah for permission to give
out her contact information if any one is
interested in custom versions of her work,
any one interested in receiving her
information, please feel free to contact
me.

From: David Botton <david@botton.com>
Date: Mon, 30 Mar 2015 10:12:38 -0700
Subject: Ada Mascot Paraphernalia
Newsgroups: comp.lang.ada

Get your Ada Mascot Paraphernalia at:

http://www.cafepress.com/adamascot

I set the prophet level to zero, so lowest
price they offer it.

Contest: Do Something
Awesome with Ada

From: David Botton <david@botton.com>
Date: Tue, 31 Mar 2015 10:20:23 -0700
Subject: The LearnAdaNow.com Contest -

Do Something Awesome with Ada
Newsgroups: comp.lang.ada

The LearnAdaNow.com Contest 2015

Prize @ $100 and Growing

Rules:

Create a recorded video (screen cast,
talking head, full live action, etc.) of up to
1 hour long (no minimum) in mp4 format
of

 ***How to do something
 Awesome using Ada***

1. Submit your entry to
david@botton.com - if too large please
provide a link for downloading.

2. The judges will be the prize donors and
one representative from SIGAda and one
from Ada Europe.

3. No one that submits an entry nor David
Botton (the organiser) can be a judge.

4. Each judge will score each entry 1-10
points and the highest scored submission
wins.

5. If you add a PDF transcript with static
images of your recording and code
samples if appropriate you automatically
get 1 point added.

6. Each entry will be posted when
received to LearnAdaNow.com

7. The last date for submissions will be
July 31, 2015

8. The winner will be announced by
August 7, 2015

9. All submitted videos and associated
materials must have no restrictions on
reuse and distribution and be original new
works.

10. If there are multiple entries with the
same highest score the winnings will be
divided equally.

11. Multiple entries are allowed.

Prize Donors so Far:

David Botton - $100

To donate to the prize contact
david@botton.com

Ada-Europe 2015 in Madrid

From: Dirk Craeynest
<dirk@cs.kuleuven.be>

Date: Sun, 5 Apr 2015 09:47:41 +0000
Subject: 20th Int.Conf. Reliable Software

Technologies, Ada-Europe 2015
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Call for Participation

*** PROGRAM SUMMARY ***

20th International Conference on
Reliable Software Technologies -

Ada-Europe 2015

22-26 June 2015, Madrid, Spain

http://www.ada-europe.org/
conference2015

Ada-related Events 61

Ada User Journal Volume 36, Number 2, June 2015

Organised by Ada-Spain on behalf of
Ada-Europe, in cooperation with ACM
SIGAda, SIGBED, SIGPLAN and the

Ada Resource Association (ARA)

*** Online registration open! ***

All info available on conference web site

Early registration discount until June 7

The 20th International Conference on
Reliable Software Technologies - Ada-
Europe 2015 takes place in Madrid,
Spain, from June 22 to 26, 2015. It is an
exciting event with an outstanding
technical program, keynote talks,
exhibition and networking from Tuesday
to Thursday, and a rich program of
workshops and tutorials on Monday and
Friday.

The conference is hosted by ETSIT-UPM,
the engineering school of the Polytechnic
University of Madrid, which covers
teaching and research in all fields related
to Information and Communications
Technology, and is one of the leading
institutions in that field in Spain.

The Ada-Europe series of conferences has
become established as a successful
international forum for providers,
practitioners and researchers in all aspects
of reliable software technologies. These
events highlight the increased relevance
of Ada in safety- and security-critical
systems, and provide a unique opportunity
for interaction and collaboration between
academics and industrial practitioners.

Extensive information is available on the
conference web site, such as the list of
accepted papers and industrial
presentations, and detailed descriptions of
all workshops, tutorials and keynote
presentations. Also check the conference
web site for registration, accommodation
and travel information.

Quick overview

- Mon 22 & Fri 26: tutorials + workshops

- Tue 23 - Thu 25: core program

Proceedings

- published by Springer

- volume 9111 in Lecture Notes in
Computer Science series (LNCS)

- will be available at conference

Program co-Chairs

- Juan A. de la Puente, Universidad
Politécnica de Madrid, Spain

 jpuente@dit.upm.es

- Tullio Vardanega, Università di Padova,
Italy

 tullio.vardanega@unipd.it

Invited speakers

- Jon Pérez, "EC-61508 Certification of
Mixed-Criticality Systems based on
Multicore and Partitioning"

- Javier Rodríguez, "Software
Development of Safety-Critical Railway
Systems"

- Andras Balazs, "The Central On-Board
Computer of the Philae Lander in the
Context of the Rosetta Space Mission"

Workshops (full day)

- Workshop on "Challenges and new
Approaches for Dependable and Cyber-
Physical Systems Engineering" (De-CPS
2015)

- Workshop on "Architecture Centric
Virtual Integration" (ACVI 2015)

Tutorials (full day)

- "Parallelism in Ada, Today and
Tomorrow", Brad Moore, General
Dynamics Canada, and Stephen Michell,
Maurya Software, Canada

- "Probabilistic Timing Analysis",
Francisco J. Cazorla and Jaume Abella,
Barcelona Supercomputing Center,
Spain, Tullio Vardanega, University of
Padua, Italy, and Mark Pearce, Rapita
Systems Ltd, UK

- "Real-Time and Embedded
Programming with Ada 2012", Patrick
Rogers, AdaCore, USA

Tutorials (half day)

- "Access Types and Memory
Management in Ada 2012", Jean-Pierre
Rosen, Adalog, France

- "Designing and Checking Coding
Standards for Ada", Jean-Pierre Rosen,
Adalog, France

- "Ada 2012 (Sub)type and Subprogram
Contracts in Practice", Jacob Sparre
Andersen, JSA Research & Innovation,
Denmark

- "When Ada meets Python: Extensibility
through Scripting", Emmanuel Briot and
Ben Brosgol, AdaCore, France and USA

- "Software Measures for Dependable
Software Systems", William Bail, The
MITRE Corporation, USA

- "Software Design Concepts and
Pitfalls", William Bail, The MITRE
Corporation, USA

Papers and Presentations

- 12 refereed technical papers in sessions
on Language Technology, Real-Time
Applications, Critical Systems, Multi-
core and Distributed Systems

- 9 industrial presentations in sessions on
Ada Applications, Critical Systems,
Tools at Work

- 3 presentations in special "Advances on
Methods" session

Vendor exhibition and networking area

- area features exhibitor booths, project
posters, reserved vendor tables, and
general networking options

- 3 companies already committed:
AdaCore, Ellidiss Software, and Rapita

Systems; others expected to confirm
soon

- vendor presentation sessions in core
program

Social events

- each day: coffee breaks in the exhibition
space and sit-down lunches offer ample
time for interaction and networking

- Tuesday evening: Welcome Cocktail

- Wednesday evening: the traditional
Ada-Europe Conference Banquet will be
held at Club de Campo Villa de Madrid,
a country club located at the outskirts of
the city, with magnificent views

- Ada Lovelace 200th Anniversary
Celebration

Registration

- early registration discount up to Sunday
June 7, 2015

- additional discount for academia, Ada-
Europe, ACM SIGAda, SIGBED and
SIGPLAN members

- a limited number of student discounts is
available

- registration includes copy of printed
proceedings at event

- includes coffee breaks and lunches

- three day conference registration
includes all social events

- payment possible by credit card, check,
or bank transfer

- see registration page for info on novel
student waiver program!

Please make sure you book
accommodation as soon as possible.
Madrid will be very busy in that week.

For more info and latest updates see the
conference web site at

http://www.ada-europe.org/
conference2015.

Webinar: Security in
Unmanned Aircraft Systems

From: Jamie Ayre <ayre@adacore.com>
Date: Mon Apr 13 2015
Subject: Upcoming webinar: Addressing

security in safety-critical and mission-
critical UAS

URL: http://blog.adacore.com/upcoming-
webinar-addressing-security-in-safety-
critical-and-mission-critical-uas

When it comes to unmanned aircraft
systems (UAS), virtually everyone is
talking about and concerned with privacy
issues – as though drones were robotic
peeping Toms. The much larger and more
critical issue, however, is security –
without it, the potential exists for control
of drones and even swarms of drones to
be usurped and used to inflict harm. UAS
hardware and software must be designed
with development tools proven to be
effective in the design and deployment of

62 Ada-related Tools

Volume 36, Number 2, June 2015 Ada User Journal

safety-critical and mission-critical
systems and vehicles. In this webinar
Robert Dewar will discuss the selection of
optimal development tools and processes
to ensure the safety, security, and
reliability of real-time unmanned aircraft,
onboard software, and ground control
solutions.

Photographs from Ada-
Europe 2014

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Wed, 29 Apr 2015 15:10:58 +0200
Subject: Photographs from Ada-Europe

2014/Paris

We finally managed to make a photo
gallery with pictures from Ada-Europe
2014 in Paris:

http://www.adalog.fr/ae2014/gallery/

Enjoy! And I hope to see you in Madrid.

Ada-related Resources

Content for
LearnAdaNow.com?

From: David Botton <david@botton.com>
Date: Wed, 1 Apr 2015 14:15:22 -0700
Subject: Non-Contest content for

LearnAdaNow.com
Newsgroups: comp.lang.ada

While the contest is to give the Ada
community video content that will show
Awesome stuff you can do with Ada. The
LearnAdaNow.com site is intended to be
a vehicle for advocating Ada in general to
those _not_ in the Ada community
already, once built up I will make sure the
entire software world sees it :)

If you have articles, tutorials, etc. for
anything cool with Ada, please e-mail
them to me. I'll start collecting what I can
in general, but any help to build it up the
better.

Ada Information
Clearinghouse

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed Apr 22 CEST 2015
Subject: New home page launched
URL: http://www.adaic.org/2015/04/new-

home-page-launched/

We’ve update our home page to better
reflect our mission. Our old home page
over-emphasized Ada news and said
nothing about the many resources that we
have for users of the Ada programming
language (including existing, new, and
potential users). The highlighted
resources will be changed periodically to
show different facets of our site.

The new home page has a simplified
version of the Ada news feed on the left

side. If, however, you prefer the old, more
detailed news feed, it can be found on the
news page[1].

As always, feel free to send us feedback
on the new home page or anything else
via our contact page[2].

[1] http://www.adaic.org/news/

[2] http://www.adaic.org/contact/

Ada on Social Media

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri Apr 24 2015
Subject: Ada on Social Media

Ada groups on various social media:

- LinkedIn[1]: 2_229 members

- Reddit[2]: 780 readers

- Google+[3]: 475 members

- StackOverflow[4]: 274 followers

- Twitter[5]: 4 tweeters

[1] http://www.linkedin.com/
groups?gid=114211

[2] http://www.reddit.com/r/ada/

[3] https://plus.google.com/communities/
102688015980369378804

[4] http://stackoverflow.com/questions/
tagged/ada

[5] https://twitter.com/search?f=realtime&
q=%23AdaProgramming

[See also “Ada on Social Media”, AUJ
36-1, p. 10. —sparre]

Open Source Build Server
Status

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Fri Apr 24 2015
Subject: Jenkins
URL: http://build.ada-language.com/

[Builds: —sparre]

- Ahven - Debian 7.0 - GNAT 4.6

- Ahven_JNT

- Ahven_Win7_GNAT2013

- Ahven_Win7_ICCAda

- JD_JNT

- Jdaughter - Debian 7.0 - GNAT 4.6

- Jdaughter_Win7_ICCAda

- Lace_Win7_ICCAda

[Fails to build: —sparre]

- AVR-Ada_Debian_7

- Strings_Edit_ICCAda

- UnzipAda_Win7_GNAT2013

- UnzipAda_Win7_ICCAda

[See also “Open Source Build Server
Status”, AUJ 36-1, p. 10. —sparre]

Repositories of Open Source
Software

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri May 1 2015
Subject: Repositories of Open Source

software

GitHub: 842 repositories [1]

 233 developers [1]

Rosetta Code: 616 examples [2]

 29 developers [3]

Sourceforge: 237 repositories [4]

BlackDuck OpenHUB: 210 projects [5]

Bitbucket: 110 repositories [6]

 17 developers [6]

OpenDO Forge: 24 projects [7]

 431 developers [7]

Codelabs: 20+ repositories [8]

AdaForge: 8 repositories [9]

[1] https://github.com/search?q=language
%3AAda&type=Repositories

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] http://sourceforge.net/directory/
language%3Aada/

[5] https://www.openhub.net/tags/ada

[6] http://edb.jacob-sparre.dk/
Ada/on_bitbucket

[7] https://forge.open-do.org/

[8] http://git.codelabs.ch/

[9] http://forge.ada-ru.org/adaforge

[See also “Repositories of Open Source
Software”, AUJ 36-1, p. 10. —sparre]

Ada-related Tools

Socket Libraries

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 26 Dec 2014 19:21:48 -0600
Subject: Re: Questions about socket

programming
Newsgroups: comp.lang.ada

> [...] GNAT.Sockets [...]

Unless you want it to work with other
Ada compilers (to avoid GNAT lock-in).

> [...]

My complaint is simply that you end up
with GNAT lock-in whenever you depend
on GNAT-specific packages. Ada is
powerful enough that such lock-in
shouldn't be necessary. So it's better to
use a package that is more portable, like
Claw.Sockets (if you're already locked
into Windows) or AdaSockets or (coming
soon) NC_Sockets.

Ada-related Tools 63

Ada User Journal Volume 36, Number 2, June 2015

[See also “AdaSockets”, AUJ 34-3, p.
141. —sparre]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 27 Dec 2014 10:48:36 +0100
Subject: Re: Questions about socket

programming
Newsgroups: comp.lang.ada

[...]

Obviously sockets should be included into
the standard library. Even considering
embedded targets, socket I/O is probably
more relevant there than text I/O, which is
a part of the library.

GNAT sockets could be a good reference
point. The only important (for embedded
applications) part missing is raw sockets.

> [...]

Actually GNAT sockets are more portable
than AdaSockets, as they work on a wider
set of targets (e.g. VxWorks). You mean
compiler independence.

Gnoga

From: David Botton <david@botton.com>
Date: Tue, 13 Jan 2015 17:36:30 -0800
Subject: Full direct SSL support now in

Gnoga
Newsgroups: comp.lang.ada

Now in Gnoga full direct SSL support is
now available (Special thanks to Dmitry
for adding HTTPS support to simple
components).

To add HTTPS support you simply add:

 with "..path..to../ssl/gnoga_secure.gpr";

Then:

Gnoga.Server.Connection.
Secure.Register_Secure_Server
(Certificate_File => "path_to_certificate.crt",
 Key_File => "path_to_keyfile.key",
 Port => 8443,
 Disable_Insecure => False);

Gnoga.Application.Multi_Connect.Initialize
(Port => 8082);

Your server now listens to HTTP on 8082
and HTTPS on 8443.

Alternatively you cannot use direct
support and use an SSL proxy (see the
FAQ).

[See also “Gnoga”, AUJ 36-1, p. 12.
 —sparre]

Request: Binding to Amazon
Simple Queue System

From: Björn Lundin
<b.f.lundin@gmail.com>

Date: Mon, 19 Jan 2015 18:02:14 +0100
Subject: Amazon SQS (simple Queue

system) binding ?
Newsgroups: comp.lang.ada

I'm looking at interfacing to a set of Java
programs via Amazon's Message Queues
<http://aws.amazon.com/sqs/>

I wonder if anyone has written bindings
for Ada for it, before I roll my own.

The choice of SQS was not mine, but a
friend's who wants to explore the
scalability of the thing.

It looks fairly simple/straightforward, but
I thought I'd ask anyway.

Ada to JavaScript
Translator

From: Tom Moran <tmoran@acm.org>
Date: Tue, 20 Jan 2015 20:43:51 +0000
Subject: Ada->Javascript?
Newsgroups: comp.lang.ada

Does there exist any kind of Ada to
JavaScript translator? Even something
that took compilable, but not runnable,
simple Ada to JavaScript. Having an Ada
compiler check for typos, type errors, etc,
and handle enumeration types, non-zero
array'first, etc etc would be a great help.

From: Vadim Godunko
<vgodunko@gmail.com>

Date: Wed, 21 Jan 2015 03:25:06 -0800
Subject: Re: Ada->Javascript?
Newsgroups: comp.lang.ada

> [...]

There is ongoing work, see
http://forge.ada-ru.org/matreshka/wiki/
Web/AdaToJavaScript/Examples.
It is very limited now, features requests
are welcome.

GNAT: An Optimisation
Flag

From: Simon Wright
<simon@pushface.org>

Date: Sat, 14 Feb 2015 17:40:53 +0000
Subject: Optimisation
Newsgroups: comp.lang.ada

With GCC (and GNAT), there's an
optimisation level I hadn't come across
before[1]:

 -Og

 Optimize debugging experience.

Quite a tall order!

[1] https://gcc.gnu.org/onlinedocs/
gcc-4.9.2/gcc/Optimize-Options.html

Gprbuild: Improvements in
Code Generation Support

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Sun Mar 15 2015
Subject: Gem #157: Gprbuild and Code

Generation
URL: http://www.adacore.com/adaanswers/

gems/gem-157-gprbuild-and-code-
generation/

Do you have any plans to make it possible
to invoke `gprbuild' only once, instead of
once for each compiler used by the
project?

From: Emmanuel Briot
<briot@adacore.com>

Date: Mon May 4 2015
Subject: Gem #157: Gprbuild and Code

Generation
URL: http://www.adacore.com/

adaanswers/gems/
gem-157-gprbuild-and-code-generation/

As a matter of fact, we have indeed made
good progress on such a design.

I think your question is slightly
misleading: of course, if each of the
compiler is associated with a different
language, and there is no time-order
dependency between those languages,
gprbuild is happy to process with the
builds of all languages in parallel.

The issue, of course, is when one of the
languages (say for code generation), is
used to generate sources for another
language (as in this gem). In this case, the
current solution is to spawn multiple
gprbuilds (and is really and adequate
solution in practice). We will likely go
towards a solution similar to the scenario
variables (but the value of the variable
would be set automatically by gprbuild to
indicate the build phase). Gprbuild will
then build all languages associated with
the first build phase, then all languages
for the second build phase, and so on.
That means that a single gprbuild
command will be enough. Unfortunately,
we have so far not found a scheme where
gprbuild would be able to automatically
build in parallel (as much as possible) the
various phases. So in practice the effect
will be very similar to spawning multiple
gprbuilds one after the other, and use the -
X command line switch.

Zip-Ada

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 24 Mar 2015 11:04:19 -0700
Subject: Ann: Zip-Ada v.49
Newsgroups: comp.lang.ada

There is a new version of Zip-Ada @
unzip-ada.sf.net . Zip-Ada is a library for
dealing with the Zip compressed archive
file format. It supplies:

 - compression with the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW) and Deflate

 - decompression for the following sub-
formats ("methods"): Store, Reduce,
Shrink (LZW), Implode, Deflate, BZip2
and LZMA

 - encryption and decryption (portable Zip
2.0 encryption scheme)

 - unconditional portability (see below a
list of in-use platforms)

 - input (archive to decompress or data to
compress) can be any data stream

 - output (archive to build or data to
extract) can be any data stream

64 Ada-related Tools

Volume 36, Number 2, June 2015 Ada User Journal

 - Zip_info and Zip_Create_info to handle
quickly and easily archives

 - cross format compatibility with the
most various tools and file formats
based on the Zip format: 7-zip, Info-
Zip's Zip, WinZip, PKZip, Java's JARs,
OpenDocument files, MS Office 2007+,
Nokia themes, and many others

 - task safety: this library can be used ad
libitum in parallel processing

 - endian-neutral I/O

Latest changes since v.47

* Changes in '49', 21-Mar-2015:

 - encryption implemented (portable Zip
2.0 encryption scheme)

* Changes in '48', 20-Jul-2014:

 - LZMA decompression significantly
faster

* Changes in '47', 28-Jun-2014:

 - LZMA method added for
decompression

[See also “Zip-Ada”, AUJ 35-3, p. 157.
—sparre]

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue, 24 Mar 2015 14:05:13 -0700
Subject: Re: Ann: Zip-Ada v.49
Newsgroups: comp.lang.ada

> Perhaps someone could make a project
of converting AWS to use your zip
code instead of the current C libs it
uses.

I guess: you mean replacing zlib by an
Ada solution - and perhaps some
headaches with .dll's, versions and so on?

There is a "placeholder" project for that
(Zada at SourceForge) so the question is
to rip the Deflate compression and
decompression from Zip-Ada and mix it
with the body of zlib-Ada. If someone
familiar with zlib and zlib-Ada volunteers
to help with it, I can plug the compression
and decompression code at the right place
(I hope). I miss the experience with zlib
itself.

STM32F4 GNAT Run Time
Systems

From: Simon Wright
<simon@pushface.org>

Date: Mon, 06 Apr 2015 18:27:09 +0100
Subject: ANN: STM32F4 GNAT Run Time

Systems 20150406
Newsgroups: comp.lang.ada

This is the fourth release of a GNAT RTS
with the GCC Runtime Library exception
for STM32F4 boards.

(a) Tasking is implemented using
FreeRTOS[3], which
STMicroelectronics provide a copy of
with their BSP.

(b) I've included a BSP with minimal
higher-level Ada interfaces to the board

hardware: clock, buttons, LEDs, LCD.
In addition, there's a machine-generated
translation of STMicroelectronics' type-
specific header in stm32f429xx_h.ads,
for low-level interfacing.

The release is at https://sourceforge.net/
projects/stm32f4-gnat-rts/files/20150406/.

This release has been reorganised from
previous releases.

There is one RTS, stm32f4-disco-rtos,
and one BSP, stm32f4-disco-bsp.

Changes to the RTS from the previous
release:

These units (and supporting units) are
now included:

 Ada.Containers.Bounded_Vectors (*)

 Ada.Containers.Bounded_Hashed_Maps
(*)

 Ada.Containers.Generic_Array_Sort

 Ada.Containers.Generic_Constrained
_Array_Sort

 Ada.IO_Exceptions

 Ada.Streams

 Ada.Task_Identification

 Interfaces.C

 Interfaces.C.Strings

 System.Assertions

 (*) The new iterators (for some F in Foo
loop ...) are NOT supported (they require
finalisation).

The STM32F429I_Discovery tree has
been moved to the BSP.

The following tickets have been fixed:

 2 Protected spec hides package
Interfaces

 14 Last_Chance_Handler doesn’t stop
tasking

Tasking is started by calling
Start_FreeRTOS_Scheduler.

[See also “STM32F4 GNAT Run Time
Systems”, AUJ 36-1, p. 15. —sparre]

Stream Tools

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Wed, 08 Apr 2015 08:42:27 +0200
Subject: ANN: stream_tools 1.0.1
Newsgroups: comp.lang.ada

First release of stream-tools

https://github.com/persan/
a-stream-tools/releases/tag/1.0.1

They provides a small set of utility
streams.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 8 Apr 2015 16:41:45 -0500
Subject: Re: stream_tools 1.0.1
Newsgroups: comp.lang.ada

> [...]

For what it's worth, there was/is a
proposal to include what you called a
"memory stream" in Ada 202x. There's
been one in Claw since it was created, and
I hear that it comes up frequently enough
that it probably should be standard.

The Claw version
(Claw.Marshalling.Buffer_Type) uses a
discriminated type so that the dangerous
use of 'Address isn't necessary. It expands
the buffer when necessary, but I would
expect that would get dropped from a
Standard version. And probably the
names would get changed. But here's the
spec:

package Claw.Marshalling is
 type Buffer_Type (Initial_Length :
 Ada.Streams.Stream_Element_Count)
 is new Ada.Streams.Root_Stream_Type
 with private;

 procedure Read
 (Stream : in out Buffer_Type;
 Item : out
 Ada.Streams.Stream_Element_Array;
 Last : out
 Ada.Streams.Stream_Element_Offset);

 procedure Write
 (Stream : in out Buffer_Type;
 Item : in
 Ada.Streams.Stream_Element_Array);

 function Length (Stream : in Buffer_Type)
 return
 Ada.Streams.Stream_Element_Count;
 -- Return the total length of data
 -- written into the buffer.

 procedure Clear (Stream : in out
 Buffer_Type);
 -- Empty the buffer.
private
 ...

Emacs Ada Mode

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 15 Apr 2015 03:10:42 -0500
Subject: Emacs ada-mode 5.1.8 released
Newsgroups: comp.lang.ada

Emacs ada-mode 5.1.8 is available on the
website (http://stephe-leake.org/emacs/
ada-mode/emacs-ada-mode.html) and in
Gnu ELPA.

See http://stephe-leake.org/emacs/
ada-mode/NEWS-ada-mode.text for
major changes.

One backwards incompatibility: ada-case-
identifier now takes three args; this allows
capitalising more sensibly in strings and
comments. So if you have that set to
'upcase-region anywhere, you need to
change it to 'ada-upper-case.

Otherwise this is a bug fix release.

This requires the new OpenToken 6.0
(http://stephe-leake.org/ada/
opentoken.html) if building from source.

Ada-related Products 65

Ada User Journal Volume 36, Number 2, June 2015

[See also “Emacs Ada Mode”, AUJ 36-1,
p. 15. —sparre]

OpenToken

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Date: Wed, 15 Apr 2015 03:09:34 -0500
Subject: OpenToken 6.0 released
Newsgroups: comp.lang.ada

OpenToken 6.0 is now available on the
website: http://stephe-leake.org/ada/
opentoken.html

See http://stephe-leake.org/ada/
opentoken.html#History for a description
of the changes.

The main change is support of generalised
LALR (spawn parallel parsers) to handle
conflicts in the Ada parser runtime
(previous releases only supported this in
the parse table generator; the runtime was
provided only in Emacs elisp).

The API of the OpenToken packages
changes significantly, due to
reorganising/cleaning up to support
generalised LALR. So existing projects
will have to be edited. The changes are
only in the instantiations, not in user code
logic.

[See also “OpenToken”, AUJ 35-1, p. 10.
—sparre]

ColdFrame

From: Simon Wright
<simon@pushface.org>

Date: Thu, 16 Apr 2015 17:43:19 +0100
Subject: ANN: ColdFrame 20150415
Newsgroups: comp.lang.ada

This announces release 20150415 of
ColdFrame, which generates Ada code
frameworks from UML models in
ArgoUML.

Changes from previous releases can be
seen at the Files link, but:

* Bounded containers are used where
possible.

* If required, Ravenscar-compliant code
can be generated.

* Includes support for scripted testing.

Project: https://sourceforge.net/projects/
coldframe/

Web: http://coldframe.sourceforge.net/

Files: https://sourceforge.net/projects/
coldframe/files/coldframe/20150415/

[See also “ColdFrame UML to Ada
translator”, AUJ 33-2, p. 80. —sparre]

Mosquitto

From: Per Sandberg
<per.s.sandberg@bahnhof.se>

Date: Mon, 20 Apr 2015 07:12:33 +0200
Subject: ANN:mosquitto-ada 0.0.1
Newsgroups: comp.lang.ada

A binding to the MSQTT broker
mosquitto. It is a complete initial binding
to the transport.

https://github.com/persan/mosquitto-ada

ASIS Components

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Tue, 21 Apr 2015 10:37:23 +0200
Subject: ASIS users: Scope manager added

to Adalog's ASIS components
Newsgroups: comp.lang.ada

Talking about managing scopes...

I've added the scope manager to Adalog's
ASIS components. It is a component that
has been used for a long time in
AdaControl (and therefore extensively
tested), but I made it independent from
AdaControl for others to reuse. GMGPL
of course.

Get it from: http://sourceforge.net/p/
adacontroladalog-asiscomps/

It depends on Thick_Queries (available
from the same place) and Binary_Map
(available from Adalog general
components).

PCAB

From: Ali Bendriss
<ali.bendriss@gmail.com>

Date: Tue, 28 Apr 2015 16:54:59 +0000
Subject: ANN PCAB 0.1
Newsgroups: comp.lang.ada

I have put online PCAB, an Ada binding
to libpcap.

The Ada thin layer is generated using the
gcc binding generator. There is as well a
thick wrapper (pcap.ads) to hide most of
the low level stuff.

You may find more info + a download
link by following this URL:

http://wiki.tele-
solve.com/PacketCaptureAdaBinding

Please let me know if you have any idea
of improvement.

Generic Image Decoder

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Tue May 5 2015
Subject: Gautier's blog: GID release #04
URL: http://gautiersblog.blogspot.dk/

2015/05/gid-release-04.html

GID means Generic Image Decoder, an
open-source library that can be found
here:

 http://gen-img-dec.sourceforge.net/

In the latest version, in addition to the
sophisticated formats like JPEG and PNG,
the decoder supports also the simple
format family PNM (Portable aNy Map)
with the flavors PBM (Portable BitMap,
black & white), PGM (Portable

GreyMap), PPM (Portable PixMap, in full
colors).

[...]

[See also “Generic Image Decoder”, AUJ
33-4, p. 236. —sparre]

Ada-related Products

GNAT Pro

From: AdaCore Press Center
Date: Tue Feb 24 2015
Subject: AdaCore Releases GNAT Pro 7.3
URL: http://www.adacore.com/press/

gnatpro7-3/

New version of Ada Development
Environment highlights annual major
release  of company product line

EMBEDDED WORLD 2015,
Nuremberg, Germany, February 24, 2015
– AdaCore, the leading provider of
commercial software solutions for the
Ada programming language, today
released GNAT Pro 7.3, the latest version
of the company’s flagship Ada
Development Environment. GNAT Pro
7.3 incorporates performance
improvements, new functionality, and
many other enhancements. It is part of the
annual cycle of a major release for the
company’s products, and Q1 2015 will
also see new versions of the CodePeer
deep static analysis tool for Ada and the
SPARK Pro verification environment for
high-integrity software, as well as the
launch of the QGen model-based
development and verification tool for
Simulink® and Stateflow® models.

GNAT Pro includes a full Ada compiler,
Integrated Development Environments –
the GNAT Programming Studio (GPS)
and the Eclipse-based GNATbench – a
comprehensive toolset including a visual
debugger, and an extensive set of libraries
and bindings.

GNAT Pro 7.3 incorporates upgraded
technology for the back end (GCC 4.9)
and debugger (GDB 7.8) and includes
more than 175 new features, many of
which are based on customer
recommendations. Enhancements include
the following:

- improved diagnostic messages

- fine-grained control over the treatment
of warnings

- extended support for non-default
endianness

- a math library on bare-board platforms,
designed for use in safety-certified
systems

- support for large files on 32-bit systems

- improved handling of inlining

- overflow checks enabled by default

- enhanced code generation and
debugging capabilities

66 Ada-related Products

Volume 36, Number 2, June 2015 Ada User Journal

In addition, most GNAT Pro tools now
support aggregate projects. For more
efficient performance a number of tools,
including GNAT2XML and GNATmetric
, can take advantage of parallel and
incremental processing, and GNATtest
now supports the stubbing of units.

”For more than 15 years now, new
versions of GNAT Pro have been released
annually according to schedule and at a
level of quality required for building and
maintaining mission- and safety-critical
systems” said Cyrille Comar, President of
AdaCore. “The challenge then and now is
to provide the right balance between a
high level of stability and the constant
need for evolution and innovation. The
latest version of GNAT Pro shows that we
have met this challenge, allowing our
customers to actively maintain their long-
lived systems without being hampered by
obsolete techniques and technology.”

[See also “GNAT Pro”, AUJ 35-2, p. 81.
—sparre]

QGen

From: AdaCore Press Center
Date: Tue Feb 24 2015
Subject: AdaCore Launches QGen
URL: http://www.adacore.com/press/

adacore-launches-qgen/

Customisable code generator and model
verifier for Simulink and Stateflow
models is designed for qualification
against software safety certification
standards.

Nuremberg – Embedded World
Conference, NEW YORK and PARIS,
February 24, 2015 – AdaCore today
announced the release of QGen 1.0, a
qualifiable and customisable code
generator and model verifier for Simulink
and Stateflow models. This tool can
generate MISRA C and SPARK source
code producing readable, traceable, and
efficient code. It is particularly suited for
developing and verifying high-integrity
real-time control applications, especially
where safety certification is required. The
tool is highly configurable thanks to its
visible intermediate representation.

QGen handles around 100 Simulink
blocks. These were selected as a safe
subset that guarantees predictable code
generation patterns, does not require any
run-time support, and allows for tool
qualification against software safety
standards. Support for Stateflow models is
expected during late Q2 2015.

The tool's static model verifier detects
run-time errors such as integer overflow
and division by zero. It also can find logic
errors such as dead execution paths, and
verify functional properties through
Simulink Assertion blocks. QGen can be
integrated with AdaCore’s
GNATemulator and GNATcoverage tools
to support Processor-in-the-Loop (PIL)

testing and structural coverage analysis
without any code instrumentation.

Qualification material for QGen will be
available for standards such as DO-178C
(avionics), EN 50128 (rail), and ISO
26262 TCL3 (automotive). The model
verification feature is qualifiable for DO-
178C at Tool Qualification Level 5.

A QGen demo is available at
http://www.adacore.com/qgen_demo.

“Thanks to its strong focus on safety,
QGen reinforces the position of the
Simulink and Stateflow environments as
the preferred solutions for model-driven
development of high-integrity control
systems,” said Matteo Bordin, product
manager for QGen at AdaCore. “With
QGen, AdaCore offers a uniquely
integrated and qualifiable solution for
end-to-end model-based design, including
code generation, production of high-
performance embedded code, formal
verification, structural coverage, and
support for Processor-In-The-Loop
testing.

“QGen offers us two opportunities,” said
Cyrille Comar, AdaCore President. “First,
our existing customers can now benefit
from code generation from
Simulink/Stateflow models in a way that
is compatible and integrated with their
existing tool and language investment.
Further, QGen’s outstanding capabilities
are attracting interest from new
application domains driven by safety-
critical requirements; this allows us to
provide our high-integrity expertise and
toolset to a much larger user base.”

VectorCAST

From: Vector Software
Date: Tue Feb 24 2015
Subject: Vector Software Releases

VectorCAST 6.3
URL: https://www.vectorcast.com/news/

vector-software-press-
releases/2015/vector-software-releases-
vectorcast-63

Smaller Footprint and Safety-Critical
Expertise Delivers an loT / M2M - Ready
Test Environment

Vector Software, the world’s leading
provider of innovative software solutions
for robust embedded software quality,
announced the release of VectorCAST™
6.3 today, the most Internet of Things
(IoT) and Machine-to-machine (M2M)-
ready embedded test suite.

Building on the embedded domain
expertise Vector Software has developed
over the last 20 years, version 6.3
provides a new micro harness architecture
designed for the special needs of IoT /
M2M applications. The new architecture
is critical for IoT / M2M applications
because of the smaller microprocessors
and limited resources that are available to
these applications. Analysts are projecting

IoT and M2M to grow into a $71 billion
industry by 2018 (Juniper Research,
Smart Home Ecosystems & the Internet of
Things, 12/02/2014). With billions of
newly connected devices going on line,
high quality software is essential for these
devices to operate as intended.

“The coming growth of IoT and M2M
will take a slice of intelligence out of the
cloud and push it back to the periphery of
the network,” said John Paliotta, Chief
Technology Officer, Vector Software.
“As this evolves, the correct autonomous
operation of those network end points will
be critical. We feel that VectorCAST is
uniquely positioned to help developers
build quality into IoT and M2M
applications.”

Beyond the new harness architecture,
VectorCAST 6.3 provides several other
enhancements for test collaboration,
Change-Based Testing (CBT), and
massively parallel testing. These features
make it simple for your team to leverage
test cases and test results across the
enterprise. Each developer can quickly
and independently test their code changes
by running only those tests affected by the
source code changes made; this leads to
improved software quality with reduced
test cycle times.

As tests are integrated together into suites,
an enhanced integration with the open-
source continuous integration server
Jenkins, provides VectorCAST 6.3 users
the ability to deploy massively parallel
testing over hundreds of servers.

To learn more about VectorCAST 6.3,
please visit us here:
https://www.vectorcast.com/vectorcast-63

To get the VectorCAST 6.3 release notes,
please visit us here:
https://www.vectorcast.com/downloads

[...]

Rapita Verification Suite

From: Rapita Systems
Date: Mon Mar 23 2015
Subject: First Code Coverage Solution for

Multi-Core Systems Announced by
Rapita Systems

URL: http://www.rapitasystems.com/news/
first-code-coverage-solution-multi-core-
systems-announced-rapita-systems

Rapita Systems Ltd, leading provider of
on-target verification solutions for
critical, real-time embedded systems, is
pleased to announce the availability of
version 3.3 of Rapita Verification Suite
(RVS). This release features a range of
enhancements including the first multi-
core code coverage solution.

RVS is Rapita Systems' solution for
supporting on-target verification for
critical, real-time, embedded systems in
industries such as avionics and
automotive. It features tools to track
structural code coverage (RapiCover),

Ada and Operat ing Systems 67

Ada User Journal Volume 36, Number 2, June 2015

measure timing behavior and to predict
worst-case execution time (RapiTime),
and to track system behavior within real-
time operating systems and/or across
multiple processor cores.

The latest v3.3 release introduces a range
of features with a particular benefit for
users performing structural coverage
analysis. Multi-core code coverage allows
a user to identify which cores executed
specific code during testing. RapiCover's
extremely low overheads, which already
have a big impact in reducing the number
of repetitions of tests are reduced to even
lower levels with this new version. Effort
to certify, which is a major consideration
for customers using coverage tools with
DO-178C or ISO 26262, is further
reduced in RVS 3.3 through several
features, such as justifications, which
allow non-executed code to be
highlighted and explained.

Rapita Systems CEO, Dr Guillem Bernat
commented "In RVS 3.3 our aim is to
provide the best structural coverage
analysis tool for critical embedded
systems."

"Measuring code coverage of tests has
always played a major part in the
verification of critical systems and we are
increasingly seeing a demand for on-
target code coverage. This puts a strong
emphasis on tools that minimize the
impact of measuring coverage.
RapiCover's industry-leading low
overheads have already resulted in
massive reductions in testing effort for
our customers. In RVS 3.3, we reduce the
overheads of RapiCover still further. "

Bernat continued "Looking forward, we
see increasing numbers of customers
adopting multi-core processors. For some
customers it won't be sufficient just to say
code ran on one of the cores – instead
they will need to know that code ran on a
specified sub-set of the cores, but
definitely was not executed on others."

RVS 3.3 builds on Rapita's successful
track record of bringing verification
products to engineers working on critical
real-time embedded systems in the
avionics and automotive electronics
industries.

[...]

Early Access to Advanced
Verification Technologies

From: Rapita Systems
Date: Mon Apr 20 2015
Subject: Working with advanced

technologies via Rapita Systems’ Early
Access Program

URL: http://www.rapitasystems.com/system/
files/downloads/MC-PB-011-
54%20LR%20Early%20Access%20Prog
ram.pdf

Introduction to the Early Access Program

Rapita Systems has always been heavily
involved in the research and development
of advanced verification techniques for
high-integrity systems.

Recognizing that our customers can
benefit from this research even before it is
fully developed into a product, Rapita has
defined the Early Access Program (EAP)
as a way for customers to access these
technologies.

Sometimes our customers have problems
that cannot be solved with commercially
available tools, although they could be
addressed with technologies that Rapita
Systems is developing internally. This
technology comes from our involvement
in collaborative EU research programs as
well as our internal product development
process. When a customer comes to us
with a specific requirement that could be
addressed by EAP technologies, we
jointly devise a package of consultancy
and tools derived from the EAP that is
specifically tailored to the project’s needs.

Types of Technology covered by the EAP

Within the EAP we focus on technologies
closely related to Rapita's core mission of
verification of high-reliability, embedded
and real-time systems. This includes:

- Techniques for doing on-target
verification, including timing, coverage,
stack-usage, cache, and tracing.

- Technologies for capturing/logging data
from the target, including capturing data
in real-time and on-target.

- Technologies related to analyzing source
code.

- Multicore and many-core.

- Automotive and Aerospace-specific
standards, tools and technologies.

[...]

Ada and Operating
Systems

Debian: GtkAda for ARMv7

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 2 Apr 2015 10:20:32 +0200
Subject: ANN. GtkAda 3.8.2 for ARM
Newsgroups: comp.lang.ada

I have packaged GtkAda as distributed
with GNAT GPL 2014 for Debian
ARMv7.

ARMv7, also known as armhf, is what
you get with Raspberry Pi 1/2 and
BeagleBone. Here is the link:

http://www.dmitry-kazakov.de/ada/
gtkada.htm

Note, this is not an official release, I am
not Debian GtkAda maintainer.

Debian: Libraries Supported
on ARMv7

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Thu, 2 Apr 2015 11:27:56 +0200
Subject: ANN: ARM support update
Newsgroups: comp.lang.ada

The following libraries are now supported
on ARMv7 and packaged for Debian
armhf.

Ada industrial control widget library

http://www.dmitry-kazakov.de/
ada/aicwl.ht

[See also “Industrial Control Widget
Library”, AUJ 35-3, p. 157. —sparre]

Fuzzy sets for Ada

http://www.dmitry-kazakov.de/
ada/fuzzy.htm

[See also “Fuzzy Sets”, AUJ 35-3, p. 157.
—sparre]

GtkAda contributions

http://www.dmitry-kazakov.de/
ada/gtkada_contributions.htm

[See also “GtkAda Contributions”, AUJ
35-3, p. 155. —sparre]

Interval arithmetic

http://www.dmitry-kazakov.de/
ada/intervals.htm

[See also “Interval Arithmetic”, AUJ 35-
3, p. 157. —sparre]

Measurement units for Ada

http://www.dmitry-kazakov.de/
ada/units.htm

[See also “Units of Measurement”, AUJ
35-3, p. 156. —sparre]

Simple components for Ada

http://www.dmitry-kazakov.de/
ada/components.htm

[See also “Simple Components”, AUJ 35-
3, p. 154. —sparre]

String editing

http://www.dmitry-kazakov.de/
ada/strings_edit.htm

[See also “Strings_Edit”, AUJ 35-3, p.
154. —sparre]

Table management

http://www.dmitry-kazakov.de/
ada/tables.htm

[See also “Tables”, AUJ 35-3, p. 154.
—sparre]

GNAT programming studio (GPS) library
installer

http://www.dmitry-kazakov.de/
ada/gps_installer.htm

Fuzzy machine learning framework

http://www.dmitry-kazakov.de/
ada/fuzzy_ml.htm

68 References to Publ icat ions

Volume 36, Number 2, June 2015 Ada User Journal

[See also “Fuzzy machine learning
framework”, AUJ 33-3, p. 143. —sparre]

Archlinux: Available
Packages

From: Rod Kay
<rodakay@internode.on.net>

Date: Sat, 18 Apr 2015 06:07:11 -0700
Subject: Updated Ada support for

Archlinux.
Newsgroups: comp.lang.ada

I've added/updated a few of the Ada
libs/tools for Archlinux. Hopefully, they
will update Ada support to be equivalent
to what is available on FreeBSD (whose
ports were used as a basis for many of the
Archlinux updates).

Here is a list of the packages available ...

- ada-web-server 3.2.0

- ahven 2.4

- asis gpl 2014

- florist gpl 2014

- gnat-gps 6.1.0

- gnat_util 4.9.2

- gprbuild gpl 2014

- gtkada 3.8.3.1

- polyorb gpl 2014

- xmlada gpl 2014

The existing 'gcc-ada' package provides
support for gcc 4.9.2.

Any feedback via the usual AUR site
would be appreciated.

If anyone can suggest other Ada related
packages to add, please do.

Mac OS X: GCC

From: Simon Wright
<simon@pushface.org>

Date: Thu, 30 Apr 2015 12:22:17 +0100
Subject: ANN: GCC 5.1.0 for Mac OS X
Newsgroups: comp.lang.ada

See https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20O
S%20X/5.1.0/

This is GCC 5.1.0 built for Mac OS X
Mavericks (10.9.5, Darwin 13.4.0), with
the Command Line Tools for Xcode 6.2.
It also runs on Yosemite.

Compilers included: Ada, C, C++,
Objective C, Objective C++, Fortran.

Tools included:

Full GPL:

 ASIS, AUnit, GDB, GNATColl, and
GPRbuild from GNAT GPL 2014.

GPL with Runtime Library Exception[1]:

 XMLAda from the public SVN
repository[2] at revision 238235
(XMLAda-SVN for short).

The gory details at

http://forward-in-code.blogspot.co.uk/
2015/04/building-gcc-510.html

From: Simon Wright
<simon@pushface.org>

Date: Thu, 30 Apr 2015 13:23:08 +0100
Subject: Re: ANN: GCC 5.1.0 for Mac OS X
Newsgroups: comp.lang.ada

> [...]

One user-visible change I've noted, in
GNAT.Sockets, is that
Vector_Element.Length (used in
Vector_Type, used in Receive_Vector
and Send_Vector) is now of type
Interfaces.C.size_t; used to be
Ada.Streams.Stream_Element_Count. I
guess this is for efficiency in scatter-
gather operations.

Mac OS X: GCC for ARM-
EABI

From: Simon Wright
<simon@pushface.org>

Date: Fri, 01 May 2015 16:24:05 +0100
Subject: ANN: GCC 5.1.0 arm-eabi for Mac

OS X
Newsgroups: comp.lang.ada

See https://sourceforge.net/projects/
gnuada/files/GNAT_GCC%20Mac%20O
S%20X/5.1.0/

This is GCC 5.1.0, rebuilt as a cross-
compiler from Mac OS X to arm-eabi
(specifically, the Cortex-M4 as found on
the STMicroelectronics[1] STM32F4
Discovery and STM32F429I Discovery
boards).

The compiler comes with no Ada
Runtime System (RTS). See the
STM32F4 GNAT Run Time Systems
project[2] for candidates.

For details, see [3].

[1] http://www.st.com

[2] https://sourceforge.net/projects/
stm32f4-gnat-rts/

[3] http://forward-in-code.blogspot.co.uk/
2015/05/building-gcc-510-for-arm-
eabi.html

[See also “Mac OS X: GNAT GPL 2014
for ARM-EABI”, AUJ 36-1, p. 17.
—sparre]

References to
Publications

Driving Neopixel LEDs

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Tue Mar 17 00:00:00 CET 2015
Subject: Driving Neopixel LEDs using only

Ada
URL: http://arduino.ada-

language.com/driving-neopixel-leds-
using-only-ada.html

Inspired by my earlier delay experiments
and its follow-up discussion on AVR-Ada
mailinglist, I decided to put my delay
functions in good use.

Neopixel RGB LEDs require exact timing
and people usually use AVR assembler
code to get the timing right. However, I
wanted to see can I do it with plain Ada
on normal Arduino.

The short answer is: Yes, it is doable.

[...]

A Building Code for
Building Code

From: Yannick Moy
Date: Wed Mar 25 2015
Subject: A Building Code for Building Code
URL: http://blog.adacore.com/a-building-

code-for-building-code

If you can't make sense of the title of this
post, you may need to read the recent
article about it in Communications of the
ACM[1]. In this article, Carl
Landwehr[2], a renowned scientific
expert on security, defends the view that
the software engineering community is
doing overall a poor job at securing our
global information system:

 To a disturbing extent, however, the
kinds of underlying flaws exploited by
attackers have not changed very much.
[...] One of the most widespread
vulnerabilities found recently, the so-
called Heartbleed flaw in OpenSSL, was
[...] failure to apply adequate bounds-
checking to a memory buffer.

and that this is mostly avoidable by
putting what we know works to work:

 There has been substantial progress in
the past 20 years in the techniques of
static and dynamic analysis of software,
both at the programming language level
and at the level of binary analysis. [...] It
would be feasible for a building code to
require evidence that software for
systems of particular concern (for
example, for self-driving cars or
SCADA systems) is free of the kinds of
vulnerabilities that can be detected
automatically in this fashion.

to the point that most vulnerabilities could
be completely avoided by design if we
cared enough:

 Indeed, through judicious choice of
programming languages and
frameworks, many kinds of
vulnerabilities can be eliminated
entirely. Evidence that a specified set of
languages and tools had indeed been
used to produce the finished product
would need to be evaluated.

Shocking! Or so it should appear. But the
reality is that we are now used to not
being able to rely on software in our
everyday lives.

[...]

Ada Inside 69

Ada User Journal Volume 36, Number 2, June 2015

[1] http://cacm.acm.org/magazines/2015/
2/182641-we-need-a-building-code-for-
building-code/abstract

[2] http://en.wikipedia.org/wiki/
Carl_Landwehr

Tutorial: ARM Cortex-Mx

From: Maciej Sobczak
<maciej@msobczak.com>

Date: Wed, 29 Apr 2015 05:38:21 -0700
Subject: Ada on Cortex-M - tutorial

progress
Newsgroups: comp.lang.ada

Some time ago I have announced here a
tutorial for Ada programming on ARM
Cortex-M microcontrollers:

http://www.inspirel.com/articles/
Ada_On_Cortex.html

I am glad to say that ~15 chapters later,
with the recently added:

http://www.inspirel.com/articles/
Ada_On_Cortex_Hello_World.html

this tutorial is slowly approaching
completion and I would like to ask you if
you can identify any obvious omissions in
its coverage. Of course, the intent of this
tutorial was not to be a complete guide
(neither for the language nor for any
given board), but rather something that
can show newcomers how to explore
available resources so that they can solve
new problems on their own. Still, a peer
look can reveal gaps that the author was
not aware of making.

You feedback is very welcome.

[See also “Tutorial: Arduino Due (ARM
Cortex-Mx)”, AUJ 36-1, p. 19. —sparre]

AVR-Ada: Read and Write
NFC Tags

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Thu Apr 30 2015
Subject: Read, write, and emulate NFC tags

using Adafruit PN532 breakout board,
Olimexino-328, and AVR-Ada

URL: http://arduino.ada-language.com/
read-write-and-emulate-nfc-tags-using-
adafruit-pn532-breakout-board-
olimexino-328-and-avr-ada.html

Recently, I have been playing with PN532
breakout board from Adafruit to read
NFC tags and to communicate with NFC-
enabled devices, like smart phones.

Adafruit's PN532 breakout board uses
3.3V voltage level and it is little tricky to
use it with normal Arduino. So I ended up
using Olimexino-328, which allows you
to switch between 3.3V and 5V operation.

Setup

Olimexino-328 has special UEXT
connector, so I created a small adapter
board to connect PN532 breakout board to
any board with UEXT, including
Olimexino-328.

PN532 supports different communication
options like I2C, SPI and UART. I am
using SPI, since it is relatively easy to
setup and if needed, software SPI is also
easy to do.

NFC tags

NFC tags come in various forms and
types.

For now, I have written code for NFC
Forum type 2 and NFC Forum type 4
tags. It would be also relatively easy to
support proprietary NXP Mifare Classic
tags, but I haven't had time to add code
for them yet.

[...]

Ada Inside

AZip - A Portable Zip
Archive Manager

From: Gautier de Montmollin
<gautier.de.montmollin@gmail.com>

Date: Sat, 28 Mar 2015 13:22:02 -0700
Subject: Ann: AZip v.1.26
Newsgroups: comp.lang.ada

Following the corresponding
improvement in the underlying Zip
archive library (Zip-Ada), there is a new
version of AZip providing inclusion of
items into an archive, encrypted with a
password.

AZip is a Zip archive manager designed
with the goal of keeping the interface as
simple as possible - well at least it is the
hope...

It offers a few original features, like an in-
archive search function. Instead of
unpacking the archive to a drive and then
search keywords with the command line
or a faulty Explorer search, you search
with AZip, within the archive, and the
number of hits is displayed in the "Result"
column (another original feature) with
possibility of sorting - like with other
columns.

The AZip web page is here, with a link to
downloads, code, news, ...

http://azip.sf.net/

[See also “AZip - A portable Zip Archive
Manager”, AUJ 34-2, p. 73. —sparre]

Hypervisor Detection Tool

From: Daniil Baturin
<daniil@baturin.org>

Date: Sun Apr 5 2015
Subject: A hypervisor detection tool, this

time in Ada 2005

It's often handy to include information
about hypervisor in tech support reports,
and there are already tools that can detect
if a system is virtualised and what
hypervisor it's running on, but I don't like
them much.

One popular tool is virt-what which is a
mix of C and shell that requires root
privileges (and only works on Linux),
another one is imvirt which is a mix of C
and Perl.

Whether "I don't like the language" is a
valid motivation for writing a new tool or
not, I made one in Ada.

At this point it can detect anything that
uses CPUID hypervisor leaf on any OS;
Xen PV and HVM on either Linux or
FreeBSD; VirtualBox, Parallels, and MS
Virtual PC on Linux.

What's missing: proper build setup,
container virtualisation detection.

Code review and patches are welcome.

The source:
https://github.com/dmbaturin/hvinfo

BIOS Implementation

From: Edward O'Callaghan (funfunctor)
IRC-network: Freenode
IRC-channel: #Ada
Date: Tue Apr 21 18:29:00 CEST 2015

x86 BIOS written in Ada. Look ma', no
RAM needed!

[edward@tinypuppy src]$ qemu-system-
i386 -bios cpu/aperture.rom -nographic

Booting *** Aperture *** firmware
3ed0e42-UNCLEAN (GNAT GPL 2014
(20140331)).

qemu: terminating on signal 15 from pid
14425

[https://github.com/
victoredwardocallaghan/aperture/]

Internship: Multi-core
Software Timing

From: Rapita Systems
Date: Thu Apr 23 2015
Subject: Internship: Multi-core software

timing
URL: http://www.rapitasystems.com/

about/careers/internship-multi-core-
software-timing

Rapita Systems is a small and friendly
high-tech software company in York
(near University) that develops software
tools for on-target software verification,
optimisation and code coverage of critical
real-time embedded systems.

The technology developed by Rapita
Systems Ltd targets the aerospace and
space industries. Please see
http://www.rapitasystems.com/
for more information.

Project details:

This project will investigate the real-time
behaviour of multi-core processors, which
is an area of growing interest for avionics
systems development.

The project will involve writing or
selecting some benchmark code for a
multi-core system and measuring its

70 Ada Inside

Volume 36, Number 2, June 2015 Ada User Journal

performance under a variety of situations,
which will provide Rapita with vital data
for demonstrating solutions to customers.
We have a number of high-end embedded
multi-core embedded systems to evaluate
including P4080, AURIX, LEON and we
would like to understand the impact of
running our software verification tools on
these multi-core processors.

This is a project that would suit someone
looking to get into low-level and
embedded software, real-time systems or
software verification technologies. This
project has a research slant, with
opportunities to steer the work in a variety
of directions.

We are looking for:

- Excellent software skills and experience
in C (and/or Ada), especially with the
idea of "bare metal" programming.

- Familiarity with multi-core concepts
will be valuable.

- A hardworking, proactive and diligent
student who would relish the
opportunity to work on a highly
technical project involving
programming, design and test.

What you can gain from this internship:

- Experience of working within a fast
paced technology company, on
industrial research and practical
problems.

- The opportunity to help a cutting edge
software company reach out to new and
existing customers.

- The opportunity to contribute to the area
of multi-core usage in aerospace, and
publications on this work.

- The opportunity to gain quality, project-
based work experience to enhance your
CV and employability prospects.

- Opportunity for part time and full time
employment.

[...]

Internship: Requirements
Management Tool

From: Rapita Systems
Date: Thu Apr 23 2015
Subject: Internship: requirements

management tool for certification and
qualification of software for aerospace

URL: http://www.rapitasystems.com/
about/careers/internship-requirements-
management-tool-certification-and-
qualification-software

[...]

Project details:

Rapita provides a DO-178C “qualification
package” (a set of tests and
documentation that we deliver to
customers that show that our tools meet

their requirements in the aerospace
software domain). The project involves
finding and adopting a software tool that
will manage the requirements and
supporting processes for the ongoing
development and maintenance of this
qualification kit.

The project will start by understanding
Rapita’s needs for requirements
management and performing an
evaluation of some existing options. If a
suitable existing tool is found then the
project will evaluate and roll out this tool,
adapting it to Rapita’s needs as necessary.
If no suitable tool is found then the
project may design and start to implement
a custom tool.

The project will involve requirements
management, processes and working with
safety-related software and would suit
someone who likes formality, processes
and correctness.

We are looking for:

- Someone with excellent software skills,
ideally including C, Perl, Ada,
bash/scripting.

- Experience of Windows/Linux
administration, and ideally
Javascript/AJAX.

- An understanding of software process,
requirements and safety-critical software

- A hardworking, diligent and proactive
student who enjoys working as part of a
team.

What you will gain from this internship:

- Experience of working within a small,
friendly, fast paced technology
company, on industrial research and
practical problems.

- The opportunity to help a cutting edge
software company reach out to new and
existing customers.

- Experience of working with industrial
experts and with leading aircraft
manufacturers in a challenging and
exciting domain.

- The opportunity to gain quality, project-
based work experience to enhance your
CV and employability prospects.

- Opportunity for part time and full time
employment.

[...]

Internship: Software Quality
for Safety-Critical Systems

From: Rapita Systems
Date: Thu Apr 23 2015
Subject: Internship: Software Quality for

Safety-Critical Systems
URL: http://www.rapitasystems.com/about/

careers/internship-software-quality-
safety-critical-systems

Rapita Systems is a small and friendly
high-tech software company in York
(near University) that develops software
tools for on-target software verification,
optimisation and code coverage of critical
real-time embedded systems. The
technology developed by Rapita Systems
Ltd targets the aerospace and space
industries. Please see
http://www.rapitasystems.com/ for more
information.

Project details:

The project involves the verification of
safety-critical software tools and is an
excellent introduction into practical
software engineering for reliable
software.

The main aim of this project is to support
the development and maintenance of the
DO-178C qualification kit for our
software (a set of test cases and
documentation that are delivered to our
customers that shows that our software
meets its requirements and is able to be
used for aerospace/avionics software).

Part of the work will involve the creation
of formal tests in C and Ada, leading to
the diagnosis and fixing of bugs, working
with the test and development teams to
improve the software, and performing
integrations of the software with various
embedded platforms such as P4080,
PowerPC and other platforms used in
aerospace software.

This project is quite a general project
involving a variety of skills can be
tailored to the skills of the student. This
project would suit someone keen on
formal correctness and looking to develop
experience in reliable software.

We are looking for:

- Excellent software skills, ideally using
C, Perl, Ada, bash/scripting

- Linux/Windows administration

- An interest and understanding of
software process, requirements and
safety-critical software

- The ability to work in a team with a
hardworking, proactive and diligent
attitude

What you will gain from this internship:

- Experience of working within a fast
paced technology company, on industrial
research and practical problems.

- The opportunity to help a cutting edge
software company reach out to new and
existing customers.

- The opportunity to work with industrial
experts and leading manufacturers in a
challenging and exciting domain.

- The opportunity to gain quality, project-
based work experience to enhance your

CV and employability prospects. - Opportunity for part time and full time
employment.

[...]

Ada in Context 71

Ada User Journal Volume 36, Number 2, June 2015

Job: Writing a Binding to
Open Z Wave

From: Tony G. <tonythegair@gmail.com>
Date: Sat, 2 May 2015 04:17:16 -0700
Subject: open source ada binding to zwave
Newsgroups: comp.lang.ada

I have some funding for an energy/carbon
saving project, I am completing in Ada
and Gnoga. I have a requirement for an
Ada binding to an existing Open Z Wave
library, and am looking for someone who
has the skills and ability to do that. I can
pay! Not a lot! But I can pay! And the
result would be an Open Source library
for Ada that would be a Debian package
for ARM and Intel.

This package would allow me to eliminate
a dependency and I believe improve the
reliability of what I am doing as well as
being able to complete the project entirely
in Ada...Hooray! It is highly likely that
the result could be a learning resource for
incoming programmers!

Any advice for the protection of worker
and commissioner towards completing
this piece of the project I would be
grateful for!

http://www.openzwave.com/

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Sat, 02 May 2015 10:30:17 -0700
Subject: Re: open source ada binding to

zwave
Newsgroups: comp.lang.ada

> [...]

It does look painful. How much are you
willing to pay?

From: Tony G. <tonythegair@gmail.com>
Date: Sat, 2 May 2015 12:28:47 -0700
Subject: Re: open source ada binding to

zwave
Newsgroups: comp.lang.ada

If you have to ask, I probably cannot
afford it :) but I can stretch to possibly 3k
dollar (about 2k in stirling)

Seriously though, first I am trying to
ascertain the size of the job etc. I will
make the library available to other users
and it may be the case that if someone
made a decent start on it, I could finish
the major part of it myself. It would be to
support a social enterprise trying to
reduce peoples energy bills, but I do
appreciate that people need to pay bills
and eat etc.

One way might be to use the gnatcoll
library and then maybe use python scripts
through this library but I think it is
preferable to have an Ada binding.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Date: Sat, 2 May 2015 21:42:49 +0200
Subject: Re: open source ada binding to

zwave
Newsgroups: comp.lang.ada

> [...]

Where is a problem? They seem have
drivers, use these, if you really need to
support these devices. It does not look
like a big deal.

Ada in Context

Tagged Type Abuse

From: Natasha Porté
<lithiumcat@instinctive.eu>

Date: Thu, 18 Dec 2014 11:26:58 +0000
Subject: Tagged type abuse
Newsgroups: comp.lang.ada

I find myself using more and more tagged
types for reasons that have nothing to do
with tagging, mostly the prefix notations
(when it helps readability and when a
function call is conceptually accessing a
record element but with a hidden concrete
implementation) and the passing by
reference.

However, I still feel guilty about it, like
I'm abusing a feature unrelated to what I
wish to accomplish.

What would you recommend to appease
such feelings?

Sacrificing prefix notation readability on
types that have no business being tagged?

Trying to be more pragmatic and use tools
(and language features) for any purpose at
which they end up being useful, even
unintended?

From: Jeffrey R. Carter
<jrcarter@acm.org>

Date: Thu, 18 Dec 2014 09:59:36 -0700
Subject: Re: Tagged type abuse
Newsgroups: comp.lang.ada

> [...]

There are three reasons I use tagged
types:

1. To obtain finalisation

2. To avoid explicit pointers in self-
referential types

3. To obtain Object.Operation notation

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 18 Dec 2014 17:10:37 -0600
Subject: Re: Tagged type abuse
Newsgroups: comp.lang.ada

> [...]

I think that Jeff is saying that not
everyone thinks dynamic dispatching is
relevant. But tagged types still can be
useful.

Note that in pre-2012 Ada, you needed to
use tagged types get "=" to work right vis-
a-vis composition. (Ada 2012 extended
that to all record types, which of course
means that some programs that expect the
wrong answer will break. But in most
cases, the change will fix bugs rather than
create them.)

I don't use dynamic dispatching much
(outside of Claw anyway), but I
sometimes use inheritance to inherit
implementations (rather than having to
duplicate them all over, with the
corresponding maintenance headache).

I'd probably use tagged types to get prefix
notation, but I'd have to implement it in
Janus/Ada first. :-)

Anyway, I wouldn't worry about it.
Tagged types cost about the same as
regular record types (the only difference
is the waste of space for the tag, which
only matters for tiny records) unless you
use T'Class. So do what makes you
program work better.

(We couldn't make cursors in the
containers be tagged, thus you can't use
prefixed notation to do various reading
operations on the containers. One more
reason out of many that I think every
container operation should have had a
container parameter. [Another reason is
that preconditions make much more sense
if the container passed to an operation has
a name.] But of course there is as many
container designs as there are
programmers -- perhaps more -- and the
big value was picking one. There is no
way it could have been perfect for every
use anyway.)

{Pre,Post}conditions and
Side Effects

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 22 Dec 2014 17:46:28 -0600
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

[...] It is one reason that a package author
can prevent some or all assertions from
being disabled in the package.

> [...]

A much better example is an
implementation that has implemented the
containers using preconditions rather than
explicit checks. For instance:

 procedure Replace_Element
 (Container: in out Vector;
 Position: in Cursor;
 New_Item: in Element_Type);
 with Pre'Class
 => (if Tampering_With_Elements
_Prohibited (Container) then
 raise Program_Error) and then
 (if Position = No_Element then
 raise Constraint_Error) and then
 (if not Cursor_Belongs_To_Container
 (Container, Position) then
 raise Program_Error);

If this is called with preconditions
ignored, the required semantics of
Replace_Element won't happen (because
the checks for the various exceptions
won't happen - no one is going to repeat
the precondition checks in the body - if

72 Ada in Context

Volume 36, Number 2, June 2015 Ada User Journal

that was required, the precondition is
worthless). (Note: This precondition uses
a couple of predicates that aren't defined
in the Ada 2012 containers, but should
have been. Most likely, the next version
of Ada will rewrite the containers this
way, it will get rid of a lot of text in the
Standard.)

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Tue, 23 Dec 2014 18:02:42 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

[...]

A simple example that I love because it is
so simple yet so telling is binary search of
an array. A reasonable precondition is that
the array it is given is sorted. It might
look like

 Pre => (for all I in A'First .. A'Last - 1 =>
 (A(I) <= A(I + 1)))

This takes O(n) time to evaluate. Yet
binary search is an O(log(n)) algorithm.
For large arrays the precondition might
take many thousands or even millions of
times longer to execute than the
subprogram itself.

[...] Thus putting anything resembling
essential program logic in an assertion is,
of course, just wrong. Forbidding
assertions with side effects might be nice,
but the programmer still has to be careful
with them anyway.

From: Robert A Duff
<bobduff@shell01.TheWorld.com>

Date: Tue, 23 Dec 2014 20:03:37 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] A reasonable precondition is that
the array it is given is sorted. [...]

Yes, all that's true. But those would be
better as predicates/invariants instead of
preconditions. For example, if you know
Sort produces a sorted array, and
Binary_Search takes a sorted array, you
don't have to check for sorted-ness on
entry to Binary_Search if you've got a
Sorted_Array.

But note that your "Pre" above is a good
example of what I was saying in a
somewhat-unrelated post in this thread: It
is shorter and simpler than doing a sort
using some efficient sorting algorithm.

> For this reason I assume that in most
cases programs must be deployed with
assertions disabled or else there is little
chance the program will be able to meet
its performance goals.

Yes, or at least SOME assertions disabled.

I like to say, "If you don't need to disable
assertions, then you don't have enough
assertions". It's a silly sound bite that is
not always true, but there's a grain of truth
in it.

[...]

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 24 Apr 2015 10:59:52 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] Thus putting anything resembling
essential program logic in an assertion
is, of course, just wrong.

But when are you putting "essential
program logic" in an assertion?

1) subtype Non_Negative_Matrix is
Ada.Numerics.Real_Arrays.Real_Matrix
 with Dynamic_Predicate =>
 (Non_Negative_Matrix'First (1) = 1) and
 (Non_Negative_Matrix'First (2) = 1) and
 for all E of Non_Negative_Matrix =>
 E >= 0.0);

2) procedure New_Line (File : in File_Type)
 with Pre => Is_Open (File) and then
 Mode (File) in (Out_File | Append_File);

3) function Binary_Search (Source : in List;
 Key : in Keys) return Values
 with Pre => Sort (Source);
 -- Sorts Source if it isn't already sorted.

I consider examples (1) and (2) fine, but
example (3) a very bad idea.

At the same time, I know that my
application may fail silently if the
assertion in example (1) isn't true.

When it comes to example (2), I expect
that the operating system (if nothing else)
will make sure that my application doesn't
fail silently if the assertion isn't true.

But I dislike banning "essential program
logic" in assertions, as any assertion is
program logic. And if it isn't essential,
why should it be there?

One problem I have with assertion aspects
is that I get the same exception no matter
which mistake I have made. If I put the
check inside a subprogram instead of in
its profile, I can get more clear
information about which kinds of
mistakes I make.

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 24 Apr 2015 11:18:28 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] I get the same exception no matter
which mistake I have made. [...]

Your wishes will be soon satisfied, see
AI12-0022-1 and AI12-0054-2 (raise
expression and aspect Predicate_Failure)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu Jul 10 2014
Subject: Version 1.13 of ai12s/

ai12-0022-1.txt
URL: http://www.ada-auth.org/cgi-

bin/cvsweb.cgi/ai12s/ai12-0022-
1.txt?rev=1.13

[...]

!wording

Add to 4.4(3/3):

 | raise_expression

Rename 11.3 to "Raise Statements and
Raise Expressions"

Add before 11.2(6):

 An exception_name of an
exception_choice shall denote an
exception.

Add after 11.3(2/2) [Syntax]

 raise_expression ::= raise
*exception*_name [with
*string*_expression]

[...]

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 24 Apr 2015 18:39:24 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

Raise expressions have been implemented
in GNAT for quite a while; they probably
exist in the compiler you're using.
Predicate_Failure wasn't implemented
until very recently (after someone wrote
an ACATS test for it), so for that you
might have to wait.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Fri, 24 Apr 2015 14:10:19 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> But I dislike banning "essential program
logic" in assertions, as any assertion is
program logic. And if it isn't essential,
why should it be there?

This definition involving "essential" does
not reflect "contract" properly, IMHO.
And it is fallacious in that it fails to reflect
the particulars that make assertions, as in
"assertion as per contract", different from
just program logic. To see this, I think it
is helpful to free oneself of the limitations
of looking at assertions from just a
programmer's point of view.

Assertions (of the contract) should never,
ever be understood to be consequences of
the program text with or without the
assertions, insofar as they are agreed upon
by humans to be true about the program to
be, its intent in particular. They cover a
program that may even have to be written
yet. They do share some of the properties
of agreements manifest in specifications.

For contracts' clauses, possibly supported
by assertions as part of source text, there
isn't even a conceptual necessity to have
proper assertions tested in the very same
environment as the program proper: a
copy will do in many cases of proper
assertions, as these are pure Boolean
functions.

Ada in Context 73

Ada User Journal Volume 36, Number 2, June 2015

The fact that assertions can be expressed
in Ada is purely accidental; SPARK
shows that a different language can be
used, and may even be more expressive.
Comments do count, too, such as RM
statements about O(op). The latter can be
understood as a part of contract between
any user of Ada and the implementer of
Ada.

An improper assertion (if I may call it that
for reasons of delineation) will modify
that part of program's data which is
covered by the contract, data to be
handled solely by the program which
would yield the same effects that are
stated in the contract, with or without
assertion checking. So, using improper
assertions, you'd be making a mess, even
though results might come out right (only
deferring proof obligations having to do
with the improper assertion).

OTOH, whenever testing an assertion
requires computation, it is essential to
keep its doings separate from what the
program needs to compute to fulfill the
contract.

So, the idea of considering assertions of
contracts (as opposed to plain old
debugging asserts) from the viewpoint of
their implementation is misleading.

Illustration:

Company X agrees this is in a contract:

 If, before calling Binary_Search, input is
sorted, then the result of calling
Binary_Search will be ...

That's a statement that can be made part
of a contract, and it may be formally
reflected in Ada aspects, if possible. It is
expressing the idea that Source is sorted.

Last but not least, a precondition should
never be anything but an assumption. As
not checking it at run-time is a valid way
of handling preconditions, the outcome of
not testing should still not create havoc;
so, the caller needs to make sure that
assertion of the contract is always true,
and never depend on how it is tested, or
on that it is tested.

From: Jacob Sparre Andersen
<jacob@jacob-sparre.dk>

Date: Fri, 24 Apr 2015 16:40:24 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] the caller needs to make sure that
assertion of the contract is always true,
and never depend on how it is tested, or
on that it is tested.

Taking that view, there isn't any point
combining the contract notation of Ada
2012 and SPARK 2014, as it would
prevent you from writing a single source
text which was valid for both languages.

SPARK would complain about your in-
subprogram check (mirroring the
precondition), as raising an exception is

illegal in SPARK (and dead code
probably is as well).

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Fri, 24 Apr 2015 18:29:51 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [dual-language source text]

That's hardly possible anyway, given the
number of restrictions that SPARK 2014
imposes, even when not taking assertions
into account. Is

 --# hide

all gone?

Also, why would there be a technical need
to have a contract use only Ada or
SPARK 2014 as the single language?
That's not done in the LRM, which uses
logic and mathematics; writing SPARK
2014, non-SPARK compilers could
simply omit analysis of the language used
in Pre => ... etc., presuming they can
handle the syntax (likely, I should think).
And some things cannot reasonably be
stated formally anyway. (I guess it
becomes apparent that maybe a combined
language turns into a combined stricture!
;-)

The makers of, respectively, GNAT and
SPARK have merged, that seems like a
start for better merging the languages;
Tucker Taft, now also at AdaCore, has
alluded to excessive restrictions in
SPARK. The definitions of SPARK had
added more of Ada over the years already
(tasks, tagged types, ...).

So, I guess, in the long run, there is no
more risk of Ada programs that suffer
from conflicting language desires than
there is now when source texts show non-
Ada 'Img and GNAT is not your Ada
compiler. ;-)

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 24 Apr 2015 18:46:27 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

Besides, Ada 2012 has a mechanism to
ensure that preconditions are in fact
evaluated; that exists for this very reason.
If you have a local Assertion_Policy of
Check, that applies to the declarations and
the precondition ought to be evaluated no
matter what policy is in effect at the point
of the call. (Whether GNAT actually gets
this right is unknown.)

Otherwise, one could not "hoist" the
various rules for I/O, containers, and the
like into preconditions. Which would
seem like madness. Certainly checking
the same thing twice (which is what
would happen if you put the condition
into the precondition and then manually

checked it a second time in the body) is
madness.

There is a camp that thinks that ignoring
contract assertions is very similar to
suppressing checks, and anything that
happens after doing that is effectively
erroneous. (That's NOT the wording in
the Standard.) For that group, hoisting
things into preconditions is fine.
Otherwise, one needs to take steps to
ensure that they're evaluated.

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Fri, 24 Apr 2015 18:26:41 -0400
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> But when are you putting "essential
program logic" in an assertion?

I think a servicable rule is this: If the
program works as required, with all
necessary checks still present, with all
assertions removed, then we can say the
assertions contain no essential program
logic.

In a correct program all assertions should
always be true.

> 1) subtype Non_Negative_Matrix is
Ada.Numerics.Real_Arrays.
Real_Matrix

> with Dynamic_Predicate

> => (Non_Negative_Matrix'First (1)
= 1) and

> (Non_Negative_Matrix'First
(2) = 1) and

> (for all E of
Non_Negative_Matrix => E >= 0.0);

Although the Dynamic_Predicate asserts
that the matrix elements are all non-
negative, this does not remove the
program's obligation to include checks
that no negative elements are added to the
matrix. The assertion only exists to catch
mistakes in those checks. It does not exist
to actually *be* those checks. In that
respect the assertion is not "essential
program logic."

> 2) procedure New_Line (File : in
File_Type)

> with Pre => Is_Open (File) and then

> Mode (File) in (Out_File |
Append_File);

Similarly here the program is still
obligated to only pass File objects to
New_Line that represent open files. If the
program accidentally passes an unopened
file to New_Line the assertion will catch
the logical error. However, the assertion
should not take the place of earlier
checks. Again the assertion is not
essential program logic.

[...]

I agree that (1) and (2) are fine, but that
doesn't mean the program should rely on
the assertions for its proper functioning.

74 Ada in Context

Volume 36, Number 2, June 2015 Ada User Journal

The assertions check correctness; they
don't implement it. Even if the assertions
are removed, the program should still
execute properly.

> [...] And if it isn't essential, why should
it be there?

Because we often make mistakes and it's
nice to have our thinking double checked.
Also, of course, the assertions make our
intentions known to tools, such as
SPARK, that can automatically verify our
code implements the conditions we are
asserting.

> [...]

Putting the check inside the subprogram is
quite a different thing. That is part of your
implementation of correctness. Since
assertions should never fail, using the
same exception for all of them isn't
terrible. That said, the upcoming feature
that allows different exceptions to be used
when an assertion fails is nice too.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 24 Apr 2015 19:13:14 -0500
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> In a correct program all assertions
should always be true.

Sure, but that applies to lots of other
things, too. For instance, in a correct
program, Constraint_Error or
Program_Error should not be raised. But
it still happens.

> [Comments to example 1 and 2.]

I definitely disagree here. This example
(2) is essentially similar to the one given
in the upcoming Corrigendum (3.2.4(41-
51/4). In a case like this, the precondition
(or predicates as in the example)
replace the checks required by English
text in the RM. There would no internal
checks of correctness.

You are of course correct that no caller
should call New_Line with a closed file,
but that's irrelevant because it can happen
anyway (there is no static way to prevent
it). There has to be code somewhere to
handle it. So, in such a case, a
precondition serves two purposes: (1) to
signal to the client what conditions are
expected, and (2) to determine what
happens if those conditions aren't met. (2)
certainly is "essential program logic", at
so far as one cannot meet the published
specification of New_Line without it.

Ada prior to Ada 2012 has a problem in
that the reasons an exception can be
raised conflate the programmer mistakes
with conditions that are impossible for the
programmer to know (consider the
difference between whether a file object is
open vs. whether a file exists on the disk).
Preconditions and predicates provide a
way to separately specify the first kind of
situation vs. the second kind. (Ultimately,

one hopes, compilers will be able to
eliminate much of the runtime checking
associated with preconditions and
predicates, which is not possible in the
pre-Ada 2012 world.)

From: Peter C. Chapin
<PChapin@vtc.vsc.edu>

Date: Fri, 24 Apr 2015 21:01:00 -0400
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] In a case like this, the precondition
(or predicates as in the example)
replace the checks required by
English text in the RM. [...]

In this case it's not the internal checks I
mean. Hoisting the internal checks into
preconditions makes sense to me, at least
in certain (many?) cases. In my comments
above I'm talking about checks occurring
before New_Line is called.

Somewhere the programmer tried to open
a file. If the programmer attempts to call
New_Line without first verifying that the
file opened successfully, that's a logical
error in the program. Checking that
Is_Open (File) is true provides some
protection against such an error...
regardless of if the check is a precondition
or done inside the body of New_Line.
Either way, in a correct program that
check should never fail. The beauty of
doing it in a precondition is that the
"unnecessary" check can be removed by
changing the assertion policy.

In contrast imagine a procedure that takes
file and does some processing on it.
Suppose the procedure raises some
exception if the file has the wrong format.
The programmer might decide that it's not
wrong to call the procedure with an
incorrectly formatted file, and let that be a
matter for the procedure to worry about.
In that case, adding the check as a
precondition doesn't seem right; a correct
program might call the procedure with a
badly formatted file.

On the other hand if the programmer
decides it's illogical to call the procedure
with an incorrectly formatted file because
the file has (supposedly) been verified
previously, using a precondition to check
the format makes sense.

Same procedure, same check... the
sensibility of making the check a
precondition depends on the context in
which the procedure is used. In the first
case the caller relies on the procedure to
do the check. In the second case the
procedure relies on the caller to do it.
Ultimately it ends up being a design
decision.

From: Bob Duff <bobduff@theworld.com>
Date: Fri, 24 Apr 2015 20:31:44 -0400
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...]

I think what Peter meant by "essential
program logic" is code that, if deleted
from the program, would cause the
program to malfunction.

> [...]

The assertions in (1) and (2) are not
"essential program logic"; if you delete
them, the program will still work
properly. That's fine -- you should write
assertions so that deleting them from a
correct program will have no effect.

[...]

> [...] But I dislike banning "essential
program logic" in assertions, as any
assertion is program logic. And if it
isn't essential, why should it be there?

Same reason we put comments in the
code. Comments are not "essential
program logic" in the sense defined above
-- if you delete all the comments, the
program will still work. But we still want
comments. Likewise, one should normally
write assertions (like Pre and Predicate)
so the program still works if they are
deleted.

Assertions are like comments, except we
have a higher confidence that they are
actually true.

> [...]

You can say:

 Pre => X = Y or else raise
 X_Not_Equal_To_Y;

From: Vincent Diemunsch
<vincent.diemunsch@gmail.com>

Date: Sat, 25 Apr 2015 05:08:32 -0700
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> [...] Assertions are like comments,
except we have a higher confidence that
they are actually true.

I agree. Assertions express logical
properties of the program. One can have a
high confidence in them for two reasons:

1. mathematical correctness according to
a given theory

2. proof that the code is coherent with the
assertion, using a tool.

But Assertions should stay as comments,
for they are not code but logical formula
expressed in a mathematical language.
They were comments in SPARK 2005
and it is still the case in Frama-C or many
formal proof systems. Hoare logic is
supposed to give "correctness by
construction": Which is the ability to
never fail on a runtime test. This is
required in safety critical systems.

But what Ada and SPARK 2014 are doing
is "design by contract", as Bertrand Meyer
called it. This makes a confusion between
a precondition and a runtime test. It may
look appealing in the beginning but it is
nothing else than a test harness put around
a subprogram. With all the problems

Ada in Context 75

Ada User Journal Volume 36, Number 2, June 2015

related to it: How to debug it? Should it
raise exceptions? It breaks the separation
between specification and implementation
etc.

Therefore, I don't think that it is the right
choice for a language that is mainly used
in safety critical systems.

From: Georg Bauhaus
<bauhaus@futureapps.de>

Date: Sat, 25 Apr 2015 18:37:13 +0200
Subject: Re: {Pre,Post}conditions and side

effects
Newsgroups: comp.lang.ada

> But what Ada and SPARK 2014 are
doing is "design by contract", as
Bertrand Meyer called it. This makes a
confusion between a precondition and a
runtime test.

Actually, Meyer insists that contracts
have an associated notion, that of proof
obligation. And the description of DbC is
declaring quite openly that not needing to
perform run-time tests (e.g. defensive
programming) is a design goal.

What you get in the lesser (than some
fancy ideal) situation is summarized in a
table of OOSC2, §11.6 (coincidence? ;-),
for a stack:

 Put OBLIGATIONS BENEFITS

Client satisfy Pre=>... from Post=>...

Only call Put(X) on Get stack updated:
not a non-full stack. Empty, X on top,
Item yields X, Count increased by 1.

Supplier satisfy Post=>... from Pre=>...

Update stack reprsntn Simpler processing
thanks to have X on top (Item to the
assumption that yields X), Count
stack is not full.
 increased by 1, not
 Empty.

Looking at SPARK 2014, it seems to not
have changed earlier SPARK WRT being
a tool for analysis before run-time.

Ada, OTOH, looks like becoming a
programming language facilitating either
type of checking, as before, but more
extensively and more formally, and more
of it to write for the programmer.

Debug “Macros”

From: Brad Moore
<brad.moore@shaw.ca>

Date: Tue, 30 Dec 2014 13:07:41 -0700
Subject: Re: Any Suggestion How To

Accomplish A Debug Macro?
Newsgroups: comp.lang.ada

> [...] isn't there a way to make some sort
of debug macro? [...] without
surrounding it with an if statement and
a Boolean flag?

[...] declare a static constant somewhere,
and use the value of that constant to
decide if logging should occur. If the
compiler/linker supports dead code
elimination, then the debug code can be

eliminated if that variable is set to False.

Eg.

 package Debug_Logging is
 Debug_Enabled : constant Boolean :=
 False; -- Edit this line
 procedure Log (Message : String);
 end Debug_Logging;

 with Debug_Logging;
 procedure Foo is
 begin
 -- if statement removed if
 -- Debug_Enabled is false
 if Debug_Enabled then
 Log ("Entered Foo");
 end if;
 end Foo;

This works in GNAT, and might work in
other compilers as well. Worst case is that
the Debug_Enabled Boolean get
evaluated in multiple places, but that
overhead of evaluating a Boolean might
still be acceptable for a compiler that
doesn't do dead code elimination.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Tue, 30 Dec 2014 16:11:56 -0600
Subject: Re: Any Suggestion How To

Accomplish A Debug Macro?
Newsgroups: comp.lang.ada

> [...]

That's of course the Ada way. What's the
point of avoiding the Ada way here?
Everything in Ada is more verbose than C
-- some of us think that's the advantage of
Ada (more for readability than
writability).

[...]

I usually make these flags more complex
(like an array of constants) so that various
sets of tracing can be enabled in order to
track whatever is wrong.

Indeed, in most of my programs, I use a
flag set at runtime (controlled either
through the GUI or through command-
line switches. In that case, the code is
always there (but a Boolean test is cheap),
but that means I don't have to waste time
with a compile-link-test-repeat cycle to
trace a problem. (I admit, it's often
necessary to add additional tracing to
actually find the root cause, but the initial
tracing at least can narrow it down
quickly.)

> [...]

I think that the set of compilers that don't
do dead code elimination is close to the
empty set. (That was pretty much the first
optimisation we did in Janus/Ada, even
before we had packages or floating point.)
Whether the dead code elimination can
get rid of everything (it won't get rid of
string literals in Janus/Ada, for instance)
is a different question.

But I don't think there is much reason
(outside of the memory-constrained
embedded system, or the system that has

to be formally proved or validated) to
ever removing the tracing. It's important
to be able to turn it off, of course, but the
runtime cost of it being off is so minimal
(primarily caching/paging effects) that
removing it isn't worth the effort. (And if
you plan to keep it around forever, you'll
spend more time making the traces make
sense in the future -- which typically pays
off very quickly.)

From: Jean-Pierre Rosen
<rosen@adalog.fr>

Date: Fri, 02 Jan 2015 21:37:47 +0100
Subject: Re: Any Suggestion How To

Accomplish A Debug Macro?
Newsgroups: comp.lang.ada

> But I don't think there is much reason
[...] to ever removing the tracing. [...]

I fully agree with that.

In AdaControl, there is a sophisticated
tracing capability, and it's enabled with a
command line option. If a user has a
problem, he just has to rerun the program
with -x and send me the output - that's
usually enough to identify the problem. I
can't tell how much time it saved me. And
since AdaControl spends about 65% of its
time in ASIS, the cost of testing a
Boolean is negligible.

Expression Functions in
Protected Types

From: Simon Wright
<simon@pushface.org>

Date: Tue, 20 Jan 2015 22:34:53 +0000
Subject: Use of expression function in

protected type
Newsgroups: comp.lang.ada

Is it permissible to use an expression
function as the completion of a protected
function? (GNAT thinks so).

 protected Button is
 function Current_Index
 return Interval_Index;
 private
 Index : Interval_Index := 0;
 procedure Handler;
 pragma Attach_Handler (Handler,
 Ada.Interrupts.Names.EXTI0_IRQ);
 end Button;
and then
 protected body Button is
 function Current_Index return
Interval_Index is (Index); -- <<<<<<<<
 procedure Handler is
 begin
 HAL_GPIO_EXTI_IRQHandler (
 16#0001#);
 Index := Index + 1;
 end Handler;
 end Button;

ARM 6.1(30) distinguishes an
expression_function_declaration from a
subprogram_declaration.

6.8(4) allows an
expression_function_declaration to be a
completion.

76 Ada in Context

Volume 36, Number 2, June 2015 Ada User Journal

9.4(8) says a protected_operation_item
can be, inter alia, a
subprogram_declaration or a subprogram
body. (Subprogram_declaration? How can
that be?)

From: Egil Harald Høvik
<ehh.public@gmail.com>

Date: Wed, 21 Jan 2015 00:35:51 -0800
Subject: Re: Use of expression function in

protected type
Newsgroups: comp.lang.ada

> [...]

Just like a package can have subprograms
declared in the public part, private part or
the body, protected subprograms can be
declared in the public part, private part or
body of a protected type. (For example,
it's not uncommon for a barrier function
to be declared in the body.)

And just like in a package body, forward
declarations (or subprogram_declarations)
are allowed for subprograms.

However, an expression_function is
allowed to complete a
subprogram_declaration, but is not itself a
subprogram_declaration (ARM 6.1(30/3).
As far as I can tell, it's a
basic_declaration, which is allowed in
package specifications and bodies, but not
in protected_operation_items.

From: Simon Wright
<simon@pushface.org>

Date: Wed, 21 Jan 2015 09:15:01 +0000
Subject: Re: Use of expression function in

protected type
Newsgroups: comp.lang.ada

> [...]

One lives and learns! I've never had
occasion to write a barrier _function_; my
most complex barrier was:

 when A
 or else not B
 or else (C and then not (D and then E))

> [...] but not in
protected_operation_items.

That was my reading, but I wondered
whether it was deliberate, an oversight, or
I'd missed something.

The context was Emacs ada-mode, whose
indentation engine is built on a parser,
which follows the ARM.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 21 Jan 2015 14:44:40 -0600
Subject: Re: Use of expression function in

protected type
Newsgroups: comp.lang.ada

> [...]

> That was my reading, but I wondered
whether it was deliberate, an oversight,
or I'd missed something.

Certainly not deliberate, I'm pretty sure no
one ever considered it. We will now (I've
forwarded a version of your message to
Ada-Comment).

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 21 Jan 2015 20:50:40 -0600
Subject: Re: Use of expression function in

protected type
Newsgroups: comp.lang.ada

> [...]

Early returns are that it is an oversight.
It'll be on the agenda for next week's
ARG phone call, and quite possibly it will
get included in the upcoming
Corrigendum. If so, it probably will be
close to the fastest official Ada fix ever...

Preventing Errors

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Fri, 23 Jan 2015 15:26:55 -0600
Subject: Re: Strange error
Newsgroups: comp.lang.ada

> [...] How do you professionals prevent
such stupid errors? [...]

You don't (or at least, I don't). I seem to
write loops that don't loop (forgot the P :=
P.Next) all the time.

Probably the only real difference is that
we're used to questioning everything: If
faced with a Reverse_Print routine not
working, we'd be quicker to consider that
the input might not be correct. (Indeed, I'd
probably start with that assumption,
because the display routine is so simple.)
But there is no certainty that we'll look in
the right place.

That's, of course, one of the reasons we're
interested in Ada, because it's possible to
move more mistakes to compile-time
checks. Bugs detected by a compile-time
check never need to be debugged from
results that might be hard to reproduce.
(And as well, Ada lets us more easily put
in runtime checks, which prevent
problems from lingering.)

From: Bob Duff <bobduff@theworld.com>
Date: Fri, 23 Jan 2015 20:34:04 -0500
Subject: Re: Strange error
Newsgroups: comp.lang.ada

> [...]

"don't loop"? That loops too much. ;-)

I tend to write the boilerplate first:

 while P /= null loop
 P := P.Next;
 end loop;

Then go back and fill in the body of the
loop. So I don't usually make that
particular mistake. Anyway, I think
GNAT will give a warning about that.

But in Ada 2012, we have iterators, which
largely solves the problem. Put all your
eggs in one basket, and if the iterator
works, then all the myriad "for" loops
around the code will work.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Mon, 26 Jan 2015 15:44:33 -0600

Subject: Re: Strange error
Newsgroups: comp.lang.ada

> [...] boilerplate first [...]

I sometimes do that, but sometimes I'm so
focused on the important stuff (the body
of the loop) that I forget the structure.

> Anyway, I think GNAT will give a
warning about that.

It certainly gives warnings on loops that
aren't a problem. :-) I've never seen one
on a loop that is a problem, but then
again, most of my code was written using
another compiler first, so most of the
gross errors have already been removed.

> But in Ada 2012, we have iterators, [...]

Yeah, but that would mean finding time to
implement them in my favourite compiler.
:-)

From: Bob Duff <bobduff@theworld.com>
Date: Fri, 23 Jan 2015 19:47:16 -0500
Subject: Re: Strange error
Newsgroups: comp.lang.ada

> [...] How do you professionals prevent
such stupid errors? [...]

One way is to use
Ada.Containers.Doubly_Linked_Lists.
But that won't work for you, because
you're not trying to use doubly-linked
lists, you're trying to learn how to
implement them. Which is something
programmers should know how to do.

So draw a doubly-linked list on paper,
with circles and arrows. Go through each
procedure and "execute" it by hand,
erasing the arrows and drawing new ones.
Take care to execute what you wrote, not
what you meant to write. Bugs like the
one mentioned will usually become
obvious.

Bounded Vectors, Reference
Types, and the Secondary
Stack

From: Simon Wright
<simon@pushface.org>

Date: Sun, 15 Feb 2015 16:21:43 +0000
Subject: [Bounded] Vectors, reference

types, and the secondary stack
Newsgroups: comp.lang.ada

It turns out that (GCC 4.9.1) that if you
have

package Interval_Containers
 is new Ada.Containers.Bounded_Vectors
 (Index_Type => Natural,
 Element_Type =>
 Ada.Real_Time.Time_Span,
 "=" => Ada.Real_Time."=");
 Intervals : Interval_Containers.Vector (5);

and then
 Intervals.Insert_Space (0, 5);
 Intervals (0) := Ada.Real_Time.Milliseconds
(50);

then

Ada in Context 77

Ada User Journal Volume 36, Number 2, June 2015

 function Reference
 (Container : aliased in out Vector;
 Index : Index_Type) return
 Reference_Type;

returns its result on the secondary stack!

Why would it need to do that? given the
(private) definition

 type Reference_Type
 (Element : not null access
 Element_Type) is null record;

You ask why I would care. Well, in my
STM32F4 RTS the environment task, in
which elaboration happens, isn't actually a
task, and doesn't (yet) have a secondary
stack.

The reason it's not a task is that the way to
kick off the FreeRTOS scheduler is to call
FreeRTOS.Tasks.Start_Scheduler (aka
vTaskStartScheduler()), which doesn't
return unless the scheduler can't be
started; and I haven't found a way to get
this behaviour into the start-up code
generated by gnatbind, so the poor user
has to call it at the end of their main
program.

Story of a GNAT Bug

From: Tero Koskinen
<tero.koskinen@iki.fi>

Date: Wed, 25 Mar 2015 22:02:24 +0200
Subject: Story of one GNAT bug
Newsgroups: comp.lang.ada

In the past AdaCore has not been that
active fixing GNAT bugs so that they are
fixed in FSF GCC also. But recently I had
totally opposite experience, so I wanted to
share the story of my bug.

January 15, 2015, I noticed that ICCAda
was rejecting YAMI4-GPL-1.10.0 code
with following error:

"yami-parameters.ads", line 808: Error:
Private extension has LIMITED keyword,
but full type does not. [RM 7.3(10.1)]

After little discussion with Irvine/ICCAda
support, I ended up making following test
case:

 -- my_limited.ads
 package My_Limited is
 type My_Limited_Type is tagged limited
 private;
 private

 type My_Limited_Type is tagged limited
 record
 X : Integer;
 end record;
 end My_limited;

 -- my_limited_2.ads
 with My_Limited;

 package My_Limited_2 is
 type My_Limited_Type_2 is limited new
 My_Limited.My_Limited_Type
 with private;
 private

 type My_Limited_Type_2 is new
 My_Limited.My_Limited_Type with
 record -- this line should have error
 Y : Integer;
 end record;
 end My_Limited_2;
 -- END of testcase

All tested GNAT versions, including
GNAT GPL 2014 accepted the code, so
clearly GNAT did not have check for RM
7.3(10.1).

A GNAT Pro owner from #Ada IRC
channel confirmed that the bug was
present also in GNAT Pro.

Next day (Jan 16), I reported the bug to
AdaCore via
http://libre.adacore.com/contact/ and it
got ID "O116-026 public".

On Feb 5, the fix was pushed to GCC
repositories with following changelog
entry:

> 2015-02-05 Ed Schonberg
<schonberg@adacore.com>

> * sem_ch3.adb (Process_Full_View):
Verify that the full view

> of a type extension must carry an
explicit limited keyword if

> the partial view does (RM 7.3 (10.1)).

The commit itself is visible at:

https://github.com/gcc-mirror/gcc/
commit/31831d39bf4840761c92c9fad5ab
f29b4feb7b50

So, it took about 3 weeks from the report
to have the fix in FSF GCC also.

A week later (Feb 12), I talked to ACAA
technical agent about the bug and
possibility to add B test for the bug to
ACATS. Irvine support people were kept
in the loop and they found out some extra
time to do the actual test and send it to the
technical agent.

The test was accepted and is visible at

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/acats/new/b730010.a?rev=1.1

On March 19, the ACAA technical agent
announced ACATS modification list 4.0E
and one of the modifications was:

> New test B730010 checks that
7.3(10.1/3) is enforced.

As a result, from now on this bug should
be impossible to happen in any Ada
compiler.

One should also note how important it is
to have multiple Ada compiler
implementations (and to have possibility
to use multiple of them for the same
source code). Without ICCAda checking
this, the bug could have been hiding in
GNAT for a long time.

PS. I didn't report this to YAMI4 author.
The source code had also some other
issues and I ran out of free time for a
proper bug report.

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Wed, 25 Mar 2015 16:07:11 -0500
Subject: Re: Story of one GNAT bug
Newsgroups: comp.lang.ada

> [...]

You left out one step here. It turns that not
only did GNAT not check the rule in
question, but also that there was an
ACATS test which expected it to be legal.
(That probably happened in part because
the test was checking a different rule in
7.3, and using GNAT to check whether it
was correct did not turn up the violation
of 7.3(10.1/3).)

It's also strange that there wasn't a test for
that rule; I thought I had checked all of
the new (since Ada 95) rules in 7.3 and
that obviously wasn't true. But now it is.

Dynamic Memory
Management

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 9 Apr 2015 18:49:40 -0500
Subject: Re: BDD package in Ada.
Newsgroups: comp.lang.ada

[...] Ada provides at least 5 ways to
manage dynamic memory:

(1) Stack

(2) Container

(3) Controlled types (as in Smart Pointers)

(4) Subpools (perhaps "semi-manual")

(5) Traditional allocate/deallocate

There's nothing "manual" about the first
three from the perspective of a client
(programmer). GC proponents complain
about the work to create things like (1),
(2), and (3) -- but there is no work for
Ada programmers when you are using
language capabilities or widely available
libraries. Most people shouldn't be
creating containers -- there's no point,
you'll have a hard time doing better than
the language-defined ones, and your time
could be better used doing something
else.

Stand-Alone or In-Compiler
Provers

From: Randy Brukardt
<randy@rrsoftware.com>

Date: Thu, 9 Apr 2015 18:26:53 -0500
Subject: Re: Languages don't matter. A

mathematical refutation
Newsgroups: comp.lang.ada

[...]

In any event, I think the proof stuff has to
be an intergral part of the compiler,
because it seriously effects the code that
gets generated. (If, after all, you can
prove F(X) = 10 is True, you can replace
F(X) with 10 appropriately. That can be
huge win in runtime, especially in things
like the preconditions of Ada.)

78

Volume 36, Number 2, June 2015 Ada User Journal

Conference Calendar
Dirk Craeynest
KU Leuven. Email: Dirk.Craeynest@cs.kuleuven.be

This is a list of European and large, worldwide events that may be of interest to the Ada community. Further information on
items marked is available in the Forthcoming Events section of the Journal. Items in larger font denote events with specific
Ada focus. Items marked with denote events with close relation to Ada.

The information in this section is extracted from the on-line Conferences and events for the international Ada community at:
http://www.cs.kuleuven.be/~dirk/ada-belgium/events/list.html on the Ada-Belgium Web site. These pages contain full
announcements, calls for papers, calls for participation, programs, URLs, etc. and are updated regularly.

2015

July 01-05 39th Annual IEEE International Computer Software and Applications Conference

(COMPSAC'2015), Taichung, Taiwan. Event includes: symposium on Embedded & Cyber-Physical
Environments; symposium on Software Engineering Technologies & Applications; symposium on
Security, Privacy and Trust Computing; symposium on Novel Applications and Technology Advances
in Computing; symposium on Computer Education and Learning Technologies; etc.

July 06-07 20th Annual Conference on Innovation and Technology in Computer Science Education
(ITiCSE'2015), Vilnius, Lithuania.

 July 06-10 29th European Conference on Object-Oriented Programming (ECOOP'2015), Prague, Czech
Republic. Topics include: all areas of object technology and related software development technologies,
such as concurrent and parallel systems, distributed computing, programming environments, versioning,
refactoring, software evolution, language definition and design, language implementation, compiler
construction, design methods, design patterns, aspects, components, modularity, type systems, program
analysis, specification, verification, security, real-time systems, etc.

 July 06 10th Workshop on Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems (ICOOOLPS'2015}. Topics include:
implementation of fundamental OO and OO-like features (e.g. inheritance, parametric
types, memory management, objects, prototypes), runtime systems (e.g. compilers,
linkers, virtual machines, garbage collectors), optimizations (e.g. static or dynamic
analyses, adaptive virtual machines), resource constraints (e.g. time for real-time
systems, space or low-power for embedded systems) and relevant choices and tradeoffs
(e.g. constant time vs. non-constant time mechanisms, separate compilation vs. global
compilation, dynamic loading vs. global linking, dynamic checking vs. proof-carrying
code).

 July 07-10 27th Euromicro Conference on Real-Time Systems (ECRTS'2015), Lund, Sweden. Topics include:
all aspects of real-time systems, such as embedded/RT systems design, scheduling design and analysis,
WCET analysis, RT operating systems and middlewares, mixed criticality design & assurance, RT
applications, tools and compilers for embedded systems, etc.

July 13-16 10th IEEE International Conference on Global Software Engineering (ICGSE'2015), Ciudad Real,
Spain. Theme: "Solutions for distributed product development and maintenance". Topics include:
software design and architecture for distributed development, strategic issues in distributed
development, industrial offshoring and outsourcing experiences, tools and infrastructure support for
distributed teams, methods and processes for global organizations, etc.

July 18-24 27th International Conference on Computer Aided Verification (CAV'2015), San Francisco,
California, USA. Topics include: theory and practice of computer-aided formal analysis methods for
hardware and software systems, algorithms and tools for verifying models and implementations,
program analysis and software verification, verification methods for parallel and concurrent
hardware/software systems, testing and run-time analysis based on verification technology, applications

Conference Calendar 79

Ada User Journal Volume 36, Number 2, June 2015

and case studies in verification, verification in industrial practice, verification techniques for security,
etc.

July 18-19 7th Working Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE'2015). Topics include: education, specification languages,
specification/verification case-studies, software design methods, automatic code
generation, verification tools (e.g., static analysis, dynamic analysis, model checking,
theorem proving, satisfiability), tool integration, integrated verification environments,
etc.

July 20-24 Software Technologies: Applications and Foundations (STAF'2015), L'Aquila, Italy. Successor of
the TOOLS federated event. Topics include: practical and foundational advances in software
technology, from object-oriented design, testing, mathematical approaches to modelling and
verification, transformation, model-driven engineering, aspect-oriented techniques, and tools.

July 20-24 9th International Conference on Tests And Proofs (TAP'2015). Topics include: the
synergy of proofs and tests, to the application of techniques from both sides and their
combination for the advancement of software quality; transfer of concepts from testing
to proving (e.g., coverage criteria) and from proving to testing; program proving with
the aid of testing techniques; verification and testing techniques combining proofs and
tests; generation of test data, oracles, or preambles by deductive techniques; automatic
bug finding; case studies combining tests and proofs; formal frameworks; tool
descriptions and experience reports; etc.

July 21-23 34th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC'2015), Donostia-San Sebastián, Spain.

August 03-05 IEEE International Conference on Software Quality, Reliability and Security (QRS'2015),
Vancouver, Canada. Merger of SERE conference (International Conference on Software Security and
Reliability) and QSIC conference (International Conference on Quality Software). Topics include:
reliability, security, availability, and safety of software systems; software testing, verification and
validation; software vulnerabilities; formal methods; benchmark, tools, and empirical studies; etc.

 August 20-22 13th IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA'2015), Helsinki, Finland. Topics include: parallel and distributed algorithms; tools/environments
for parallel/distributed software development; novel parallel programming paradigms; code generation
and optimization; compilers for parallel computers; middleware and tools; scheduling and resource
management; reliability, fault tolerance, dependability, and security; parallel and distributed systems and
architectures; applications of parallel and distributed processing; high-performance scientific and
engineering computing; etc.

August 24-26 17th IEEE International Conference on High Performance Computing and Communications
(HPCC'2015), New York, USA. Topics include: languages and compilers for high performance
computing, parallel and distributed software technologies, parallel and distributed algorithms, embedded
systems, tools and environments for software development, distributed systems and applications, high-
performance scientific and engineering computing, reliability and fault-tolerance, trust, security, etc.

 August 24-28 21st International European Conference on Parallel Computing (Euro-Par'2015), Vienna, Austria.
Topics include: all aspects of parallel and distributed processing, such as support tools and
environments, scheduling, compilers, distributed systems and algorithms, parallel and distributed
programming and languages, multicore and manycore programming, theory and algorithms for parallel
computation, etc.

August 26-28 41st Euromicro Conference on Software Engineering and Advanced Applications (SEAA'2015),
Madeira, Portugal. Topics include: information technology for software-intensive systems; model-based
development, components and services (MOCS); software process and product improvement (SPPI);
embedded software engineering (ESE); cyber-physical systems (CPS); etc.

Aug 31 – Sep 09 10th Joint European Meeting of the Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE'2015), Bergamo, Italy. Topics
include: components and middleware, development environments and tools, distributed software,
embedded and real-time software, maintenance and evolution, model-driven software engineering,
parallel and concurrent software, reverse- and re-engineering, software architecture, software
economics, validation, verification, and testing, etc.

80 Conference Calendar

Volume 36, Number 2, June 2015 Ada User Journal

 Sep 01-04 International Conference on Parallel Computing 2015 (ParCo'2015), Edinburgh, Scotland, UK.
Topics include: all aspects of parallel computing, including applications, hardware and software
technologies as well as languages and development environments, in particular parallel programming
languages, compilers, and environments, tools and techniques for generating reliable and efficient
parallel code, testing and debugging techniques and tools, best practices of parallel computing on
multicore, manycore, and stream processors, etc.

 Sep 01-04 44th Annual International Conference on Parallel Processing (ICPP'2015), Beijing, China. Topics
include: all aspects of parallel and distributed computing, such as applications, architectures, compilers,
programming models, etc.

 Sep 01-04 International Workshop on Embedded Multicore Systems (EMS'2015). Topics
include: programming models for embedded multicore systems; software for multicore,
GPU, and embedded architectures; real-time system designs for embedded multicore
environments; applications for automobile electronics of multicore designs; compiler for
worst-case execution time analysis; formal method for embedded systems; etc.

September 01-04 15th Workshop on Automated Verification of Critical Systems (AVoCS'2015), Edinburgh, Scotland,
UK. Topics include: model checking, specification and refinement, verification of software and
hardware, specification and verification of fault tolerance and resilience, real-time systems, dependable
systems, verified system development, industrial applications, etc. Deadline for submissions: August 7,
2015 (research ideas). Deadline for early registration: August 18, 2015.

September 06-09 11th International Conference on Parallel Processing and Applied Mathematics (PPAM'2015),
Krakow, Poland. Topics include: multi-core and many-core parallel computing; parallel/distributed
algorithms (numerical and non-numerical); scheduling, mapping, load balancing; parallel/distributed
programming; tools and environments for parallel/distributed computing; security and dependability in
parallel/distributed environments; applications of parallel/distributed computing; etc.

 Sep 06-09 6th Workshop on Language-Based Parallel Programming Models (WLPP'2015).
Topics include: language and library implementations; proposals for, and evaluation of,
language extensions; applications development experiences; comparisons between
programming models; compiler implementation and optimization; etc.

September 07-08 7th International Workshop on Software Engineering for Resilient Systems (SERENE'2015), Paris,
France. Topics include: requirements engineering & re-engineering for resilience; frameworks, patterns
and software architectures for resilience; design of trustworthy systems; verification, validation and
evaluation of resilience; empirical studies in the domain of resilient systems; methodologies adopted in
industrial contexts; etc.

September 07-11 13th International Conference on Software Engineering and Formal Methods (SEFM'2015), York,
UK. Topics include: abstraction and refinement; programming languages, program analysis and type
theory; formal methods for real-time, hybrid and embedded/cyber-physical systems; formal methods for
safety-critical, fault-tolerant and secure systems; software verification and validation; formal aspects of
software evolution and maintenance; light-weight and scalable formal methods; tool integration;
applications of formal methods, industrial case studies and technology transfer; education and formal
methods; etc.

September 07-11 11th European Dependable Computing Conference (EDCC'2015), Paris, France. Topics include:
theory, techniques, systems, and tools for the design, validation, operation and evaluation of dependable
and secure computing systems, covering any fault model, from traditional hardware and software faults
to accidental and malicious human interactions; dependability in practice (industrial applications,
experience in introducing dependability in industry, use of new or mature dependability approaches to
new challenging problems or domains, ...); hardware and software architectures of dependable and
secure systems; safety critical systems; embedded and real-time systems; cyber-physical systems (e.g.
networked embedded systems; automotive, aerospace, and medical systems); impact of manufacturing
technology on dependability; verification and validation methods (e.g. testing and model checking);
security of systems and networks; dependability and security in business and e-commerce applications;
etc.

September 13-16 Federated Conference on Computer Science and Information Systems (FedCSIS'2015), Lodz,
Poland.

Conference Calendar 81

Ada User Journal Volume 36, Number 2, June 2015

 Sep 13-16 5th Workshop on Advances in Programming Languages (WAPL'2015). Topics
include: compiling techniques; domain-specific languages; generative and generic
programming; languages and tools for trustworthy computing; language concepts,
design and implementation; model-driven engineering languages and systems; practical
experiences with programming languages; program analysis, optimization and
verification; programming tools and environments; specification languages; type
systems; etc. Deadline for early registration: July 1, 2015.

Sep 13-16 8th Workshop on Computer Aspects of Numerical Algorithms (CANA'2015).
Topics include: parallel numerical algorithms; libraries for numerical computations;
languages, tools and environments for programming numerical algorithms; paradigms of
programming numerical algorithms; etc.

September 15-17 14th International Conference on Intelligent Software Methodologies, Tools and Techniques
(SoMeT'2015), Naples, Italy. Topics include: software methodologies and tools for robust, reliable, non-
fragile software design; software developments techniques and legacy systems; software evolution
techniques; agile software and lean methods; formal methods for software design; software
maintenance; software security tools and techniques; formal techniques for software representation,
software testing and validation; software reliability and software diagnosis systems; model driven
development (DVD), code centric to model centric software engineering; etc.

September 22-25 15th International Conference on Runtime Verification (RV'2015), Vienna, Austria. Topics include:
monitoring and analysis of software and hardware system executions. Application areas include:
safety/mission-critical systems, enterprise and systems software, autonomous and reactive control
systems, health management and diagnosis systems, and system security and privacy.

September 27-28 15th IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM'2015), Bremen, Germany. Topics include: program transformation and refactoring, static and
dynamic analysis, source level source metrics, security vulnerability analysis, source-level verification,
program comprehension, bad smell detection, abstract interpretation, etc. Deadline for submissions: July
3, 2015 (tool papers).

September 27-30 15th International Conference on Formal Methods in Computer-Aided Design (FMCAD'2015),
Austin, Texas, USA. Topics include: theory and application of formal methods in computer-aided
design and verification of computer systems and related topics; synthesis and compilation for computer
system descriptions, modeling, specification, and implementation languages; model-based design;
correct-by-construction methods; experience with the application of formal and semi-formal methods to
industrial-scale designs; etc.

Sep 28 – Oct 10 34th International Symposium on Reliable Distributed Systems (SRDS'2015), Montreal, Canada.
Topics include: distributed objects and middleware systems, experimental or analytical evaluations of
dependable distributed systems, formal methods and foundations for dependable distributed computing,
high-assurance and safety-critical distributed system design and evaluation, secure and trusted
distributed systems, dependability in cyberphysical systems, etc.

Sep 28 – Oct 10 24th Australasian Software Engineering Conference (ASWEC'2015), Adelaide, Australia. Theme:
"Engineering Software for Innovation, Security, and Sustainability". Topics include: empirical research
in software engineering; formal methods; large-scale distributed software engineering; legacy systems
and software maintenance; model driven engineering; object and component-based software
engineering; open source software development; programming languages; quality assurance; real-time
and embedded software; software architecture; software design and patterns; software engineering
education; software processes and quality; software re-use and product development; software reverse
engineering; software risk management; software security, safety and reliability; software verification
and validation; software vulnerabilities; standards; analysis and verification; etc. Deadline for
submissions: July 3, 2015 (short research papers), July 26, 2015 (Doctoral Symposium papers).

Sep 29 – Oct 10 31st International Conference on Software Maintenance and Evolution (ICSME'2015), Bremen,
Germany. Topics include: reverse engineering and re-engineering, software refactoring and
restructuring, software migration and renovation, software and system comprehension, software
repository analysis and mining, software testing, maintenance and evolution processes, software quality
assessment, etc.

82 Conference Calendar

Volume 36, Number 2, June 2015 Ada User Journal

October 08 5th International Workshop on Design, Modeling and Evaluation of Cyber Physical Systems
(CyPhy'2015), Amsterdam, the Netherlands. Topics include: development of industrial or research-
oriented cyber-physical systems in domains such as robotics, smart systems (homes, vehicles,
buildings), medical and healthcare devices, future generation networks; comparisons of state of the art
tools in industrial practice; etc.

October 12-14 17th International System Design Languages Forum (SDL'2015), Berlin, Germany. Topics include:
industrial application reports (industrial usage reports, standardization activities, tool support and
frameworks, domain-specific applicability such as telecommunications, aerospace, automotive, control,
...), model-driven development, evolution of development languages (domain-specific language profiles
especially for dependability, modular language design, semantics and evaluation, methodology for
application, ...), etc.

October 12-15 13th International Symposium on Automated Technology for Verification and Analysis
(ATVA'2015), Shanghai, China. Topics include: program analysis and software verification; analytical
techniques for safety, security, and dependability; testing and runtime analysis based on verification
technology; analysis and verification of parallel and concurrent hardware/software systems; verification
in industrial practice; applications and case studies; etc.

October 12-15 27th Annual IEEE Software Technology Conference (STC'2015), Long Beach, California, USA.
Topics include: critical infrastructure challenges, agile/lean development, affordability, open source,
systems engineering challenges for software-intensive systems, etc.

 Oct 18-21 24th International Conference on Parallel Architectures and Compilation Techniques
(PACT'2015), San Francisco, California, USA. Topics include: parallel architectures and computational
models; compilers and tools for parallel computer systems; middleware and run time system support for
parallel computing; support for correctness in concurrent hardware and software; parallel programming
languages, algorithms and applications; applications and experimental systems studies; etc. Deadline for
submissions: August 10, 2015 (ACM Student Research Competition).

October 21-23 18th IEEE International Conference on Computational Science and Engineering (CSE'2015), Porto,
Portugal. Includes tracks on: scientific and engineering computing; CSE education; embedded and
ubiquitous computing; security, privacy and trust; distributed and parallel computing; dependable,
reliable and autonomic computing; etc.

 Oct 21 Workshop on Exascale Multi/many Core Computing Systems (MuCoCoS'2015).
Topics include: methods and tools for preparing applications for exascale; programming
models, languages, libraries and compilation techniques; run-time systems; etc.
Deadline for registration: September 4, 2015.

October 25-27 ACM SIGPLAN 8th International Conference on Software Language Engineering (SLE'2015),
Pittsburgh, Pennsylvania, USA. Topics include: techniques for software language reuse, evolution and
management of variations (syntactic/semantic) within language families; applications of DSLs for
different purposes (incl. modeling, simulating, generation, description, checking); novel applications
and/or empirical studies on any aspect of SLE (development, use, deployment, and maintenance of
software languages); etc.

 Oct 25-30 ACM Conference on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH'2015), Pittsburgh, Pennsylvania, USA. Topics include: all aspects of software
construction and delivery, at the intersection of programming, languages, and software engineering.
Deadline for submissions: August 7, 2015 (student volunteers). Deadline for early registration:
September 25, 2015.

November 02-05 26th IEEE International Symposium on Software Reliability Engineering (ISSRE'2015),
Washington DC, USA. Topics include: reliability, availability, and safety of software systems;
verification and validation; software quality; software security; dependability, fault tolerance,
survivability, and resilience of software systems; systems (hardware + software) reliability engineering;
etc.

November 03-06 17th International Conference on Formal Engineering Methods (ICFEM'2015), Paris, France.
Topics include: abstraction and refinement; program analysis; software verification; software model
checking; formal methods for object and component systems, concurrent and real-time systems, cyber-
physical systems, for software safety, security, reliability and dependability; tool development,

Conference Calendar 83

Ada User Journal Volume 36, Number 2, June 2015

integration and experiments involving verified systems; formal methods used in certifying products
under international standards; formal model-based development and code generation; etc.

November 04-06 Symposium on Dependable Software Engineering: Theories, Tools and Applications
(SETTA'2015), Nanjing, China. Topics include: formalisms for modeling, design and implementation;
model checking, theorem proving, and decision procedures; scalable approaches to formal system
analysis; integration of formal methods into software engineering practice; contract-based engineering
of components, systems, and systems of systems; formal and engineering aspects of software evolution
and maintenance; parallel and multicore programming; embedded, real-time, hybrid, and cyber-physical
systems; mixed-critical applications and systems; safety, reliability, robustness, and fault-tolerance;
applications and industrial experience reports; tool integration; etc.

 November 05 High Integrity Software 2015 (HIS'2015), Bristol, UK. Sponsored by AdaCore and Altran.

November 15-20 10th International Conference on Software Engineering Advances (ICSEA'2015), Barcelona, Spain.
Topics include: advances in fundamentals for software development; advanced mechanisms for software
development; advanced design tools for developing software; software security, privacy, safeness;
specialized software advanced applications; open source software; agile software techniques; software
deployment and maintenance; software engineering techniques, metrics, and formalisms; software
economics, adoption, and education; improving productivity in research on software engineering; etc.

November 18-20 21st IEEE Pacific Rim International Symposium on Dependable Computing (PRDC'2015),
Zhangjiajie, China. Topics include: software and hardware reliability, testing, verification, and
validation; dependability measurement, modeling, evaluation, and tools; software aging and
rejuvenation; safety-critical systems and software; dependability issues in distributed and parallel
systems, in real-time systems, in aerospace and embedded systems, in cyber-physical systems, ...; etc.
Deadline for submissions: July 22, 2015 (fast abstracts, industry track), August 20, 2015 (posters).

Nov 30 - Dec 12 13th Asian Symposium on Programming Languages and Systems (APLAS'2015), Pohang, Korea.
Topics include: foundational and practical issues in programming languages and systems, such as
semantics, design of languages and type systems, domain-specific languages, compilers, interpreters,
abstract machines, program analysis, verification, model-checking, software security, concurrency and
parallelism, tools and environments for programming and implementation, etc.

December 01-04 22nd Asia-Pacific Software Engineering Conference (APSEC'2015), New Delhi, India. Theme:
"Software Process and Product Engineering". Topics include: embedded real-time systems; formal
methods; product-line software engineering; SE environments and tools; security, reliability, and
privacy; software architecture and design; software engineering methods; software maintenance and
evolution; software process and standards; testing, verification, and validation; etc. Deadline for
submissions: July 6, 2015 (regular research papers), July 31, 2015 (workshops, tutorials, post graduate
symposium papers).

December 02-04 16th International Conference on Product Focused Software Process Improvement
(PROFES'2015), Bolzano-Bozen, Italy. Topics include: software engineering techniques, methods, and
technologies for product-focused software development and process improvement as well as their
practical application in industrial settings.

December 08-11 16th ACM/IFIP/USENIX International Middleware Conference (Middleware'2015), Vancouver,
Canada. Topics include: design, implementation, deployment, and evaluation of distributed system
platforms and architectures for computing, storage, and communication environments; reliability and
fault-tolerance; real-time solutions; scalability and performance; programming frameworks, parallel
programming, and design methodologies for middleware; methodologies and tools for middleware
design, implementation, verification, and evaluation; retrospective reviews of middleware paradigms;
etc.

December 09-12 20th International Conference on Engineering of Complex Computer Systems (ICECCS'2015),
Gold Coast, Australia. Topics include: verification and validation, security and privacy of complex
systems, model-driven development, reverse engineering and refactoring, design by contract, agile
methods, safety-critical & fault-tolerant architectures, real-time and embedded systems, cyber-physical
systems, tools and tool integration, past reflections and future outlooks, industrial case studies, etc.
Deadline for submissions: July 5, 2015 (workshops).

December 10 200th birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

84 Conference Calendar

Volume 36, Number 2, June 2015 Ada User Journal

2016

January 07-09 17th IEEE International Symposium on High Assurance Systems Engineering (HASE'2016),
Orlando, Florida, USA. Topics include: tools and techniques used to design and construct systems that,
in addition to meeting their functional objectives, are safe, secure, and reliable. Deadline for
submissions: September 1, 2015 (papers).

January 19-22 8th Software Quality Days Conference (SWQD'2016), Vienna, Austria. Theme: "The Future of
Systems and Software Development: Build in Quality & Efficiency right from the Start". Topics
include: improvement of software development methods and processes; testing and quality assurance of
software and software-intensive systems; domain specific quality issues such as embedded, medical,
automotive systems; novel trends in software quality; etc.

April 02-08 19th European Joint Conferences on Theory and Practice of Software (ETAPS'2016), Eindhoven,
the Netherlands. Events include: ESOP (European Symposium on Programming), FASE, Fundamental
Approaches to Software Engineering), FOSSACS (Foundations of Software Science and Computation
Structures), POST (Principles of Security and Trust), TACAS (Tools and Algorithms for the
Construction and Analysis of Systems).

June 01-05 12th International Conference on integrated Formal Methods (iFM'2016), Reykjavík, Iceland.
Topics include: hybrid approaches to formal modelling and analysis; i.e., the combination of (formal
and semi-formal) methods for system development, regarding modelling and analysis, and covering all
aspects from language design through verification and analysis techniques to tools and their integration
into software engineering practice. Deadline for submissions: July 20, 2015 (workshops).

 June 13-17 21st International Conference on Reliable Software Technologies - Ada-
Europe'2016 Pisa, Italy. Sponsored by Ada-Europe, in cooperation (pending) with ACM
SIGAda, SIGBED, SIGPLAN, and the Ada Resource Association (ARA). Deadline for submissions:
January 17, 2016 (papers, tutorials, workshops, industrial presentations).

December 10 Birthday of Lady Ada Lovelace, born in 1815. Happy Programmers' Day!

 85

Ada User Journal Volume 36, Number 2, June 2015

The second UK conference on High Integrity Software will take place in Bristol, UK, on 5th November

2015. This one‐day event offers the UK’s foremost opportunity for engineers to share information

about challenges and solutions in the domain of trustworthy software engineering for safety,

security and business‐critical applications.

This year’s conference will feature three keynote speakers. Prof. Ian Phillips, Principal Staff Engineer

at ARM, will talk about the role of software in overall system integrity. Prof. Phil Koopman, CMU, will

present a study of the Unintended Acceleration (UA) of Toyota vehicles and related software safety

issues based on his role as an expert witness. Prof. Mark Little, Vice President Red Hat and CTO of

JBoss, will talk about the success of open source software in mission‐critical environments and its

future role in innovative areas including the Internet of Things.

The programme will also feature technical sessions on software safety, tools & architectures, and

threats & security. More details are available on the conference website.

The event includes an exhibition at which vendors will be presenting their tools and services offer for

the high integrity software domain. The exhibition will be open during the morning and afternoon

breaks, during lunchtime and also during the networking “cocktail hour” at the end of the day.

Attendance at HIS 2015 will cost £175 per delegate, which covers all aspects of this event (breaks,

lunches, sessions, exhibition and networking drinks afterwards). Further information and instructions

on how to register can be found on the conference website.

www.his‐2015.co.uk
 SPONSORED BY

Conference Chair

Giorgio Buttazzo
Scuola Superiore Sant’Anna

Program Co-Chairs

Marko Bertogna
Univ. of Modena and Reggio Emilia

Luís Miguel Pinho
CISTER Research Centre/ISEP

Special Session Chair

Eduardo Quiñones
Barcelona Supercomputing Center

Tutorial and Workshop Chair

Jorge Real
Universitat Politècnica de València

Industrial Co-Chairs

Marco Di Natale
Scuola Superiore Sant’Anna

Tullio Vardanega
Università di Padova

Publication Chair

Geoffrey Nelissen
CISTER Research Centre/ISEP

Exhibition Co-Chairs

Paolo Gai
Evidence Srl

Ahlan Marriot
White Elephant GmbH

Publicity Co-Chairs

Mauro Marinoni
Scuola Superiore Sant’Anna

Dirk Craeynest
Ada-Belgium & KU Leuven

Local Chair

Ettore Ricciardi
ISTI-CNR, Pisa

General Information

The 21st International Conference on Reliable Software Technologies – Ada-
Europe 2016 will take place in Pisa, Italy. Following its traditional style, the
conference will span a full week, including a three-day technical program and
vendor exhibition from Tuesday to Thursday, along with parallel tutorials and
workshops on Monday and Friday.

Schedule

Topics

The conference has over the years become a leading international forum for
providers, practitioners and researchers in reliable software technologies. The
conference presentations will illustrate current work in the theory and practice of
the design, development and maintenance of long-lived, high-quality software
systems for a challenging variety of application domains. The program will allow
ample time for keynotes, Q&A sessions and discussions, and social events.
Participants include practitioners and researchers representing industry, academia
and government organizations active in the promotion and development of reliable
software technologies.

This edition of Ada-Europe features a focused Special Session on Safe, Predictable
Parallel Software Technologies. Following the increasing trend of usage of
Multi-/Many-core systems, it is more and more important to assess how reliable
software technologies need to adapt to these complex platforms, as well as how
parallel models need to adapt to domains in which safety and predictability is a
must. Topics include (but are not limited to): Predictable Parallel Programming
Models, Compiler Support for Parallel Execution, Parallel Runtimes, Automatic
Parallelization, Safety Issues and Reliability Mechanisms for Parallel Execution,
Software Modelling and Design Approaches.

For the general track of the conference, topics of interest include but are not
limited to (full list on the website): Real-Time and Embedded Systems, Mixed-
Criticality Systems, Theory and Practice of High-Integrity Systems, Software
Architectures, Methods and Techniques for Software Development and
Maintenance, Software Quality, Mainstream and Emerging Applications, Experience
Reports in Reliable System Development, Experiences with Ada.

17 January 2016 Submission of papers, industrial presentation, tutorial and
workshop proposals.

10 March 2016 Notification of acceptance to all authors
24 March 2016 Camera-ready version of papers required

2 May 2016 Industrial presentations, tutorial and workshop material required

http://www.ada-europe.org/conference2016

Call for Regular and Special Session Papers

Authors of papers which are to undergo peer review for acceptance are invited to submit original contributions by 17 January 2016.
Paper submissions shall not exceed 14 LNCS-style pages in length. Authors for both the general track and the special session shall
submit their work via EasyChair at https://easychair.org/conferences/?conf=adaeurope2016. The format for submission is solely PDF.

Proceedings

The conference proceedings will be published in the Lecture Notes in Computer Science (LNCS) series by Springer, and will be available
at the conference. The authors of accepted regular and special session papers shall prepare camera-ready submissions in full
conformance with the LNCS style, not exceeding 14 pages and strictly by 24 March 2016. For format and style guidelines authors should
refer to http://www.springer.de/comp/lncs/authors.html. Failure to comply and to register for the conference by that date will prevent
the paper from appearing in the proceedings.

The International Conference on Reliable Software Technologies is ranked class A in the CORE ranking and Microsoft Academic Search
has it in the top third for conferences on programming languages. The conference is listed in DBLP, SCOPUS and Web of Science
Conference Proceedings Citation index, among others.

Awards

Ada-Europe will offer honorary awards for the best regular paper and the best presentation.

Call for Industrial Presentations

The conference seeks industrial presentations which deliver value and insight but may not fit the selection process for regular papers.
Authors are invited to submit a presentation outline of exactly 1 page in length by 17 January 2016. Submissions shall be made via
EasyChair following the link https://easychair.org/conferences/?conf=adaeurope2016. The format for submission is solely PDF.

The Industrial Committee will review the submissions and make the selection. The authors of selected presentations shall prepare a
final short abstract and submit it by 2 May 2016, aiming at a 20-minute talk. The authors of accepted presentations will be invited to
submit corresponding articles for publication in the Ada User Journal (http://www.ada-europe.org/auj/), which will host the
proceedings of the Industrial Program of the Conference. For any further information please contact the Industrial Co-chairs directly.

Call for Tutorials

Tutorials should address subjects that fall within the scope of the conference and may be proposed as either half- or full-day events.
Proposals should include a title, an abstract, a description of the topic, a detailed outline of the presentation, a description of the
presenter's lecturing expertise in general and with the proposed topic in particular, the proposed duration (half day or full day), the
intended level of the tutorial (introductory, intermediate, or advanced), the recommended audience experience and background, and
a statement of the reasons for attending. Proposals should be submitted by e-mail to the Tutorial Chair. The authors of accepted full-
day tutorials will receive a complimentary conference registration as well as a fee for every paying participant in excess of 5; for half-
day tutorials, these benefits will be accordingly halved. The Ada User Journal (http://www.ada-europe.org/auj/) will offer space for the
publication of summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the conference scope may be proposed. Proposals may be submitted for half- or full-day events,
to be scheduled at either end of the conference week. Workshop proposals should be submitted to the Tutorial and Workshop Chair.
The workshop organizer shall also commit to preparing proceedings for timely publication in the Ada User Journal (http://www.ada-
europe.org/auj/).

Call for Exhibitors

The commercial exhibition will span the three days of the main conference. Vendors and providers of software products and services
should contact the Exhibition Chair for information and for allowing suitable planning of the exhibition space and time.

Grants for Reduced Student Fees

A limited number of sponsored grants for reduced fees is expected to be available for students who would like to attend the conference

or tutorials. Contact the Conference Chair for details.

Venue

The conference will take place at Scuola Superiore Sant’Anna (left images, including the aula magna where the main conference

sessions will take place), in the heart of Pisa, Italy. June is full of events in Pisa, including in the conference week the Saint Patron's

festivities (San Ranieri) with the Luminara on the night of June 16 (thousands of candles burn and reflect on the river – image on the

right). Plan in advance! It is absolutely worth it!

https://easychair.org/conferences/?conf=adaeurope2016
http://www.springer.de/comp/lncs/authors.html
https://easychair.org/conferences/?conf=adaeurope2016
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/
http://www.ada-europe.org/auj/

 89

Ada User Journal Volume 36, Number 2, June 2015

Lovelace & Babbage and the
Creation of the 1843 'Notes'*
John Fuegi and Jo Francis
*
Abstract

Augusta Ada Lovelace worked with Charles Babbage
to create a description of Babbage's unbuilt invention,
the Analytical Engine, a highly advanced mechanical
calculator often considered a forerunner of the
electronic calculating computers of the 20th century.
Ada Lovelace's "Notes," describing the Analytical
Engine, published in Taylor's Scientific Memoirs in
1843, contained a ground-breaking description of the
possibilities of programming the machine to go
beyond number-crunching to "computing" in the
wider sense in which we understand the term today.
This article expands on research first presented by the
authors in their documentary film, To Dream
Tomorrow.

What shall we do to get rid of Mr. Babbage and his
calculating Machine? Surely if completed it would be
worthless as far as science is concerned?

 --British Prime Minister Sir Robert Peel, 1842 [1]

The Analytical Engine does not occupy common ground
with mere 'calculating machines.' In enabling
mechanism to combine together general symbols, in
successions of unlimited variety and extent, a uniting
link is established between the operations of matter and
the abstract mental processes of the most abstract branch
of mathematical science. A new, a vast and powerful
language is developed for the future use of analysis.

 --A.A. Lovelace, "Notes by A.A.L.," 1843 [2]

Charles Babbage's Difference Engine and Analytical
Engine, conceived in the first half of the 19th century, are
often seen as anticipating key design features used in
modern computing, even though none of Babbage's
extraordinary devices was fully built in his lifetime.
Augusta Ada Lovelace, née Byron, who worked against the
restrictions on women of her day to successfully train as a
mathematician, worked closely with Babbage to describe
the more advanced of his engines, the Analytical Engine, in
a collection of "Notes" published in Taylor's Scientific
Memoirs in 1843. Lovelace's vision of the Engines'
potential for the future of computation may now be seen as
having exceeded Babbage's own vision for his machines in
several key ways. She became the first person known to

* © 2003 IEEE. Reprinted, with permission, from IEEE Annals of the
History of Computing, Issue No.04 - October-December (2003 vol.25)

have crossed the intellectual threshold between
conceptualizing computing as only for calculation on the
one hand, and on the other hand, computing as we know it
today: with wider applications made possible by symbolic
substitution.

In an early background interview at the Science Museum
(London) for the historical documentary film about
collaboration between Lovelace and Babbage, To Dream
Tomorrow [3], Babbage authority Doron Swade mentioned
that he thought Babbage and Lovelace had "very different
qualities of mind." Swade's observation proved to be of
enormous value for our subsequent research.

An examination of the original Lovelace and Babbage
documents shows that, whereas Babbage concentrated on
the number-crunching possibilities of his new designs,
Lovelace went beyond number-crunching to see
possibilities for wider applications. She wrote:

Supposing, for instance, that the fundamental relations
of pitched sounds in the science of harmony and of
musical composition were susceptible of such
expression and adaptations, the engine might compose
elaborate and scientific pieces of music of any degree of
complexity or extent [4].

Aware that the punched card mechanism guiding the
decision list of the Analytical Engine was taken by
Babbage from the Jacquard loom and that Jacquard had
created pictures of great complexity by this means, she
noted: "We may say most aptly, that the Analytical Engine
weaves algebraical patterns just as the Jacquard-loom
weaves flowers and leaves" [5]. Making her own

Augusta Ada Lovelace in a portrait by
Margaret Carpenter.

Photo by Jo Francis. Still image from To Dream
Tomorrow, © Flare Productions, 2003/2015.

Used with permission.

90 Lovelace & Babbage and the Creat ion of the 1843 'Notes '

Volume 36, Number 2, June 2015 Ada User Journal

independence of thought clear within the "Notes," she
wrote:

Whether the inventor of this Engine had any such views
in his mind while working on the invention, or whether
he may subsequently ever have regarded it under this
phase, we do not know; but it is one that forcibly
occurred to ourselves [6] on becoming acquainted with
the means through which analytical combinations are
actually attained by the mechanism.[4]

In order for us to look closely at the original Lovelace and
Babbage documents written at the time the "Notes" were
being created, we had to go to a number of different
archives. We also had to take care when examining most
published accounts. Most extant books tended to be either
primarily accounts of Lovelace with Babbage as an
important but subsidiary figure, or accounts of Babbage
with Lovelace often reduced to a largely marginal figure. In
contrast, it was our intention in making To Dream
Tomorrow to examine and acknowledge what each one did
as an individual, as well as what the two achieved working
together.

Since the "Notes" are the single most comprehensive
description of the more advanced capabilities of the
Analytical Engine and since a full-scale Analytical Engine
was never built, the "Notes" constitute the main conduit
through which Babbage's extraordinarily advanced
engineering ideas influenced future generations.
Consequently, the "Notes" and Lovelace's role in creating
them, and the question of the extent to which she went
beyond the ideas of Babbage are of historical significance.

Lovelace's letters to Babbage, with a large array of other
vital Babbage materials, are held at the British Library in
London. A large number of Babbage's drawings and notes,
used by Doron Swade and the late Allan Bromley to
reconstruct plans for Babbage's various "Engines" (some of
the plans of which have been published in the IEEE
Annals) are at London's Science Museum. A number of
Babbage's letters to Lovelace are in the Byron/Lovelace
collection at Oxford's Bodleian Library. Lovelace Estate
Records (the documents showing the financial and other
material conditions under which Ada worked after she
married in 1835), are held at the County Historical Archive
in Woking, UK. As these historic materials have never
been published in their entirety, their interrelationship has
often remained almost entirely unexamined.

Over the last four years, to gain access to and to use
Augusta Ada Lovelace materials, we needed to obtain the
permission of Ada's great-great-grandson, the current Earl
of Lytton. Lord Lytton was pleased at, among other things,
the idea of taking a fresh look at the role in Ada's education
of his great-great-great-grandmother, Lady Byron. Ada
grew up essentially in a single-parent home; Lady Byron
left the abusive household of the famous poet Lord Byron
when Ada was five weeks old. Lady Byron (who had
herself received some training in mathematics) was
primarily responsible for Ada's education up to and
including the time Ada met Charles Babbage when she was

17 and he 42, and she first saw Babbage's prototype
Difference Engine, a mechanical calculator.

It is important to note what happens both for Ada and for
Charles Babbage in the 10 years that lie between Ada
Byron's first view of the prototype Difference Engine in
1833 and the creation of the "Notes" in 1843. In this period,
the ideas of Babbage undergirding the more advanced
calculating device, the Analytical Engine, emerged. Ada
was present as the key new ideas were discussed between
Charles Babbage and the great science expositor, Mary
Somerville. By 1834, both Somerville and Babbage were
mentors for then 18-year-old Ada, and Babbage supplied
Ada with a number of engineering drawings so she could
better understand his newest designs.

Though Ada Byron (like her mother before her) was barred,
as a woman, from attending university in England at that
time, she worked with a series of tutors in mathematics.
After meeting Babbage, her mathematical studies began to
focus on what she needed to know to advance her
understanding of the principles behind Babbage's
Difference and Analytical Engines. Her study advanced
even after she married William, soon-to-be-named Earl of
Lovelace, and had three children in a little over three years;
the last born in July 1839. In 1840 she began a series of
tutorials with Augustus De Morgan, professor of
mathematics at University College, London.

Babbage had first received a grant from the British
government in 1823 to begin to build a Difference Engine.
Yet, despite expending large sums of public funds and a
great deal of his own money, by 1833 he had failed to
complete more than a small prototype Difference Engine.
This prototype is a fully functioning device that can be seen
today at the Science Museum in London. By 1834,
however, Babbage began talking about having an even
more complex undertaking to displace the earlier one. As
Ada, over a span of a decade, extended her capacities for
understanding Babbage's Engines, in the same period,
Babbage himself felt frustrated by being unable to convince
British authorities of the importance of his latest design, a
proposal for an Analytical Engine of vastly greater scope
than his earlier Difference Engine. But, by now, the British
government was frustrated by almost two decades of
dealings with Babbage. On 11 November 1842 the inventor
had a meeting with the Prime Minister, Sir Robert Peel.
Babbage (as we know from his own notes [7]) spent more
time attacking the government than describing the new
Engine. Peel, for his part, had, prior to the meeting,
solicited support to call Babbage's work officially
worthless. The meeting was a disaster. Both men talked
past one another. On January 5, 1843, Babbage was
informed the government had sent the prototype of the
Difference Engine to the King's College Museum [8]. In
March, Peel formally withdrew support for the project, and
only a single voice in parliament was raised on Babbage's
behalf. By 1843 it was clear that Babbage, for all his
technical brilliance, had been rejected in England for
further government funding for completing either the older
Difference Engine or the newer Analytical Engine.

J. Fuegi, J . Francis 91

Ada User Journal Volume 36, Number 2, June 2015

Before the formal rejection by Peel in 1842-1843, Babbage
had gone to Turin in the fall of 1840 hoping to line up
foreign support for his plans. Before going to Turin he had
had printed the 24-in. by 36-in. "Plan, #25," one version of
the ever-changing Analytical Engine design. In Turin, a
young engineer, Luigi Menabrea, took notes on Babbage's
talks and began to prepare an article based on what
Babbage presented. Menabrea's article, "Notions sur la
machine analytique," was published in the journal
Bibliothèque Universelle de Genève, in October 1842.

When copies of the Menabrea article reached England in
the fall of 1842 and Babbage had had his disastrous
meeting with Peel, the French language article was
discussed by Ada Lovelace and the inventor, Charles
Wheatstone. Both Lovelace and Wheatstone were probably
better informed about the Difference and Analytical
Engines than anyone other than Babbage himself and
possibly Somerville, and they had more knowledge than
Menabrea, who had met Babbage only briefly in Turin.
Wheatstone, a close friend of Babbage and Lovelace, was
one of the best informed people in Britain on developing
and marketing new technologies. By 1837, the
Cooke/Wheatstone Telegraph had been patented, financed,
built and marketed with a highly successful advertising
campaign promoting the device. Wheatstone had also
worked on designs for calculating by machinery as we
know from an 18 May 1839 entry in Babbage's Notebook:
"Yesterday saw Wheatstone's model for telegraph and his
drawings for Multiplication Engine." According to
Anthony Hyman who cites the Babbage Notebook,
"Wheatstone's apparatus gave Babbage the idea that he
might use electro-mechanical switching instead of
mechanical techniques for the Calculating Engines. "[9]

Considering the date, 1839, the idea is breathtaking,
coming almost a century ahead of Howard Aiken making
his first advanced calculator proposals to IBM [10]. Even
though Babbage had not adopted Wheatstone's electro-
mechanical switching in 1839, in 1937 Aiken directly
mentioned Babbage's engine designs as a precursor and
joked, "If Babbage had lived 75 years later I would have
been out of a job." [11] Descriptions of Babbage's designs
were also turned up by Konrad Zuse in Berlin as part of his
"prior art" patent search in 1937, and similar references
crop up as well in accounts of the work of John von
Neumann. H. J. Gray notes: "John von Neumann urged that
all the machine units be connected . . . so that the machine
could be used as a computer of the Babbage type. . . This
was done and ENIAC was operated in this fashion until it
retired." [12] A further link is a reported conversation of
John von Neumann with S. Frankel cited by Andrew
Hodges [13]. Hodges also notes that Turing was aware both
of Babbage and Lovelace [14]. Thus some links can be
shown between key 20th century figures in computer
history (Turing, Aiken, von Neumann), and the work done
in England in the early 1840s, but dismissed by the British
government then as worthless.

In the fall of 1842, aware of what had happened between
Babbage and Peel, Wheatstone and Lovelace, not yet

mentioning the idea to Babbage as he was ill after his
meeting with Peel, thought it could help the cause of
advancing Babbage's work in England if Ada would
translate the Menabrea article into English. She was skilled
in French, as her mother had arranged for her to study
languages from childhood on and encouraged her to polish
her skills during a 15-month period they had spent abroad.
Lovelace went ahead with the translation over the winter of
1842-1843.

In early 1843, Lovelace showed Babbage what she had
been working on over the winter. Babbage's response
shows the high regard in which he held Lovelace's intellect
and her understanding of his work. Babbage recollected 20
years later:

Some time after the appearance of [Menabrea's] memoir
the late Countess of Lovelace informed me that she had
translated the memoir of Menabrea. I asked why she had
not herself written an original paper on a subject with
which she was so intimately acquainted? To this Lady
Lovelace replied that the thought had not occurred to
her. I then suggested that she should add some notes to
Menabrea's memoir; an idea that was immediately
adopted." [15]

The resulting "Notes" are three times the length of
Menabrea's essay and contain the most influential insights.

Lovelace (as we can confirm from her letters held at the
British Library), wrote the "Notes" mainly at Ockham Park,
an hour south of London. Babbage wrote back to her from
his Dorset Street house in London, adjacent to his custom-
built, fireproof workshop. They met together to discuss
problems and to do proof-reading at Ada's London house,
12 St. James's Square. Records in Lovelace's, Babbage's,
and Wheatstone's handwriting at the British Library and at
the Bodleian Library allow us to follow in an almost hourly
way how the "Notes" came into being over the summer of
1843. With multiple mail deliveries each day, and with
more missives delivered by personal messenger, one gets a
sense of the mutual excitement, collegiality, but sometimes
fierce frustration on both sides of the exchange. The letters
crossed and recrossed as Lovelace's working days
sometimes stretched to 18 hours.

One remarkable feature of Lovelace's "Notes" is that they
describe not the physical reality of a single existing
Analytical Engine but what historian of technology Sadie
Plant has called "a virtual machine." "It is virtual on two
levels," said Plant when interviewed for To Dream
Tomorrow. "She is," notes Plant, "writing the programs for
a virtual machine, for a future machine in effect." Most of
the mechanical parts for the Engine did not yet exist, and
the drawings, even when they did exist and Babbage could
put his hands on them, were incompatible as they reflected
different stages of design over a nine-year period. We know
that, even at the last stage, as the "Notes" were in press,
Babbage told Lovelace on 18 August 1843:

My Dear Lady Lovelace I much fear the drawings will
not be very intelligible. They were never published and

92 Lovelace & Babbage and the Creat ion of the 1843 'Notes '

Volume 36, Number 2, June 2015 Ada User Journal

only a few proofs were taken. I will endeavour to find a
complete set and bring them with me on Monday. [16]

To create a comprehensive description of the Analytical
Engine that did not (and indeed does not) exist, a machine
that was in a constant state of flux in Lovelace's and
Babbage's lifetime and for which Babbage had difficulty
turning up a full, internally consistent set of drawings--was
to attempt something of almost inconceivable difficulty.
Swade reports in The Cogwheel Brain how immensely
difficult it was for him and Allan Bromley, even over a
period of several years, to work through thousands of pages
of Babbage's "Notes" in order to understand a vast, unbuilt,
constantly changing entity. Groping to arrive at correct
formulations during a single intense summer of work in
1843, Lovelace and Babbage exchanged letters that are
startlingly modern, almost email-like: abrupt, often
informal, dashed off, and sent with uncorrected errors.

Lovelace in the summer of 1843 was 27 years old and saw
herself, as she noted in a letter to a relative, as "a fully
professional person." [17] Her letters to Babbage mix
respect with banter, and sometimes the bluntest frankness
when he loses papers or fails to remain focused on the task
at hand. Tellingly, she often wrote "My Dear Babbage,"
using the form of male-to-male, colleague-to-colleague
address of the Victorian era. Babbage, who was in 1843 in
his early fifties, addressed her as 'My Dear Lady Lovelace."

The following letters give us a sense from Babbage's
perspective of how the work was proceeding. Babbage,
from Dorset St. 30 June 1843, writes to Lovelace at
Ockham Park in such a hurry that not enough postage was
put on the letter, so it is marked on the envelope "More To
Pay."

My Dear Lady Lovelace

I am delighted with Note D. It is in your usual clear style
and requires only one triffling [sic] alteration which I
will make. This arises from our not having yet had time
to examine the outline of the mechanical part. …

 I enclose a copy of the integration. I am still working at
some most entangled notations of Division but see my
way through them at the expense of heavy labour, from
which I shall not shrink as long as my head can bear it. I
have been somewhat impeded for the last few days.
Your latest information was the most agreeable. Ever
my dear Lady Lovelace Sincerely yours C. Babbage.
[18]

On Sunday, 2 July 1843 Babbage wrote:

I am very reluctant to return the admirable and
philosophic view of the Abral. [sic] Engine contained in
Note A. Pray do not alter it and do let me have it
returned on Monday. I send also the rest of Note D.
There is still one triffling [sic] misapprehension about
the Variable cards--A Variable card may order any
number of Variables to receive the same number upon
theirs at the same instant of time--But a Variable card
never can be directed to order more than one Variable to
be given off at once because the mill could not receive it

and the mechanism would not permit it. All this was
impossible for you to know by intuition and the more I
read your Notes the more surprised I am at them and
regret not having earlier explored so rich a vein of the
noblest metal.

The account of them stands thus

A sent to Lady L. F Retained by Lady L.

B with CB G Where is it gone??

C Ditto H With CB

 D Sent to Lady L.

 E With CB

I have not seen Mr. Wheatstone and am ashamed to
write until I can positively put the whole of the Notes
into his hands.

I will attend your commands tomorrow And am ever
most truly yours C. Babbage [19]

Lovelace wrote back at once. She had decided that, since
Babbage had made a mistake about how she viewed the
variable cards, she would need to see him the next day in
London to get several points clarified. She playfully and
tactfully points out that in fact no Note C had ever existed.

Ockham, Sunday 6 o'clock. I have worked incessantly
and most successfully all day. You will admire the Table
and Diagram extremely.

They have been made out with extreme care and all the
indices most minutely and scrupulously attended to.
Lord L[ovelace] is at this moment kindly inking it all
over for me. I had to do it in pencil.

You must bring all the Notes with you tomorrow as I
have observations to make on each one and especially
on this final one H.

There never was a Note C. I do not know why I chose H
instead of C and thus insulted the latter worthy letter.

I cannot imagine what you mean about the Variable-
Cards; since I never either supposed in my own mind
that one Variable-card could give off more than one
Variable at a time; nor have (as far as I can make out)
expressed such an idea in any passage whatsoever
…[20]

Having met with Babbage in London to work through the
observations each had made, Lovelace wrote to him, both
to clarify the issue of the variable cards and to convey her
decision to assert her authorship of the "Notes":

Ockham, Tuesday Morning … Lord L. suggests my
signing the translation and the Notes, by which he
means simply putting … "translated by A.A.L.;" &
adding to each Note the initials A.A.L.

It is not my wish to proclaim who has written it; at the
same time that I rather wish to appear anything that may
tend hereafter to individualize and identify it with other
productions of the said A.A.L.

J. Fuegi, J . Francis 93

Ada User Journal Volume 36, Number 2, June 2015

My third topic, tho' my last is my most anxious and
important. I have yesterday evening and this morning
very amply analyzed the question of the number of
Variable Cards, as mentioned in the final Note H (or
G?). And I find that you and I between us have made a
mess of it; (for which I can perfectly account in a very
natural manner). I enclose what I wish to inscribe
instead of that which is now there. I think the present
wrong passage is only about eight or ten lines, & is I
believe on the second of the three great sheets which are
to follow the diagram.

The fact is that if my own composition about the
Variable Cards in Note D had been strictly followed by
myself in Note H this error would not have occurred.
The confusion has arisen simply from the circumstance
of applying to the Variable Cards, facts which relate to
the Operation-Cards. In Note D it is very well and
lucidly demonstrated that every simple operation
demands the use of at least those Variable Cards. It does
not signify whether the operations be in cycles or not. A
million successive additions would each demand the use
of these new Variable Cards under ordinary
circumstances. In Note H, the erroneous lines are
founded on the hasty supposition that the cycle or
recurring group of Operation-Cards (1323) will be
fed by a cycle or recurring group of Variable-Cards.

I enclose what I believe it ought to be. If already gone to
the printer we must alter that passage in the proofs
unless you could call at the printers and there paste over
the amendment. [21]

She commented further on the technical issues in another
letter to Babbage, probably also of 4 July. This letter is
dated only "Tuesday 1843," but the context makes plain
that it was written near the same time:

My Dear Babbage.

I hope you will approve of what I send. I have taken
much pains with it. I have explained that there would be,
in this instance & in many others, a recurring group or
cycle of Variable as well as of Operation Cards; and I
have (I think very judiciously and easily) touched on the
only departures from perfect identity which could exist
during the repetitions of (13 23); and yet have not
committed myself by saying if the departures would
require to be met by the introduction of one or more new
cards or not; but have simply indicated that as the
associations follow a regular rule, they would be easily
provided for. I think I have done it admirably and
diplomatically (Here comes in the intrigante and
politician!) Ever yours A.L. [22]

Lovelace's Note G describes how the Analytical Engine
could be used to calculate the values of the Bernoulli
numbers. Lovelace, knowing that Babbage believed the
Engine could have the capacity to handle Bernoulli
numbers, as he had discussed in a letter circa January 1841
to the German savant Alexander von Humboldt [23], took it
upon herself to make sure there was a written description

and demonstration of how this could be done. She writes
from Ockham Park on Wednesday, 5 July 1843:

I do not go to town until Monday. Keep yourself open if
you can for that day in case there is anything I wish to
see you about which is very likely. But the evening I
think is most likely to be my time for you, as I rather
expect to be engaged incessantly until after 6 o'clock. I
shall sleep in town that night.

I am doggedly attacking and sifting to the very bottom
all the ways of deducing the Bernoulli Numbers. In the
manner I am grappling with this subject; and connecting
it with the others, I shall be some days upon it. …

"Labore ipse voluptus" [Labor Is Its Own Reward] is in
very deed my motto! And (as I hinted just now), it is
perhaps well for this world that my line and inclination
is more the spiritual; and that I have not taken it into my
head or lived in times or circumstances calculated to put
into my head to deal with the sword, poison, and
intrigue in the place of x, y, & z. … [24]

In the archive, this letter is followed in folio 354 by a very
brief note from Babbage dated Wednesday, July 1843,
presumably of 5 July: "Return sheet with two corrections.
Right about Card requiring new Variable." [25]

This was typical of a staccato to and fro. Ada, writing the
"Notes," queried Babbage, as the inventor of the yet unbuilt
Engine, as to whether or not he anticipated his Engine
could do something and do it as she understood it.
Babbage's replies suggest that he had learned something
new about his own machine from Lovelace's queries and
speculations. For instance, a letter headed "Ockham Thurs.
Morn. 1843" reminds us that Lovelace was attempting a
description of what Babbage himself was still in the
process of clarifying. She wrote:

My Dear Babbage. I have read your papers over with
great attention. But I want you to answer me the
following question by return post. The day I called on
you, you wrote off on a scrap of paper (which I have
unluckily lost); that the Difference Engine would do
[Authors' note: Lovelace draws a small triangle here]
(something or other) [Authors' note: The parentheses are
hers] but that the Analytical Engine would do [Authors'
note: Lovelace again draws a triangle here] (something
else that is absolutely general). Be kind enough to write
this out properly for me; and then I think I can make
some very good Notes. … [26]

In another letter early in the process Lovelace had written

My Dear Babbage. … I want to put in something about
Bernoulli's Numbers in one of my Notes as an example
of how an implicit function may be worked out by the
engine without having been worked out by human head
or hands first. Give me the necessary data and formulae.
Yours ever AAL [27]

The correspondence brings to life the actual process of
editing and proofreading:

94 Lovelace & Babbage and the Creat ion of the 1843 'Notes '

Volume 36, Number 2, June 2015 Ada User Journal

July 1843 Ockham Tuesday Morning. My Dear
Babbage. … What I want to know is this: can you be
with me in town at 4 o'clock. This is in order that I may
read over aloud with you all the Notes. … [28]

The fact Lovelace wanted to go through the "Notes" with
Babbage, and had previously sent him her translation of
Menabrea to check makes it clear that proofreading was a
joint undertaking, supplemented in the customary way by
the printers. Given this fact, it seems odd to dismiss (as one
severe critic has done) [29] only Lovelace for failing to
catch an error made by the Swiss printer (an error of "cas"
for "cos." uncaught by Menabrea), and then using this to
claim Lovelace knew little about mathematics.

By the end of July, Lovelace and Babbage appeared to be
on the final lap. Lovelace, the mother of three children with
the Earl of Lovelace, jokingly wrote about the "Notes" as
though they were her first child:

Ockham Thursday morning 27 July: My Dear Babbage.
…To say the truth I am rather amazed at them [the
Notes] & I have made Lord Lovelace laugh much by the
dryness with which I remarked "Well. I am very much
satisfied with this first child of mine. He is an extremely
fine baby and will grow to be a man of the first
magnitude and power." [30]

A meticulous worker, Lovelace struggled not only with the
difficulty of the material but also with the errors of the
printers and Babbage himself. She wrote to Babbage from
St. James's Square:

The beginning of Note G (by which I mean the Table &
all that precedes it) never has been returned into my
hands; a small part of the remainder was, but that I
speedily gave you back, and there it is now printed. --

The missing part must be either at your house or at the
printer's; & it seems to me very unlikely that you should
have retained it. So altogether I would wager almost
anything that it is at the office; or that if lost, it has been
lost there.

At the same time, I have also fancied you were a little
harum-scarum & inaccurate now & then about the exact
order & arrangement of sheets, pages, & paragraphs &
c. (witness that paragraph which you so carelessly
pasted over!)

I suppose I must set to work to write something better, if
I can, as a substitute. The same precisely I could not
recall. I think I should be able in a couple of days to do
something. However I should be deucedly inclined to
swear at you, I will allow.

I desire my messenger to wait; as it is possible you may
have something to communicate more agreeable.

I go soon after seven. I believe I shall not be in Town
myself on Monday as I expected. Yours A.L. [31]

"Ockham Sunday Afternoon" Lovelace writes:

I am half beside myself with hurry and work. … I wish
you were as accurate and as much to be relied on as I am

myself. You might often save me much trouble if you
were; whereas you in reality add to my trouble not
infrequently and there is at any rate always the anxiety
of doubting if you will not get me into a scrape even
when you don't.

By the way, I hope you do not take upon yourself to
alter any of my corrections. I must beg you not. They all
have some very sufficient reason. And you have made a
pretty mess and confusion in one or two places (which I
will show you sometime) where you have ventured on
my M.S.'s to insert or alter a phrase or word and have
utterly muddled the sense. . . . [32]

From Lovelace's letters, it is clear that she thought the
intense working period was yielding the desired result: a
strong, persuasive article describing the capabilities and
functioning of the Analytical Engine, to generate interest
and support for its construction. But by early August the
tone of the exchanges is increasingly acerbic as Lovelace
realizes that Babbage is trying to convince the printer to
include one of his diatribes (which he was however
unwilling to sign). Babbage wanted at the last minute to
prevent the publication of the article unless he could
fulminate at length in the same issue about the way he had
been and was being treated by the government. But
Lovelace overrode him and had the printer proceed as
originally planned. A key Babbage letter does not appear to
have survived as it is not at the Bodleian in the
Lovelace/Byron Collection. His letter must have been
written around the beginning of August 1843 because Ada
Lovelace's letter of 6 August is clearly in response to
something from him about her overruling him on going
ahead with the article.

My Dear Babbage. … On the one point of not
withdrawing the translation & Notes from the Memoir,
nor consenting to its separate publication, I was entirely
and finally decided; as I think neither for your
advantage nor my own, to do so; added to my opinion
that it would under the circumstances be dishonorable
and unjustifiable … Be assured that I am your best
friend; but that I never can or will support you in acting
on principles which I conceive to be not only wrong in
themselves, but suicidal. [33]

In his reply of Tuesday, 8 August 1843, Babbage protested
her decision, yet seemed to acknowledge her authority to
make it:

My Dear Lady Lovelace

I leave the Ms and also the proofs of the Notes I recd.
last night and promised to send this evening.

I will write to Printer to say you will send them up by
post direct to them.

This direct communication will save time and there is
very little time to spare for this Number ought to be out
in the course of a few days.

I have nothing to add at present except that you do me
injustice in supposing I wished you to break any

J. Fuegi, J . Francis 95

Ada User Journal Volume 36, Number 2, June 2015

engagement with the Editor. I wished you to ask him to
allow you to withdraw from it. Had the Editor been in
England I believe he would at my request have inserted
my defense or forborn to have printed the paper--As it
stands I have done all I can at present to defend myself
and having failed in the most important part shall make
the best I can of the rest. Ever truly yours C. Babbage
[34]

Babbage's supposition about the editor's wishes did not turn
out to be true. The editor backed Lovelace, not Babbage.
Opposition to Babbage's diatribe idea was unanimous.
Neither Wheatstone nor Charles Lyell, the eminent
geologist and mutual friend of Lovelace and Babbage,
thought Babbage's interests would be served by yet another
attack. Despite the advice of his closest friends, Babbage
published his diatribe separately, in a different magazine, a
few weeks later [35].

Whatever Babbage might decide to do, Lovelace keenly
felt her own responsibility for this project. On Tuesday, 8
August, she wrote to her mother:

I have been harassed and puzzled in a most perplexing
manner by the conduct of Mr. Babbage … I am sorry to
come to the conclusion that he is one of the most
impracticable, selfish, and intemperate persons one can
have to do with … But I am happy to find that W.
[Author's note: "W." indicated William, her husband] &
Wheatstone entirely approves my conduct and means. I
declared at once to Babbage that no power should
induce me to lend myself to any of his quarrels … and
that I should myself communicate in a direct manner
with the editors … He was furious. I imperturbable … I
only want you to understand that all my time and my
energy have been miserably absorbed the last few days;
for what between Babbage and the editors both pressing
hard in different directions, I have been torn to pieces …
[36]

Angry or not, Lovelace remained focused on the central
issue that the specific purpose of the translation and
"Notes" was to advance the actual building of the machine,
rather than again to attack the government. In a candid
letter to Babbage she offered her talents and resources to
pursue the building of the Analytical Engine, provided he
himself would stick to the technical aspects of the project.
From Ockham Park on Monday 14 August 1843, Lovelace
wrote to Babbage:

I have now touched on all the grounds which can be
taken on the supposition of its really being pernicious to
your interests that I have thus allowed the article to
appear … My moral standard, such as it is, I must stick
to; as long as it is my moral standard. … I have a right to
expect from you the belief that I do sincerely and
honestly take this view. [I]f your knowledge of me does
not furnish sufficient grounds for doing so, then I can
only say that no natural knowledge of any two human
beings in this life can give fixed and stable grounds for
faith and confidence then Adieu to all truth and to
everything most generous in this world!

I must now come to a practical question respecting the
future. …

If I am able to lay before you in the course of a year or
two explicit and honourable propositions for executing
your engine (such as are approved by persons whom you
may now name to be referred to for their approbation)
would there be any chance of your allowing myself and
such parties to conduct the business for you; your own
undivided energies being devoted to the execution of the
work; all these matters being arranged for you on terms
which your own friends should approve?

You will wonder over this last query. But I strongly
advise you not to reject it as chimerical. You do not
know the grounds I have for believing that such a
contingency may come within my power and I wish to
know before I allow my mind to employ its energies any
further on the subject, that I shall not be wasting thought
and power for no purpose or result … Yours ever most
sincerely A.A.L. [37]

A letter she wrote to her mother the next day confirms that
the printers were recognizing her as author of the "Notes."
Tuesday, 15 August:

… I was unexpectedly summoned by the printers who
needed a further supervision and as it is actually to be
out I understand tomorrow, there was no time for post
communications. No one can estimate the trouble of
interminable labour of having to revise the printing of
mathematical formulae. You will receive a few copies
(amongst a hundred that are printed separately for me).
…

If he [Babbage] does consent to what I propose, I shall
probably be enabled to keep him out of much hot water;
and to bring his engine to consummation (which all I
have seen of him and his habits the last 3 months, makes
me scarcely anticipate it ever will be, unless someone
really exercises a strong co-ercive influence over him).
He is beyond measure careless and desultory at times.
… [38].

With the final material delivered to the printer and after
months of 18-hour days spent describing the possibilities of
an extraordinarily complex virtual machine, Lovelace now
confessed herself often very tired. Lovelace came up to
London around 18 August to meet Babbage. He was still
furious about not having had his own way on the idea of
appending a diatribe to the "Notes." He scribbled a curt
memo in the margin of Lovelace's letter of 14 August:
"Saw AAL this morning and refused all the conditions."
Instead of using publication of the Memoir with the
"Notes" as a descriptive model of a strategy for gaining
public understanding and support to get the Engine
financed and constructed, Babbage would continue until his
death in 1871 to go his own, often irascible, way.

By 24 August 1843, the volume of Taylor's Scientific
Memoirs with the translation of Menabrea's "Memoir" and
the "Notes" appeared. Lovelace wrote to her mother: "We
are by no means desirous of making it [Author's note:

96 Lovelace & Babbage and the Creat ion of the 1843 'Notes '

Volume 36, Number 2, June 2015 Ada User Journal

authorship of the "Notes"] a secret although I do not wish
the importance of the thing to be exaggerated and
overrated." [39] Charles Wheatstone wrote on 25 August
1843:

My Dear Lady Lovelace, I called yesterday at the
printer's and was informed that a separate copy of your
paper had been forwarded by post to Ockham, and the
new number of the Scientific Memoirs sent to St. James'
Square … Yours very truly C. Wheatstone [40]

Reaction to the work was swift and positive. The paper, so
Michael Faraday, famous for his chemical and electrical
experiments, declared to Babbage on 1 September, was so
complex it was well over his own head [41]. Menabrea
asked Babbage to pass along his congratulations "à cette
noble Dame, A.A.L." [42] With congratulations pouring in,
even Babbage was pleased, and he swiftly reconciled with
Lovelace, concluding a letter to her of 12 September 1843,
with the extravagant: "Ever my fair Interpretess Your
faithful slave C. Babbage." [43]

Babbage expert, Doron Swade (having examined the
extensive exchange of letters and the resulting "Notes"),
when interviewed for To Dream Tomorrow, commented:

Ada saw something that Babbage in some sense failed to
see. In Babbage's world his engines were bound by
number. He saw that the machines could do algebra in
the narrow sense that they could manipulate plus and
minus signs. But all his calculating engines, his
Difference Engine and his Analytical Engine, which is
the programmable general-purpose machine, were all
bound by number. They manipulated number as a
manifestation of quantity, as a measure of quantity.
What Lovelace saw--what Ada Byron saw--was that
number could represent entities other than quantity. So
once you had a machine for manipulating numbers, if
those numbers represented other things, letters, musical
notes, then the machine could manipulate symbols of
which number was one instance, according to rules. It is
this fundamental transition from a machine which is a
number cruncher to a machine for manipulating symbols
according to rules that is the fundamental transition from
calculation to computation--to general purpose
computation--and looking back from the present high
ground of modern computing, if we are looking and
sifting history for that transition, then that transition was
made explicitly by Ada in that 1843 paper.

As Swade is fully aware, "[T]he Analytical Engine," as
A.A.L. so clearly stressed, "does not occupy common
ground with mere 'calculating machines'." This
formulation, based on what only existed as a virtual
machine in 1843, went beyond any known statement of
Babbage, and beyond distinguished predecessors in
mechanical calculation such as Blaise Pascal and Gottfried
Wilhelm Leibniz. A.A.L. anticipated advanced work in the
next century of Alan Turing, Konrad Zuse, Howard Aiken,
Grace Hopper, and John von Neumann. Looking far ahead
to that time when a general-purpose machine would no
longer be declared worthless but would in fact be built,

Lovelace argued that such a machine would serve as a
springboard for an ever-increasing number of discoveries,
many of which would remain unimaginable until such time
as the machine was built and could be run. She wrote in
Note A:

[V]ery valuable practical results would be developed by
the extended powers of the Analytical Engine, some of
which would be brought forth by the daily increasing
requirements of science and by a more intimate practical
acquaintance with the powers of the engine, were it in
actual existence. [44]

Lovelace was to be proven right, but it would take over 100
years. Only after the early ENIAC ("a computer of the
Babbage type," as H.J. Gray described it) was built to run
rapid calculations for ballistics tables did engineers and
programmers, such as John von Neumann, began to move
beyond what Lovelace had called "mere calculating
machines" and begin, in Swade's words, "to manipulate
symbols according to rules." With these developments in
the mid-20th century, the paradigm shift Lovelace had
made in 1843 would start to become our everyday reality.

References and notes
[1] British Library, London, additional manuscript

(hereafter "add'l ms.") 40, 514, folio 223.

[2] A. A. Lovelace, "Notes by A.A. L. [Augusta Ada
Lovelace]," Taylor's Scientific Memoirs, London, vol.
III, 1843, pp. 666-731. These notes are printed in both
Charles Babbage and His Calculating Engines:
Selected Writings by Charles Babbage and Others, P.
Morrison and E. Morrison, eds., Dover Publications,
1961 (which includes the full text of the Menabrea
translation and the 1843 Notes, pp. 225-297), and in
Faster Than Thought, B.V. Bowden, ed., Sir Isaac
Pitman & Sons, Ltd, 1953, pp. 341-408. A. A.
Lovelace's translation of Menabrea together with her
"Notes" are also on the Web:
http://www.fourmilab.ch/babbage/sketch.html.

[3] For information about the film, see
http://www.flarefilms.org

[4] P. Morrison and E. Morrison, eds., Charles Babbage
and His Calculating Engines ..., p. 249.

[5] Ibid., p. 252.

[6] She is, of course using the customary plural of
scholarly writers of the time.

[7] British Library, add'l ms. 37, 192 folios 189-194.

[8] British Library, add'l ms. 37, 192 folio 326.

[9] A. Hyman, Charles Babbage, Pioneer of the
Computer, Princeton Univ. Press, 1982, p. 227.

[10] I. B. Cohen, Howard Aiken: Portrait of a Computer
Pioneer, MIT Press, p.63

[11] Cited by D. Swade, Charles Babbage and His
Calculating Engines, Science Museum, 1991, p. 34

J. Fuegi, J . Francis 97

Ada User Journal Volume 36, Number 2, June 2015

[12] Cited from H.J. Gray's Digital Computer Engineering,
Prentice-Hall, 1963, in the annotated bibliography
given by B. Randell, ed., The Origins of Digital
Computers: Selected Papers, Springer Verlag, 1973, p.
420

[13] A. Hodges, Alan Turing: The Enigma, Vintage, p. 304

[14] Ibid., p. 297 and pp. 357-358.

[15] Cited by D. Swade, The Cogwheel Brain, pp. 160-161.

[16] Byron/Lovelace Collection, Bodleian Library, Oxford,
UK, box 168, folio 47, recto and verso.

[17] Cited by B.A. Toole, Ada, the Enchantress of
Numbers, p. 225. We might note that as we did our
own transcriptions of letters, in a number of cases our
reading and dating differs from Toole's. Ideally, all
these documents should be put directly on the Web so
that various people can do their own decipherments of
texts that are often extremely hard to read. In some
cases, Toole has very usefully included facsimiles of
some of the handwritten documents, an excellent
practice.

[18] Byron/Lovelace Collection, Bodleian Library, box
168, folio 43, recto and verso.

[19] Byron/Lovelace Collection, Bodleian Library, box
168, folio 45, recto and verso, and folio 46, recto.

[20] British Library, add'l ms. 37, 192, folio 337.

[21] British Library, add'l ms. 37, 192, folio 344.

[22] British Library, add'l ms. 37, 192, folio 348.

[23] British Library, add'l ms. 37, 191, folio 638

[24] British Library, add'l ms. 37, 192, folios 351-352

[25] British Library, add'l ms. 37, 192, folio 354.

[26] British Library, add'l ms. 37, 192, folios 357-358.

[27] British Library, add'l ms. 37, 192, folio 362.

[28] British Library, add'l ms. 37, 192, folio 386-387

[29] See D.A. Stein, Ada, A Life and a Legacy, MIT Press,
1985, p. xi, where much is made of " her [emphasis
added] curiously ignored translation of a printer's
error." Stein claimed that if Lovelace missed a
proofreading error, she must have been unsound in
mathematics. Stein then argues we must see Babbage
as the primary author of the "Notes" (though he, too
missed the printer's error) and see Lovelace's centrality
as what Stein calls a "mythology." However, from the
surviving letters of Babbage, Lovelace, Wheatstone,
Lyell, Faraday, Menabrea, and the editors of Taylor's
Scientific Memoirs, it is clear that proofreading was
done with Babbage, and that the original typesetting
error was missed by Menabrea. The original
documentation shows that all contemporaries of
Lovelace and Babbage having first-hand knowledge of
how the "Notes" came into being, acknowledged
Lovelace as the primary author.

[30] British Library, add'l ms. 37, 192, folios 393-394.

[31] British Library, add'l ms. 37, 192, folios 398-399.

[32] British Library, add'l ms. 37, 192, folios 414-415.

[33] Letter is given in full in B.A. Toole, Ada, pp. 219-222.

[34] Byron/Lovelace Collection, Bodleian Library, box
168, folios 41 and 42.

[35] D. Swade, Cogwheel, p. 163.

[36] Byron/Lovelace Collection, Bodleian Library, box 42,
folio 76.

[37] British Library, add'l ms. 37, 192, folios 425-426.

[38] Byron/Lovelace Collection, Bodleian Library, box 42,
folios 86-88.

[39] Byron/Lovelace Collection, Bodleian Library, box 42,
folios 101-102.

[40] British Library, add'l ms. 54, 089, folio 37.

[41] British Library, add'l ms. 37, 192, folio 445.

[42] British Library, add'l ms. 37, 192, folio 46.

[43] British Library, add'l ms. 54, 089, folio 54.

[44] P. Morrison and E. Morrison, eds., Charles Babbage
and His Calculating Engines …, p. 256.

Bibliography
B.V. Bowden, ed. (1953), Faster Than Thought, Sir Isaac
Pitman & Sons, Ltd. Includes the text of Lovelace's
translation of Menabrea and the full text of her "Notes."

M. Campbell-Kelly and W. Aspray (1996), Computer,
Basic Books.

I.B. Cohen (1999), Howard Aiken: Portrait of a Computer
Pioneer, MIT Press.

J. Fuegi and J. Francis (2003), To Dream Tomorrow,
documentary film with Doron Swade, Sadie Plant, Miranda
Seymour, David Herbert, Michael Lindgren, and direct
Lovelace desendent, the Earl of Lytton;
http://www.flarefilms.org.

D. Herbert (1997), Lady Byron and Earl Shilton, Hinckley
and District Museum, Leicestershire.

A. Hodges (1992), Alan Turing: The Enigma, Vintage.

A. Hyman (1982), Charles Babbage, Pioneer of the
Computer, Princeton Univ. Press.

M. Lindgren (1987), Glory and Failure: The Difference
Engines of Johann Müller, Charles Babbage, and Georg
and Edvard Scheutz, translated from Swedish by C.G.
McKay, Linköping.

A.A. Lovelace's Translation of Menabrea together with her
"Notes" are on the web:
http:///fourmilab.ch/babbage/sketch.html.

P. Morrison and E. Morrison, eds. (1961), Charles
Babbage and His Calculating Engines: Selected Writings
by Charles Babbage and Others, Dover Publications.
Includes the full text of the Menabrea translation and the
1843 Notes.

98 Lovelace & Babbage and the Creat ion of the 1843 'Notes '

Volume 36, Number 2, June 2015 Ada User Journal

S. Plant (1997), zeros + ones: Digital Women + the New
Technoculture, Doubleday.

R. Randell, ed. (1973), The Origins of Digital Computers,
Springer Verlag. Contains a number of vital historical
papers and a lengthy, superbly annoted bibliography.

J. Shurkin (1984), Engines of the Mind, W.W. Norton &
Co.

D. Swade (2000), The Cogwheel Brain, Little, Brown and
Co. The US edition of the same book: The Difference
Engine: Charles Babbage and the Quest to Build the First
Computer, Viking, 2001.

B.A. Toole (1992), Ada, The Enchantress of Numbers,
Strawberry Press. Has the best collection of Ada Byron
Lovelace letters now in print.

About the authors

John Fuegi has held American Council of Learned
Societies, Guggenheim and Rockefeller Awards and has
taught at Harvard University and the Freie Universität,
Berlin. He was the Clara and Robert Vambery
Distinguished Professor of Comparative Studies at the
University of Maryland, College Park and a Maryland
Institute for Technology in the Humanities (MITH) Fellow
at the time this article was first published. He founded and
currently co-chairs Flare Productions.

Jo Francis taught for many years in Thailand and the US
before joining Flare Productions, a not-for-profit
educational film-making organization which she currently
co-directs. She was a Networked Fellow of the Maryland
Institute for Technology in the Humanities during its
founding years, has written on the teaching of history, and
has received national and international recognition for her
teaching and her work in film.

Readers may contact John Fuegi and Jo Francis at
jf@flarefilms.org

Authors' note, 2015:

We are pleased that this article, originally written shortly
after we completed To Dream Tomorrow, is being
published again during this 200th anniversary year of
Lovelace's birth. We have taken the opportunity to make a
few small changes and updates. To Dream Tomorrow has
also been re-issued, with new music in a few places to
replace excerpts that originally had time-limited rights, so
the documentary can continue to be available for viewing
and screening, long-term.

 99

Ada User Journal Volume 36, Number 2, June 2015

Source Code Analysis of Flight Software using a
SonarQube based Code Quality Platform
Maurizio Martignano
Spazio IT – Soluzioni Informatiche, San Giorgio di Mantova, Italy.

Andraes Jung
European Space Agency, Noordwijk, The Netherlands.

Tobias Lehmann
Inopus, Unterhaching, Germany.

Christian Schmidt
AIRBUS Helicopters, Donauwörth, Germany.

Abstract

Since 2012, Spazio IT and Inopus have been working
on a code quality platform for the analysis of both
Ada and C/C++ flight software.

For Ada (e.g. AIRBUS Helicopters NH90 and Tiger
flight software), the emphasis has been on
maintenance and particularly on the adoption of
ISO/IEC 25010:2011 software characteristics to
identify critical areas in large Ada codebases.

For C/C++ (e.g. European Space Agency IXV on
board software), the emphasis has been on
verification and validation, standards/guidelines
enforcement and bug finding. Of particular interest is
the development of a methodology able to apply in an
effective way model checking and abstract
interpretation techniques to large C/C++ code bases.

This paper describes both activities and shows the
central role that SonarQube and Spazio IT developed
plugins have plaid in their execution.

Keywords: Static Analysis, Ada, Quality Model,
Characteristic, Metric, Measure, Maintenance,
Maintainability, C/C++, Bug Finding, Bounded
Model Checking, Abstract Interpretation, CBMC,
Frama-C.

1 A Quality Model for Ada
Maintainability

1.1 Quality Models

Various quality models are currently in use in embedded,
real time and avionics systems. Some of the most used are:

 ISO/IEC 9126-1:2001 – “Software engineering --
Product quality -- Part 1: Quality model”

 ISO/IEC 25010:2011 – “Systems and software
engineering -- Systems and software Quality
Requirements and Evaluation (SQuaRE) -- System
and software quality models”

 ECSS-Q-HB-80-04A:2011 – “Software
metrication programme definition and
implementation” – European Cooperation for
Space Standardization – [3]

 SQUALE:2012 – Software QUALity
Enhancement – [8]

Figure 1 shows the above mentioned quality models and
their relationships: an arrow from A to B means that B
derives from A.

The ISO/IEC quality models are used in many application
domains; ECSS-Q-HB-80-04A is mostly used in space
applications and SQUALE usage is increasing everywhere
(especially in systems written in Java, C/C++, C# and PHP)
thanks to SonarQube (see the website [12]) success as code
quality platform.

All models describe the quality of a software
product/system as the result of a set of “characteristics”,
like functional suitability, reliability, maintainability…
Characteristics may be defined in terms of “sub-
characteristics”: e.g. maintainability according to ISO/IEC
9126 consists of analysability, changeability, stability,
testability, and so on… Characteristics and sub-

Figure 1- Quality Models

100 Source Code Analysys of Fl ight Software using a Code Qual i ty Plat form

Volume 36, Number 2, June 2015 Ada User Journal

characteristics are eventually defined as functions of some
measures, i.e. the values corresponding to pre-defined sets
of metrics., e.g. the number of code lines, the number of
comment lines, the number of subprograms in a package,
etc,,,

Some of the metrics are related to source “code” entities
e.g. the cyclomatic complexity, the nesting, etc... some
others are related to other “non-code” software artefacts,
e.g. the traceability between the system level requirements
and the software level requirements/software design.

1.2 Maintainability Quality Model at AIRBUS
Helicopters
The maintainability quality model defined by AIRBUS
Helicopters and applied to the NH90 and Tiger flight
software is a code-only (that is based on metrics only
related to source code) quality model and mostly derives
from ISO/IEC 9126 and ISO/IEC 25011 standards (see
reference document [9]).

According to AIRBUS Helicopters quality model, the
“maintainability index” is a function of four characteristics,
i.e. analysability, changeability, stability and testability,
and namely:

ܫܯ ൌ ݃ ∗ ܣ 	݃ ∗ ܥ ݃ௌ ∗ ܵ ்݃ ∗ ܶ

with

g ൌ g	 ∗
ሺC S Tሻ

3

gେ ൌ gେ ∗
ሺA S Tሻ

3

gୗ ൌ gୗ ∗
ሺC A Tሻ

3

g ൌ g ∗
ሺC A Sሻ

3

The basic weights gBA, gBC, gBS and gBT are used to set the
relative importance to the four characteristics; their sum
equals one and currently they are all the same.

Each single characteristic is defined in turn as:

ܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܥ ൌ
∑ ݔ݁݀݊ܫݐ݈݈݂݈݈݊݁݉݅ݑܨܿ݅ݎݐ݁ܯ
ୀଵ

݉

with
- ݉ ൌ

 ܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܿ	݁݊	ݎ݂	ݏܿ݅ݎݐ݁݉	݂	ݎܾ݁݉ݑ݊

- MetricFullϐillmentIndex ൌ
∑ 	௨ሺெ௧,ெ௧ௌா௧ೖሻ

ೖసభ

where the metric fulfilment index of a given metric (e.g.
“cyclomatic complexity”) applied to a given element (e.g. a
“subprogram” in the case of cyclomatic complexity) is the
count of how many times its measure has an acceptable
value divided by the total count of elements (e.g. the count
of how many subprograms have cyclomatic complexity less
than fifteen divided by the total count of subprograms).

These are the metrics used to compute the various
characteristics (they are grouped by characteristic – their
definitions are not repeated):

 Analysability
o Count Lines – number of all lines
o Nesting – maximum nesting level of

control constructs
o Count Declared Subprograms – number

of declared subprograms
 Changeability

o Cyclomatic Complexity – McCabe
cyclomatic complexity

o Nesting
o Code Duplication – number of duplicated

code lines
o Count Declared Subprograms
o Declarative Lines of Code – number of

lines containing declarative source code
 Stability

o Knots – measure of overlapping jumps
o Executable Lines of Code - number of

lines containing executable source code
o Code Duplication
o Cyclomatic Complexity

 Testability
o Count Path – number of possible paths,

not counting abnormal exits and “goto”s
o Count Declared Subprograms
o Comment to Code Ratio = ratio of

comment lines to code lines.

Measures are collected by SCITOOLS Understand (see ref.
website [11]); their aggregation into characteristics and in
the final maintainability index is performed by the Spazio
IT SonarQube Ada Plugin.

1.3 Spazio IT SonarQube Ada Metric Plugin
Spazio IT has developed for AIRBUS Helicopters a
SonarQube Ada plugin in support of maintenance activities
performed on large code bases (see ref. website [14]).

SonarQube is an open source web application that:

 takes in input a set of source code files and a set of
analyses results (produced by external tools);

Figure 2 – Spazio IT SonarQube Ada Metric Plugin

M. Mart ignano, A. Jung, T. Lehmann, C. Schmidt 101

Ada User Journal Volume 36, Number 2, June 2015

 stores both sources and results in a database;

 makes available the gathered information via a
dynamic website where the results are shown in
the context of the code itself.

Analyses on the same code base can be performed at
different moments in time and SonarQube keeps track of
the changes/evolution. The problems found during analyses
(a.k.a. issues) can be managed directly from within the
system itself, e.g.

 identifying false positives

 assigning issues to developers;

 checking their status (if they have been solved).

1.4 SonarQubeAda Metric Plugin Results
The maintainability index has proved to correspond well
with the «experienced» actual maintainability of real case
projects.

Examples are available at this reference website [15] (see
the open source AdaCore projects XMLAda and polyORB
– of course, this demo server only contains open source
examples and not actual flight software systems).

The issues found by the tool identify the elements, the
points requiring a fix to improve the overall maintainability
of the analysed projects. The plugin can also detect code
duplication and display test and coverage data.

2 Independent Verification and
Validation of the IXV on-board Software

2.1 Spazio IT C/C++ Code Quality Platform
“The Intermediate eXperimental Vehicle (IXV) is an
European Space Agency (ESA) experimental re-entry
vehicle to validate European reusable launchers. IXV
successfully completed its 100-minute mission on the 11th
of February 2015, being the first lifting body to perform
full atmospheric re-entry from orbital speed. (see ref. doc
[7])”

Spazio IT was requested to perform an activity of
Independent Verification and Validation on the entire IXV
on-board Software.

To this purpose Spazio IT integrated the open source code
quality platform SonarQube with the following tools:

 CppCheck (see ref. website [2]) – open source – a
C/C++ static analyser

 PC-Lint (see ref. website [10]) – proprietary - a
rich pattern matching source code static analyzer
(mostly used for MISRA C 2004 compliancy
checks).

This integration was achieved by modifying the SonarQube
C/C++ Community Plugin (see ref. website [13]).

Spazio IT also integrated the following more advanced and
“research” tools to see if they were applicable to the IXV
software and could provide additional information:

 CBMC (see ref. website [1]) – open source – a C
prover based on bounded model checking

 Frama-C (see ref. website [4]) – open source – a
framework for the static analysis of C code –
especially its “value analysis” (i.e. abstract
interpretation) and “weakest precondition
calculus” plugins.

Apart from finding and removing issues in the flight
software, Spazio IT has developed a methodology, which if
effective in terms of bugs finding and allows for the
application of CBMC and Frama-C to the analysis of large
C/C++ code bases.

2.2 Developed Methodology
The developed methodology is divided in two parts:

 basic core – about how to use at best the compiler,
CppCheck and PC-Lint

 model checking and abstract interpretation – about
how to use at best CBMC and Frama-C.

2.2.1 Basic Core

 Identify which checks need to be executed on the
code, i.e.

o for the compiler, which compiler
warnings (possibly all of them) need to
be verified;

o for CppCheck, which type of messages
(errors, warnings, performance messages,
and so on) need to be verified

o for PC-Lint, which rule sets have to be
used (e.g. MISRA C 2004), and for each
rule set, which actual rules make sense
and need to be verified

 Configure carefully the tools (in terms of tools
options, selected memory model, location of the
sources, location of the include files, and so on…

 Tune/optimize the configuration identified in the
previous point by running few analysis sessions to
verify that the proper information is generated
(and disable the production of useless, noisy

Figure 3 – SonarQube Architecture

102 Source Code Analysys of Fl ight Software using a Code Qual i ty Plat form

Volume 36, Number 2, June 2015 Ada User Journal

outputs – this may require the development of
some filtering scripts).

 Run the analyses whenever it makes sense in the
lifetime of a project (or during operations), and
possibly on a regular basis.

 At every analysis the code:

o should compile;

o should compile without generating any of
the selected warnings;

o should pass CppCheck analyses without
generating any of the selected messages;

o should pass PC-Lint analyses without
violating any of the selected
rules/guidelines.

2.2.2 Model Checking and Abstract Interpretation

CBMC and Frama-C Plugins (Value Analysis and Weakest
Precondition) organize their computation into two phases:

 Generation of a model of the code under analysis

 “Symbolic execution” or “logic verification” of
the model itself.

The computation resources required by phase one grow in a
polynomial way with the complexity of code under analysis
(number of files, packages, classes, functions, parameters,
variables, lines of code, loops, constructs and so o…)

The computation resources required by phase two grow
exponentially with the complexity of the code under of
analysis.

So, for not so small, real code bases:

 either the analysis is stopped at the end of phase
one

 or the system under analysis needs to be
partitioned into reasonable, manageable “chunks”.

CBMC phase one has shown to be good enough to prove
the lack of infinite loops in the IXV code.

Using manageable “chunks”, that is acting locally, at
function/subprogram level has allowed both CBMC and
Frama-C to detect issues in terms of:

 pointer checks;

 memory leak checks;

 signed/unsigned overflow;

 float overflow.

2.3 Found Issues
The following is a brief list of the types of issues found in
the IXV source code. Each type of issue is accompanied by
the tool that actually detected it.

 Uninitialized Variables

o PC-Lint

 Array Index out of bounds

o PC-Lint in all code bases but only in
simple cases

o CBMC and Frama-C in all possible cases
but in small portions of code

 Constant Value Boolean Expression (MISRA C
2004 Rule 13.7)

o PC-Lint

 Combining Signing and Unsigned Integers
(MISRA C 2004 Rules 10.1, 10.3, 10.4)

o PC-Lint

 Implicit integer type conversion (and promotion)
(MISRA C 2004 10.1, 10.3, 10.4, 10.6, 10.7, 10.8)

o PC-Lint

 Floating point comparison (MISRA C 2004 Rule
13.3)

o PC-Lint

 Problems with pointers

o PC-Lint

o CBMC / Frama-C

 Divisions by Zero / Overflows

o PC-Lint

o CBMC / Frama-C

o Traps

3 The Way Ahead

3.1 Quality Models and ALM Systems
All «software artefacts» can be represented as «collections
of composite objects», i.e. objects containing
hierarchies/trees of other objects… e.g.

 A requirements document contains
requirements…

 A system consists of subsystems/modules, which
in turn consist of packages, containing
subprograms…

Figure 3 - Software Artefacts managed by Inopus ALM2

system

M. Mart ignano, A. Jung, T. Lehmann, C. Schmidt 103

Ada User Journal Volume 36, Number 2, June 2015

 During a test campaign a set of tests are executed;
these tests are described in test procedure
documents and produce test data…

All «non-code» characteristics/metrics can be expressed as
relationships among items/elements of these
hierarchies/compositions… e.g.:

 A requirement is said «implemented» if there is a
component in the software design (and eventually
in the source code) actually implementing it.

 A requirement is said «verifiable» if there is a test
able to prove that the requirement has been met.

Having all items/software artefacts stored and maintained
in a single repository together with all specified
relationships would be a clear advantage.

In fact, this repository would allow to know at any moment
the actual (quality) status of the project.

Tools like IBM Doors or Inopus ALM2 (see Inopus ALM2
website [5] and demo server [6]) could be used as
Requirements and/or Application Lifecycle Management
System to create and maintain such single repository.

3.2 SonarQube: Bugs Finding and Knowledge
Sharing
Code Quality Platforms like SonarQube have proved to be
very valuable not only to endorse standards/guidelines but
also and especially to:

 improve the efficiency of code inspection
activities in finding and removing bugs;

 spread/share in an organization/corporate the
culture, awareness, know-how related to a given
programming language when used in a particular
application domain.

The adoption of Code Quality Platforms should be
encouraged in all software projects.

3.3 ALM Systems and SonarQube Integration
In the same way as in a quality model there are «code» and
«non-code» characteristics/metrics, in order to manage in a
complete and effective way the quality of a project it is
necessary to combine a «code» quality platform together
with a «non-code» quality platform.

Inopus and Spazio IT are currently working together to
integrate ALM2 («non-code» – see ref. demo server [6])
with SonarQube («code» – see ref. demo server [15]) and
build a complete quality management system.

References

[1] CBMC, http://www.cprover.org/cbmc/.

[2] CppCheck, http://cppcheck.sourceforge.net/.

[3] European Cooperation for Space Standardization,
http://ecss.nl/.

[4] Frama-C, http://frama-c.com/.

[5] Inopus ALM2, http://www.inopus.de/ index.php?
option=com_content&view=article&id=128&Itemid=5
74&lang=en

[6] Inopus ALM2 Demo Server,
http://alm2demo.inopus.de/login.html.

[7] IXV page at Wikipedia, http://en.wikipedia.org/wiki/
Intermediate_eXperimental_Vehicle

[8] J.L. Letouzey, The SQUALE Definition Document,
v1.0,http://www.sqale.org/wp-content/uploads/
2010/08/SQALE-Method-EN-V1-0.pdf.

[9] C. Schmidt, B. Gumbel, Software Measurement
Regulations, AIRBUS Helicopters Doc. Number
16SUZ00021E01.

[10] PC-Lint, http://www.gimpel.com/html/pcl.htm.

[11] SCITOOLS Understand, https://scitools.com/.

[12] SonarQube, http://www.sonarqube.org/.

[13] SonarQube C/C++ Community Plugin,
https://github.com/wenns/sonar-cxx.

[14] Spazio IT Code Quality Platforms,
http://www.spazioit.com/pages_en/sol_inf_en/
code_quality_en/.

[15] Spazio IT SonarQube Demo Server,
http://sonarsrv.spazioit.com/.

 105

Ada User Journal Volume 36, Number 2, June 2015

Support of Ravenscar in SPARK 2014
Steve Baird, Claire Dross, Yannick Moy, Tucker Taft
AdaCore

Florian Schanda
Altran UK

Abstract

This document presents the envisioned support for
concurrent programming on a monoprocessor or a
multiprocessor in the context of SPARK 2014, based
on the existing Ravenscar profile of Ada.

The main goal of this support is to provide support
for concurrent computation by expanding SPARK's
supported subset of Ada to include tasks and
protected objects (subject to some restrictions) while
continuing to ensure statically the absence of run-
time errors, data flow traceability, and the other
benefits of SPARK.

This includes statically ensuring the absence of

 - data races (i.e., unsynchronized access to shared
data); and

 - deadlocks; and

 - run-time errors associated with the newly allowed
language constructs (e.g., the run-time check
associated with the Ravenscar profile's
Max_Entry_Queue_Length restriction).

In most cases, this is accomplished by imposing
rules which can be checked during flow analysis or
earlier (as opposed to by introducing new
verification conditions).

In the case of a monoprocessor application, the
detection of deadlock depends on the Ceiling
Protocol enforced by Ravenscar. In the case of a
multiprocessor application, the detection of
deadlock depends on a suitable Ceiling Protocol
being followed, or on another mechanism like tasks
following a fixed access order for protected objects.

In the future, SPARK may be further extended to
support other concurrency profiles that are being
discussed in the context of IRTAW (International
Real-Time Ada Workshop), which lift some
restrictions of Ravenscar that users have found
problematic (e.g. maximum of one entry per
protected object).

1 Proposed Tasking Model in SPARK

Tasks may communicate with each other via
synchronized objects; these include protected objects,
suspension objects, atomic objects, and "read-only after
elaboration" objects (described later).

Other objects are said to be unsynchronized and may only
be referenced (directly or via intermediate calls) by a
single task (including the environment task) or by the
protected operations of a single protected object.

SPARK's Part_Of aspect is generalized to support
specifying this "ownership" relationship between
unsynchronized global objects and their associated
synchronized "owners". We call "virtual protected object"
such an unsynchronized object (possibly volatile) whose
access is mediated by a protected object. This allows
ensuring the absence of data races without generating new
verification conditions; the hazard is avoided solely
through data flow analysis.

Similar techniques (although not implemented using the
Part_Of aspect) are used to ensure that only a single task
ever suspends on a given suspension object or calls an
entry of a given protected object.

The same contract-related aspects are defined for a
protected subprogram or entry as for an unprotected
subprogram (an entry is treated like a procedure). The
protected object itself is treated as an "in" parameter to
protected functions, and an "in out" parameter to
protected procedures and entries.

SPARK's Global and Depends aspects may also be
specified for a task unit and have the same meaning that
SPARK already defines for them in the case of a
nonreturning subprogram. Thus, the rule preventing (for
example) a task from accessing an unsynchronized global
variable (unless the variable's Part_Of aspect indicates
that such access is permitted) becomes a rule about the
Global aspect of a task unit. Task nontermination is also
ensured using the same rules that are already used for a
nonreturning subprogram. Refined_Global and
Refined_Depends aspects may be specified for a task
body.

Similarly, SPARK's existing language rules for dealing
with volatile objects are generalized to apply to
synchronized objects. For example, a call to a protected
function is subject to the same restrictions that sequential
SPARK already imposes on reading a volatile object.

The notion of a volatile function is introduced (e.g.,
Ada.Real_Time.Clock or Ada.Task_Identification.
Current_Task are volatile functions). A call to a volatile
function is subject to the same restrictions that sequential
SPARK already imposes on reading a volatile object. The
implementation of a volatile function is allowed, for

106 Support of Ravenscar in Spark 2014

Volume 36, Number 2, June 2015 Ada User Journal

example, to call a protected function or to read a volatile
variable, and return statements for volatile functions are
added to the "non-interfering context" list (more
specifically, the expression of a return statement or the rhs
of an assignment to the return object of an extended return
statement are added to the list). A volatile function (unlike
a non-volatile function) is allowed to have an effectively
volatile object as a global input or as a formal parameter
(although the Effective_Reads aspect must be False). A
new Boolean aspect Volatile_Function is defined to
identify such functions.

The notion of a synchronized state abstraction is
introduced. The Boolean aspect used to specify this
property of a state abstraction is named "Synchronous"
because "Synchronized" is an Ada reserved word. A
constituent (either an object or another state abstraction)
of a given state abstraction shall be synchronized if and
only if the state abstraction is synchronized.

Something functionally similar to Ada.Task_Attributes
could be provided eventually in order to have a
mechanism for accessing task-specific state. Note that the
Ravenscar profile includes

No_Dependence => Ada.Task_Attributes,

so simply supporting Ada.Task_Attributes "as is" won't
work. The Callable, Caller, Count, and Terminated
attributes are supported, and modelled as reading the
global external state Ada.Task_Identification.
Tasking_State, hence can only appear where a read of a
volatile variable would be allowed. The Identity, Priority,
and Storage_Size attributes are supported but introduce
no such dependency.

The Ada RM says:

During a protected action, it is a bounded error to
invoke an operation that is potentially blocking.

To statically prevent this bounded error from occurring,
flow analysis will be able to determine whether any given
subprogram is potentially blocking. [The ARG is in the
process of defining a Boolean-valued Potentially_Blocking
aspect to indicate (as part of a subprogram's specification)
whether a subprogram is potentially blocking (see AI12-
0064). At some time after that definition is finalized, the
new aspect will probably be included in SPARK.]

Overriding restrictions are defined for the
Potentially_Blocking and Volatile_Function aspects which
are analogous to the existing rule for the
Extensions_Visible aspect:

A subprogram whose Extensions_Visible aspect is
True shall not override an inherited primitive operation
of a tagged type whose Extensions_Visible aspect is
False. [The reverse is allowed.]

Static prevention of deadlock is guaranteed by flow
analysis. More specifically, flow analysis detects cyclic
dependencies involving locking associated with calls to
protected functions and procedures. Note that the program
may still block on calls to protected entries and

suspension objects, which are not covered by the
deadlock detection. The priority checks associated with
the Ceiling_Locking locking policy are handled in proof.

Functions such as Calendar.Clock are marked as volatile
and are specified as taking an external state abstraction as
a global input. Preconditions are added as appropriate to
subprograms provided by packages such as Ada.Calendar,
Ada.Real_Time, Ada.Execution_Time, in order to avoid
language defined runtime check failures (e.g.,
Ada.Execution_Time.Clock should not be passed a null
Task_Id).

Delay statements are allowed (subject to Ravenscar's
No_Relative_Delay restriction). Synchronized tagged
types (including synchronized interface types) are
allowed.

Ravenscar includes the No_Task_Hierarchy and
No_Task_Termination restrictions, which eliminates the
problems associated with using a
Task_Identification.Task_Id value after the associated task
has terminated or no longer exists. Thus, we don't need to
impose any restrictions to avoid "dangling" Task_Id
values in the context of Ravenscar. SPARK does
statically prevent (via flow analysis) violations of the rule

It is a bounded error to call the Current_Task function
from an entry_body, or an interrupt handler, or
finalization of a task attribute.

Ada's Attach_Handler aspect takes an expression of type
Interrupts.Interrupt_Id, but package Interrupts declares an
access-to-subprogram type (and access-to-subprogram
types are not currently in SPARK). This is dealt with by
marking SPARK_Mode On/Off in the Ada.Interrupts
spec.

An unsynchronized object whose Part_Of aspect specifies
that it "belongs" to a protected unit is treated for purposes
of state abstraction and flow analysis similarly to a
component of the protected type. For example, it is not
(directly) a part of the visible or hidden state of the
enclosing package. Similarly, an unsynchronized object
whose Part_Of aspect specifies that it "belongs" to a task
unit is treated as though it were declared immediately
within the task body. Restrictions are imposed which
ensure that if an unsynchronized object "belongs" to a
task unit or a protected unit then exactly one object of that
type is declared (this is trivially satisfied in the case of an
anonymous type).

An object of a task or protected type is treated the same as
any other object with respect to the Global, Depends,
Refined_Global, Refined_Depends, and Refined_State
aspects. A protected object is treated like a record object
with respect to modification of its components; for
example, a procedure which calls a protected procedure as
follows

Some_Global_Protected_Object.
Set_Some_Component (To_Value => 123);

S. Baird, C. Dross, Y. Moy, T. Taft , F. Schanda 107

Ada User Journal Volume 36, Number 2, June 2015

would probably include Some_Global_Protected_Object
on its list of In_Out globals. A task object is treated like a
record object with respect to reading its discriminants (if
any) and task-specific attributes. In contrast, local
variables declared within a task body are not considered
to be components of the task object. It would never make
sense to list a top-level object of a task type as an In_Out
global of a subprogram because a task object cannot be
modified.

SPARK's anti-aliasing rules could be relaxed for some
synchronized objects. These rules are not needed for
avoiding data races (this follows from the definition of
"synchronized object") and they are not needed for proofs.
Roughly speaking, if a variables's value might
spontaneously change at any time, then it doesn't matter
for purposes of proofs if it also happens to be updated as a
result of aliasing. It's not clear how much benefit might be
gained by taking advantage of this.

2 Proposed Language Restrictions

Language restrictions beyond those imposed by the
Ravenscar profile include:

1. Synchronized objects (as defined above) may only be
declared at library level. [Ravenscar requires this in
some but not all cases.]

2. Variables referenced (directly or through
intermediate subprogram call) by two or more tasks
or protected objects shall be synchronized.

3. A function cannot (directly or through intermediate
subprogram calls) suspend or delay.

4. Either all or none of the components of an object
shall be synchronized. [Corner case: an extension of a
componentless tagged type shall not have a
synchronized component.]

5. A Partition_Elaboration_Policy of Sequential is
required. In addition to preventing premature task
activation, this is also needed in order to allow tasks
to safely access "read-only after elaboration" objects.
These are variables which are modified only during
library unit elaboration and can be viewed as
constants after task activation has begun. A new
Boolean aspect Constant_After_Elaboration is defined
to identify such objects.

6. No synchronized ghost objects.

7. A protected type shall define full default
initialization. A "virtual protected object" (i.e., an
object whose Part_Of aspect indicates that it can only
be accessed via the protected operations of one
protected object) must similarly either be imported,
have an explicit initial value or be of a type which
defines full default initialization.

3 Proposed Modifications to the
Standard Library

3.1 Ada.Execution_Time
1. Package spec is marked SPARK_Mode => On (private

part is SPARK_Mode => Off).

2. Function Clock is marked Volatile_Function with a
global input of Ada.Task_Identification.
Tasking_State.

3. A precondition is added to Clock: Task_Id /=
Task_Identification.Null_Task_Id.

4. A precondition is added to functions "+" and "-" on
CPU_Time to ensure that the result fits in the result
type.

5. A precondition is added to Time_Of to ensure that the
result should fit in the result type.

6. Function Clock_For_Interrupts is marked
Volatile_Function with a global input of
Ada.Task_Identification.Tasking_State.

7. A precondition is added to Clock_For_Interrupts:
Interrupt_Clocks_Supported = True.

3.2 Ada.Execution_Time.Interrupts
1. A precondition is added to Clock:

Separate_Interrupt_Clocks_Supported = True

2. A postcondition is added to Clock:
(if not Supported (Interrupt) then Clock'Result =
Ada.Execution_Time.Time_Of(0))

3.3 Ada.Interrupts
1. Functions Is_Reserved, Is_Attached, and Get_CPU

are marked SPARK_Mode => On (note that the
package spec cannot be marked SPARK_Mode On as
Parameterless_Handler is defined as an access type)
and other subprograms are marked SPARK_Mode =>
Off.

2. Functions Is_Attached and Get_CPU are marked
Volatile_Function with a global input of
Ada.Task_Identification.Tasking_State.

3. A global input-output of Ada.Task_Identification.
Tasking_State is added to procedure Detach_Handler.

3.4 Ada.Real_Time
1. Package spec is marked SPARK_Mode => On (private

part is SPARK_Mode => Off)

2. An external abstract state Clock_Time is added to
package Ada.Real_Time

3. Function Clock is marked Volatile_Function with a
global input of Clock_Time.

4. A precondition is added to arithmetic operators on
Time and Time_Span to ensure that the result fits in
the result type.

5. A preconditions is added to To_Duration,
To_Time_Span, Nanoseconds, Microseconds,

108 Support of Ravenscar in Spark 2014

Volume 36, Number 2, June 2015 Ada User Journal

Milliseconds, Seconds, and Minutes to ensure that the
result fits in the result type.

6. A precondition is added to Time_Of to ensure that the
result should fit in the result type.

3.5 Ada.Real_Time.Timing_Events
This entire package (which fundamentally depends on a
visible access-to-subprogram type) is not in SPARK. This
is a stronger restriction than Ravenscar's
No_Local_Timing_Events restriction.

3.6 Ada.Synchronous_Task_Control
1. Package spec is marked SPARK_Mode => On (private

part is SPARK_Mode => Off)

2. All procedures have a dependency S => null (despite
in out mode for S)

3. Function Current_State is marked Volatile_Function
with a global input of Ada.Task_Identification.
Tasking_State.

4. Procedure Suspend_Until_true is marked
Potentially_Blocking.

3.7 Ada.Task_Identification
1. It defines an external abstract state Tasking_State

with Async_Readers => True and Async_Writers =>
True (but Effective_Reads => False and
Effective_Writes => False). This state is used to
model access to the runtime system by various
standard functions (for example Current_Task in that
same unit) and attribute references T'Identity and
E'Caller.

2. Package spec is marked SPARK_Mode => On (private
part is SPARK_Mode => Off)

3. Function Current_Task is marked Volatile_Function
with a Global Input of
Ada.Task_Identification.Tasking_State.

4. Procedure Abort_Task is marked SPARK_Mode Off
(note that Ravenscar forbids calling
Task_Identification.Abort_Task with restriction
No_Abort_Statements).

4 Impact on Legality Checking

The frontend is the part of GNATprove which is shared
with the GNAT compiler. SPARK legality rules are
enforced in the frontend, for those parts of a program that
are marked SPARK_Mode => On.

In addition to enforcing Ravenscar restrictions when the
Ravenscar profile is set, the frontend and the part of
GNATprove checking SPARK legality rules will enforce
some of the basic rules that do not require full flow
analysis:

 Restrictions on calling context of volatile
functions (we already do this for volatile
objects).

 Enforcement of library-level declarations for
synchronized objects.

 The correct partition elaboration policy is set.

 Enforcing the none/all-components-are-
synchronized rule.

 Rejecting synchronized ghosts.

 Demanding full default initialization for
protected types (including its virtual state).

Additionally, Ravenscar profile should be set whenever a
concurrency construct is in a part of code marked
SPARK_Mode => On.

5 Impact on Flow Analysis

While SPARK 2005 required that all information related
to tasks and protected objects appear in package specs to
make modular flow analysis possible, SPARK 2014 does
not make this simplification and thus flow analysis for
tasking will be non-modular initially. However, we do
expect to add contracts for all tasking related issues so
that it is possible to return to a fully modular analysis;
since some of the contracts are currently also discussed by
the ARG it seemed like a good idea to wait until we have
a standard set. Note that unlike computation of globals,
the analysis required is much simpler (simple graph
connection problems). The following properties will be
computed:

 Suspension objects suspended-on (for single-
suspender restrictions).

 Protected entries called (for single-caller
restrictions).

 Unsynchronized objects read/written (for race
conditions).

 Protected objects read-locked (for deadlock).

 Protected objects write-locked (for deadlock).

 Protected type instantiations (for singleton
protected object restrictions).

 Task type instantiations (for singleton task object
restrictions).

 Subprograms called directly or indirectly that
access a protected object and the protected object
accessed (for verification of the ceiling protocol).

 Which subprograms are potentially blocking (for
absence of blocking in protected operations).

These will be used by the majority of checks that flow
analysis will perform. Checks will be performed at three
levels: during subprogram analysis (unit), during package
analysis (package), and when analyzing overall graph
(global). Errors computed during the global phase will be
issued when we process the enclosing offending object.

The checks performed by flow analysis will be:

S. Baird, C. Dross, Y. Moy, T. Taft , F. Schanda 109

Ada User Journal Volume 36, Number 2, June 2015

 (unit) No blocking in protected operations - a
simple test if any called subprogram is one that
might block. The error will be issued at the
called subprogram, and we can probably point at
which subprogram actually makes the call
blocking (this might be quite far down the call
tree).

 (global) When two or more tasks access any
object, making sure that it is synchronized (each
object will have 'owners', we will then test for
this when the object is declared). The error will
be raised when we analyze the enclosing
subprogram or package.

 (unit|package) While the frontend checks that
Part_Of correctly identifies the 'owner' of an
unsynchronized object, flow analysis will make
sure that any such objects are only used in their
owner. Combined with the above, the check that
no two tasks use the same unsynchronized object
emerges.

 (global) Flow analysis will add a check that only
a single task suspends on any given suspension
object. The error will reference the package and
suspension object. It probably makes sense to
issue the error on the suspension object and
provide the set of tasks suspending on it in the
message.

 (global) Flow analysis will add a check that only
a single task calls a specific entry of any given
protected object. Error message as above.

Flow analysis will also check the new contract indicating
an object may not be modified after elaboration, this
check is similar to the existing check of making sure an
`in' global is never modified.

Finally, CFG construction in flow analysis will need to
understand the new syntax introduced by tasking:
protected objects will be treated as always-private
(potentially discriminated) records and tasks will be
treated the same (although variables within a task T are
not considered part of T when T appears in annotations).

6 Impact on Proof

Proof will be enhanced to support verification of the
newly allowed language constructs by modelling
adequately possible concurrent accesses and by
generating new Verification Conditions where needed to
complete the checks performed by flow analysis.

6.1 Modelling Concurrent Accesses
Proof of a task unit should be similar to the proof of a
non-returning procedure. Namely, Verification Conditions
will be generated for checking absence of run-time errors
and non-termination (the latter is checked by simulating
an assertion of False at the end of a task body, which
should never be reachable).

Proof of a protected unit should be similar to the proof of
a package. Verification Conditions will be generated for
each of the unit's subprograms and entries. Proof of entry
bodies will be treated like procedures.

Since they can be accessed and modified asynchronously
during the execution of a subprogram, entry or task body,
synchronized objects should be treated like volatile
variable with Async_Writers => True and Async_Readers
=> True (but Effective_Writes => False and
Effective_Reads => False). In other words, proof cannot
assume that a synchronized object keeps its value between
two successive accesses to read or write it.

The only exception to the above rule is for access to a
protected object when proving one of its protected
subprogram or entry. In that case, the protected object
should be treated as a normal object not subject to
concurrent access.

6.2 Generation of New Verification Conditions
New Verification Conditions will be generated for a few
tasking specific run-time errors:

1. Checking that the expression of a pragma
Attach_Handler is never reserved is done in proof as
it requires dealing with values of expressions.

2. More noticeably, verifications of values of priorities
will also be done in proof. For a protected object with
either an Attach_Handler or an Interrupt_Handler
aspect specified for one of its procedures, a
Verification Condition will be generated to make sure
that the ceiling priority of the object is in
System.Interrupt_Priority.

3. Verification Conditions to check the Ceiling Protocol
are generated during the verification of tasks bodies.
At each call to a subprogram which accesses, directly
or indirectly, a protected object, a Verification
Condition will be generated to check that the active
priority of the thread is less or equal to the ceiling
priority of the object.

7 Examples

The following example is the stopwatch example from
RavenSPARK translated into SPARK 2014.

 -- tuningdata.ads
 with System, Ada.Real_Time;

 package TuningData with SPARK_Mode
 is
 -- priorities
 UserPriority : constant
 System.Interrupt_Priority := 31;
 TimerPriority : constant System.Priority := 15;
 DisplayPriority : constant
 System.Interrupt_Priority := 31;

 -- task periodicities
 TimerPeriod : constant Ada.Real_Time.Time_Span
 := Ada.Real_Time.Milliseconds (1000);

110 Support of Ravenscar in Spark 2014

Volume 36, Number 2, June 2015 Ada User Journal

 end TuningData;

 -- display.ads
 with TuningData;

 package Display with SPARK_Mode,
 Abstract_State => (State with External =>
 (Async_Readers, Effective_Writes))
 is
 procedure Initialize with
 Global => (In_Out => State),
 Depends => (State => State);

 procedure AddSecond with
 Global => (Output => State),
 Depends => (State => null);

 end Display;

 -- display.adb
 with System.Storage_Elements;

 package body Display with
 SPARK_Mode,
 Refined_State => (State => Internal_State)
 is
 -- External variable Port is a virtual protected
 -- object. All accesses to Port are mediated by
 -- protected object Internal_State, which is
 -- specified with the Part_Of aspect on Port.
 Port : Integer with
 Volatile,
 Async_Readers,
 Effective_Writes,
 Address =>
 System.Storage_Elements.To_Address
 (16#FFFF_FFFF#),
 Part_Of => Internal_State;

 protected Internal_State with
 Interrupt_Priority => TuningData.DisplayPriority
 is
 -- add 1 second to stored time and send it to port
 procedure Increment with
 Global => null,
 Depends => (Internal_State => Internal_State);

 -- clear time to 0 and send it to port;
 procedure Reset with
 Global => null,
 Depends => (Internal_State => null);

 private
 Counter : Natural := 0;
 end Internal_State;

 protected body Internal_State is
 procedure Increment is
 begin
 Counter := Counter + 1;

 Port := Counter;
 end Increment;

 procedure Reset is
 begin
 Counter := 0;
 Port := Counter;
 end Reset;
 end Internal_State;

 procedure Initialize with
 Refined_Global => (In_Out => Internal_State),
 Refined_Depends => (Internal_State =>
 Internal_State)
 is
 begin
 Internal_State.Reset;
 end Initialize;

 procedure AddSecond with
 Refined_Global => (Output => Internal_State),
 Refined_Depends => (Internal_State => null)
 is
 begin
 Internal_State.Increment;
 end AddSecond;

 end Display;

 -- timer.ads
 with TuningData;
 limited with Ada.Synchronous_Task_Control,
 Ada.Real_Time, Display;

 package Timer with
 SPARK_Mode,
 Abstract_State => (Oper_State, Timing_State)
 is

 -- These two procedures simply toggle
 -- suspension object Operate
 procedure StartClock with
 Global => (Output => Oper_State),
 Depends => (Oper_State => null);

 procedure StopClock with
 Global => (Output => Oper_State),
 Depends => (Oper_State => null);

 end Timer;

 -- timer.adb
 with Ada.Synchronous_Task_Control,
 Ada.Real_Time, Display;
 use type Ada.Real_Time.Time;

 package body Timer with
 SPARK_Mode,
 Refined_State => (Oper_State => Operate,
 Timing_State => TimingLoop)

S. Baird, C. Dross, Y. Moy, T. Taft , F. Schanda 111

Ada User Journal Volume 36, Number 2, June 2015

 is
 Operate :
Ada.Synchronous_Task_Control.Suspension_Object;

 task TimingLoop with
 Global => (Output => Oper_State,
 In_Out => Display.State,
 Input => Ada.Real_Time.Clock_Time),
 Depends => (Oper_State => null,
 Display.State =>+ null,
 null => Ada.Real_Time.Clock_Time),
 Priority => TuningData.TimerPriority;

 task body TimingLoop is
 Release_Time : Ada.Real_Time.Time;
 Period : constant Ada.Real_Time.Time_Span :=
 TuningData.TimerPeriod;
 begin
 Display.Initialize; -- ensure we get 0 on the screen
 -- at start up
 loop
 -- wait until user allows clock to run
 -- calling procedure Suspend_Until_True
 -- which is Potentially_Blocking
 Ada.Synchronous_Task_Control.
 Suspend_Until_True (Operate);
 Ada.Synchronous_Task_Control.
 Set_True (Operate);
 -- once running, count the seconds
 -- calling Ada.Real_Time.Clock which is a
 -- Volatile_Function
 Release_Time := Ada.Real_Time.Clock;
 Release_Time := Release_Time + Period;
 delay until Release_Time;
 -- each time round, update the display
 Display.AddSecond;
 end loop;
 end TimingLoop;

 procedure StartClock
 is
 begin
 Ada.Synchronous_Task_Control.
 Set_True (Operate);
 end StartClock;

 procedure StopClock
 is
 begin
 Ada.Synchronous_Task_Control.
 Set_False (Operate);
 end StopClock;

 end Timer;

 -- user.ads
 with TuningData;
 limited with Timer, Display;

 package User with

 SPARK_Mode,
 Abstract_State => Button_State
 is
 end User;

 -- user.adb
 with Timer, Display;

 package body User with
 SPARK_Mode,
 Refined_State => (Button_State => Buttons)
 is
 protected Buttons is
 pragma Interrupt_Priority
 (TuningData.UserPriority);

 procedure StartClock with
 Global => (Output => Timer.Oper_State),
 Depends => (Timer.Oper_State => null),
 Attach_Handler => 1;

 procedure StopClock with
 Global => (Output => Timer.Oper_State),
 Depends => (Timer.Oper_State => null),
 Attach_Handler => 2;

 procedure ResetClock with
 Global => (In_Out => Display.State),
 Depends => (Display.State =>+ null),
 Attach_Handler => 3;
 end Buttons;

 protected body Buttons is
 procedure StartClock
 is
 begin
 Timer.StartClock;
 end StartClock;

 procedure StopClock
 is
 begin
 Timer.StopClock;
 end StopClock;

 procedure ResetClock
 is
 begin
 Display.Initialize;
 end ResetClock;
 end Buttons;
 end User;

 -- main.adb
 with User, Timer, Display, Ada.Real_Time;

 procedure Main with
 SPARK_Mode,
 Global => (Input => Ada.Real_Time.Clock_Time,
 In_Out => (User.Button_State,

112 Support of Ravenscar in Spark 2014

Volume 36, Number 2, June 2015 Ada User Journal

 Timer.Oper_State,
 Display.State)),
 Depends => (User.Button_State =>+ null,
 Timer.Oper_State =>+ User.Button_State,
 Display.State =>+ (Timer.Oper_State,
 User.Button_State),
 null => Ada.Real_Time.Clock_Time),
 Priority => 10
 is
 begin
 null;
 end Main;

References
[16] A. Burns, B. Dobbing and T. Vardanega (2004),

Guide for the use of the Ada Ravenscar Profile in

high integrity systems, University of York Technical
Report.

[17] SPARK (2010), The SPARK Ravenscar Profile.

[18] T. Taft, B. Moore, L. M. Pinho and S. Michell, Safe
Parallel Programming in Ada with Language
Extension, Proc. of the 2014 ACM SIGAda annual
conference on High integrity language technology,
pp. 87-96, ACM.

[19] A. Burns and A. J. Wellings (2013), Locking Policies
for Multiprocessor Ada, ACM SigAda Letters v. 33
issue 2, pp. 59-65, ACM.

[20] S. Lin (2013), A Flexible Multiprocessor Resource
Sharing Framework for Ada, PhD thesis, University
of York.

 113

Ada User Journal Volume 36, Number 2, June 2015

SPARK 2014 Rationale: Ghost Code, Object
Oriented Programming and Functional Update
Yannick Moy

AdaCore, France

Abstract

This paper continues the publication of the "SPARK
2014 Rationale", which started in the December
2013 issue of the Ada User Journal. In this
instalment, we present three contributions regarding
ghost code, Object Oriented programming and
functional update in SPARK.

1 Ghost Code

A common situation when proving properties about a
program is that you end up writing additional code whose
only purpose is to help proving the original program. This
ghost code may be code that expresses the very properties
you want to prove, or code that allows naming in
properties some quantities that would have no name
otherwise. This is more common when proving richer
properties (for example an integrity, functional or security
property), but this may also be needed when proving a
"mundane" property like absence of run-time errors.

If you're careful or lucky enough, the additional code you
write will

 not impact the program being verified, and

 be removed during compilation, so that it does
not inflate binary size or waste execution cycles.

But SPARK provides a better way, by marking the
corresponding code as ghost code, using the new Ghost
aspect. This instructs GNATprove to check property 1
above and GNAT to ensure property 2 above. For
example, a function that is only used in contracts and
assertion pragmas can be marked as ghost as follows:

 function Is_Valid (X : T) return Boolean with Ghost;

and a variable that is only used to store or compute values
read in contracts and assertion pragmas can be marked as
ghost as follows:

 Current_State : State_T with Ghost;

Besides declarations of ghost entities (packages,
subprograms, types or variables), ghost code consists also
of:

 statements that assign to a ghost variable,

 calls to ghost procedures,

 contracts and assertion pragmas that refer to a
ghost entity.

The identification of ghost code in SPARK is thus mostly
syntactic, which ensures both that ghost code is visibly
ghost to programmers and easily removed by GNAT
during compilation. At the same time, SPARK has
verification rules that ensure that ghost code cannot
impact the functional behavior of non-ghost code, and
that users cannot partly disable updates to a ghost variable
(either all updates must be enabled, or they must be
disabled). GNATprove checks those rules.

On the one hand, ghost code in SPARK is mostly targeted
at facilitating proofs, a direct descendant from auxiliary
variables used in the 60s (see the Related Work section of
the article The Spirit of Ghost Code [1]). On the other
hand, ghost code in Ada or SPARK provides a strong
mechanism for safe code instrumentation, reminiscent of
aspect programming principles.

For more examples of uses of ghost code, see the section
of SPARK User's Guide on Ghost Code [2].

For an advanced use of ghost code to perform manual
proof, see [3].

2 Object Oriented Programming

Object Oriented Programming is known for making it
particularly difficult to analyze programs, because the
subprograms called are not always known statically: this
is the well-known feature of dispatching calls, a.k.a. late
binding, whereby the target of the call depends on the
dynamic type of the object on which it's called. For
example, the standard for civil avionics certification has
recognized this specific problem, and defines a specific
verification objective called Local Type Consistency that
should be met with one of three strategies (DO-332
document, paragraph OO.6.7.2):

4. Verify substitutability using formal methods.

5. Ensure that each class passes all the tests of all its
parent types which the class can replace.

6. For each call point, test every method that can be
invoked at that call point (pessimistic testing).

SPARK allows using strategy 1 above, by defining the
behavior of an overridden subprogram using a class-wide
contract (introduced by aspects Pre'Class and Post'Class)
and checking that the behavior of the overriding
subprogram (also defined using a class-wide contract) is a
suitable substitution. What is a suitable substitution? One
that satisfies the Liskov Substitution Principle (a.k.a. LSP,
named after Barbara Liskov who defined it in an article

114 SPARK 2014 Rat ionale: Ghost Code, OO Programming and Funct ional Update

Volume 36, Number 2, June 2015 Ada User Journal

with Jeannette Wing in 1993), which essentially says that
the behaviors of the overriding subprogram are a subset of
the possible behaviors of the overridden subprogram.
When programming by contract is used, as in SPARK,
this translates as two essential properties:

1. The precondition of the overriding subprogram
should be equal or less restrictive than the
precondition of the overridden subprogram.

2. The postcondition of the overriding subprogram
should be equal or give more guarantees than the
postcondition of the overridden subprogram.

For example, assume that you have a tagged type Object
that defines a procedure Draw to display the object on
screen. The Draw procedure may require that the object is
fully visible, and may set a flag in the object to record that
it has been drawn:

 type Object is tagged record ...
 procedure Draw (Obj : in out Object) with
 Pre'Class => Is_Included (Obj, Screen),
 Post'Class => Is_Drawn (Obj);

Then, Object may be derived in a number of specific
objects, say a box, which define their own Draw
procedure. In order to respect LSP, these new procedures
should have preconditions that can only weaken the
precondition on Object, and postconditions that can only
strengthen the postcondition on Object. For example, here
is an overriding of Draw that respects LSP:

 type Box is new Object with record ...
 procedure Draw (Obj : in out Box) with
 Pre'Class => not Is_Empty (
 Intersect (Obj, Screen)),
 Post'Class => Is_Drawn (Obj) and
 Canonical_Form (Obj);

Assuming that a box always occupies some space, if it is
included in the screen then its intersection with the screen
is not empty, hence the precondition of the overriding
subprogram is indeed weaker than the precondition of the
overridden one. For the postcondition, the one of the
overriding subprogram is the same as the one of the
overridden subprogram, plus an additional property,
hence it is stronger.

An overriding of Draw that does not respect LSP could
either fail to keep or weaken its precondition:

 procedure Draw (Obj : in out Box) with
 Pre'Class => Is_Centered (Obj, Screen), -- BAD
 Post'Class => ...

or fail to keep or strengthen its postcondition:

 procedure Draw (Obj : in out Box) with
 Pre'Class => ...
 Post'Class => Canonical_Form (Obj); -- BAD

GNATprove can be used to check automatically that
overriding subprograms respect LSP, and will detect the
bad overridings above. The benefit of enforcing LSP is
that the same class-wide contract can be used to analyze

calls to all possible targets of a dispatching call. Thus,
proof of code with dispatching calls is no more complex
than proof of code with regular calls, except the class-
wide contract is used for dispatching calls instead of
regular contracts for regular calls.

For more details on how Object Oriented programs can be
verified with GNATprove, see the SPARK User's Guide
[2].

3 Functional Update

While attribute Old allows expressing inside
postconditions the value of objects at subprogram entry,
this is in general not enough to conveniently express how
record and array objects are modified by a procedure. A
special attribute Update is defined in SPARK to make it
easy to express such properties.

As mentioned in a previous post [4], attribute Old allows
expressing inside a postcondition the value of an object at
subprogram entry. For example, the postcondition of the
procedure Incr can be written:

procedure Incr (X : in out Integer) with
 Post => X = X'Old + 1;

This is fine for a scalar variable, but what about a
composite variable? If X is a record with 3 integer
components A, B and C, we may write:

procedure Incr (X : in out Rec) with
 Post => X.A = X.A'Old + 1;

and if X is an array of integers, we may write:

procedure Incr (X : in out Arr) with
 Post => X(1) = X(1)'Old + 1;

This is fine for specifying the value of the record
component or array element which has been incremented,
but what about others? As humans, we may read
implicitly in the contracts above that components other
than A, and elements other than at index 1, have not been
modified by calling Incr. But the analysis tool
GNATprove cannot rely on that implicit information, as
the same contracts may be correct for procedures that do
modify components B and C and elements at indexes
different from 1. Hence, GNATprove interprets the
contracts above as:

X is an "in out" parameter that can be modified
by calling Incr, and the only thing we know
about that is how the value of component A (or
the element at index 1) is modified. We don't
know anything about how other components (or
elements) are modified.

The solution is to express explicitly in the postcondition
the property that other components or elements are not
modified by Incr:

procedure Incr (X : in out Rec) with
 Post => X.A = X.A'Old + 1 and then
 X.B = X.B'Old and then
 X.C = X.C'Old;

Y. Moy 115

Ada User Journal Volume 36, Number 2, June 2015

procedure Incr (X : in out Arr) with
 Post => X(1) = X(1)'Old + 1 and then
 (for all J in X'Range =>
 (if J /= 1 then X(J) = X'Old(J)));

With these postconditions, GNATprove can use the fact
that only component A and the element at index 1 are
modified by calling Incr, when analyzing Incr's callers.

But the above postconditions are not so easy to read, and
scale poorly if there are many more components, or if the
modification is applied to a deeply nested component.
This is why SPARK defines a special attribute Update
which copies the value of a composite object (record or
array) with some modifications. The above postconditions
can be expressed equivalently:

procedure Incr (X : in out Rec) with
 Post => X = X'Old'Update (A => X.A'Old + 1);

procedure Incr (X : in out Arr) with
 Post => X = X'Old'Update (1 => X(1)'Old + 1);

This attribute is equivalent to the square bracket notation
used in Ada 2005 for the same purpose. It can also be
used with benefits to express functions whose only
purpose is to return a slightly modified version of their
input. For example (using the syntax of expression
functions [2]):

function Incr (X : Rec) return Rec is
 (X'Update (A => X.A + 1));

function Incr (X : Arr) return Arr is
 (X'Update (1 => X(1) + 1));

Such usage is quite common in functional languages. For
example both OCaml and Haskell have a special syntax
for functional record update.

To know more about the attribute Update, see SPARK
User's Guide [2] and SPARK Reference Manual [5].

References
[1] J-C. Filliatre, L. Gondelman and A. Paskevich

(2014), The Spirit of Ghost Code, Proc. of the 26th
Intl. Conf. on Computer Aided Verification, Vienna,
Austria.

[2] AdaCore and Altran UK Ltd (2013), SPARK 2014
Toolset User’s Guide.

[3] C. Dross (2014), Manual Proof with Ghost Code in
SPARK 2014, http://www.spark-2014.org/entries/
detail/manual-proof-in-spark-2014.

[4] Y. Moy (2013), SPARK 2004 Rationale: Pre-call and
Pre-loop Values, Ada User Journal vol. 34, issue 4.
http://www.spark-2014.org/entries/detail/
spark-2014-rationale-pre-call-and-pre-loop-values.

[5] AdaCore and Altran UK Ltd (2013), SPARK 2014
Reference Manual.

116

Volume 36, Number 2, June 2015 Ada User Journal

National Ada Organizations

Ada-Belgium
attn. Dirk Craeynest
c/o KU Leuven
Dept. of Computer Science
Celestijnenlaan 200-A
B-3001 Leuven (Heverlee)
Belgium
Email: Dirk.Craeynest@cs.kuleuven.be
URL: www.cs.kuleuven.be/~dirk/ada-belgium

Ada in Denmark
attn. Jørgen Bundgaard
Email: Info@Ada-DK.org
URL: Ada-DK.org

Ada-Deutschland
Dr. Hubert B. Keller
Karlsruher Institut für Technologie (KIT)
Institut für Angewandte Informatik (IAI)
Campus Nord, Gebäude 445, Raum 243
Postfach 3640
76021 Karlsruhe
Germany
Email: Hubert.Keller@kit.edu
URL: ada-deutschland.de

Ada-France
attn: J-P Rosen
115, avenue du Maine
75014 Paris
France
URL: www.ada-france.org

Ada-Spain
attn. Sergio Sáez
DISCA-ETSINF-Edificio 1G
Universitat Politècnica de València
Camino de Vera s/n
E46022 Valencia
Spain
Phone: +34-963-877-007, Ext. 75741
Email: ssaez@disca.upv.es
URL: www.adaspain.org

Ada in Sweden
attn. Rei Stråhle
Rimbogatan 18
SE-753 24 Uppsala
Sweden
Phone: +46 73 253 7998
Email: rei@ada-sweden.org
URL: www.ada-sweden.org

Ada-Switzerland
c/o Ahlan Marriott
Altweg 5
8450 Andelfingen
Switzerland
Phone: +41 52 624 2939
e-mail: president@ada-switzerland.ch
URL: www.ada-switzerland.ch

	Contents
	Editorial
	Quarterly News Digest
	Conference Calendar
	Forthcoming events
	Lovelace & Babbage and the Creation of the 1843 'Notes'
	Source Code Analysis of Flight Software using a SonarQube based Code Quality Platform
	Support of Ravenscar in SPARK 2014
	SPARK 2014 Rationale: Ghost Code, Object Oriented Programming and Functional Update
	National Ada Organizations

