

Ada User Journal Volume 40, Number 1, March 2019

ADA
USER
JOURNAL

Volume 40
Number 1

March 2019

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 24

Forthcoming Events 31

Ada-Europe 2018 Industrial Presentations

 Z. Haider, B. Gallina, A. Carlsson, S. Mazzini, S. Puri
“ConcertoFLA-based Multi-concern Assurance for Space Systems” 35

Ada-Europe 2018 Technical Presentations

 M. Lindler, J. Aparicio, P. Lindgren
“Concurrent Reactive Objects in Rust Secure by Construction” 41

Special Contribution

 A. Burns, B. Dobbing, T. Vardanega
“Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems (Part 1)” 53

Ada-Europe Associate Members (National Ada Organizations) 72

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, become member of Ada-Europe at:
http://www.ada-europe.org/join

4

Volume 40, Number 1, March 2019 Ada User Journal

Quarterly News Digest
Kristoffer Nyborg Gregertsen
SINTEF, Email: kristoffer.gregertsen@sintef.no

Contents

Ada-related Tools 4
Ada-related Products 7
References to Publications 8
Ada Inside 8
Ada in Context 17

Ada-related Tools
Qt5Ada
From: leonid.dulman@gmail.com
Subject: Announce: Qt5Ada version 5.12.0

release 21/12/2018 free edition
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 10:56:14 -0800
Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.12.0 final)
Qt5ada version 5.12.0 open source and
qt5c.dll, libqt5c.so(x64) built with
Microsoft Visual Studio 2017 in
Windows, gcc x86-64 in Linux.
Package tested with gnat gpl 2012 ada
compiler in Windows 32bit and 64bit ,
Linux x86-64 Debian 9.4.
It supports GUI, SQL, Multimedia, Web,
Network, Touch devices, Sensors,
Bluetooth, Navigation and many others
thinks.
Changes for new Qt5Ada release:
Added new packages: Qt.QStringView,
Qt.QGraphicsCustomItem,
Qt.QGLContext
My configuration script to build Qt 5.12.0
is: configure –opensource -release -
nomake tests -opengl dynamic -qt-zlib -
qt-libpng -qt-libjpeg -openssl-linked
OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.12"
As a role Ada is used in embedded
systems, but with QTADA(+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing , Modbus control and
many others thinks.
Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/

The full list of released classes is in "Qt5
classes to Qt5Ada packages relation
table.docx" VTKAda version 8.1.0 is
based on VTK 8.1.0 (OpenGL2) is fully
compatible with Qt5Ada 5.12.0
I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts
With Qt5Ada you can build any
applications and solve any problems easy
and quickly.
If you have any problems or questions,
tell me know.

AWS issue
From: Andrew Shvets

<andrew.shvets@gmail.com>
Subject: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Thu, 27 Dec 2018 19:58:14 -0800
I installed the latest GNAT Community
distribution from AdaCore in ~/GNAT
and when I tried to use my *.GPR file in
order to build my code, I encountered the
below error:
unknown project file: "aws"
In my *.GPR file I did 'with "aws";'.
Is there some path or some other config
value that needs to be set?
Thanks in advance for your replies.
From: eduardsapotski@gmail.com
Subject: Re: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 01:23:55 -0800
Run GPS.
Open project.
Edit -> Project Properties ->
Dependencies
Drag AWS to left panel.
Save.
Or in .gpr file paste: with "aws.gpr";
From: Simon Wright

<simon@pushface.org>
Subject: Re: Can't get to include AWS
Newsgroups: comp.lang.ada
Date: Sat, 29 Dec 2018 20:30:30 +0000
> I installed the latest GNAT Community

distribution from AdaCore in ~/GNAT
and when I tried to use my *.GPR file
in order to build my code, I
encountered the below error:

> unknown project file: "aws"

> In my *.GPR file I did 'with "aws";'.
I have GNAT CE installed under
/opt/gnat-ce-2018.
If I don't have /opt/gnat-ce-2018/bin on
my PATH but say /opt/gnat-ce-2018/
bin/gprbuild -P shvets.gpr where
shvets.gpr contains 'with "aws";' I get the
same as you.
If I do have /opt/gnat-ce-2018/bin on my
PATH and say
 gprbuild -P shvets.gpr
it works fine.

Protobuff for Ada
From: Per Sandberg

<per.s.sandberg@bahnhof.se>
Subject: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 19:57:40 +0100
I managed to resurrect an old master
thesis work that was done by Niklas
Ekendahl in 2013 and put it on
https://github.com/persan/protobuf-ada
the plan is to get it in working shape.
From: Shark8

<onewingedshark@gmail.com>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Fri, 28 Dec 2018 21:53:55 -0800
Cool!
More libs, bindings, and implementations
in Ada is a good thing.
Though, it should be noted that ASN.1 is
probably the better technology in cases
where ProtoBufs are being considered:
http://ttsiodras.github.io/asn1.html
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Sat, 29 Dec 2018 12:05:40 +0100
> Though, it should be noted that ASN.1

is *probably* the better technology in
cases where ProtoBufs are being
considered:

> http://ttsiodras.github.io/asn1.html
Sorry to disappoint you in this festive
time, but this approach has the same
fundamental flaw as prepared SQL
statements do. You have to bind native
Ada objects to protocol/serialized/
persistent objects forth and back. This

Ada-related Tools 5

Ada User Journal Volume 40, Number 1, March 2019

does not work well in practice. In fact, it
barely work at all considering the
overhead and hazards of type conversions.
A different approach is Ada's
representation clauses which describe
both objects same. Beyond simple
textbook cases that does not work either.
The best practical method so far is using
manually written stream attributes.
Unfortunately it has shortcomings too:
1. Reuse is limited and composition is

unsafe because stream attributes are
non-primitive operations.

2. Introspection is almost non-existed.
Only tagged types could have it.

3. No support of error handling and
versioning. Though it is possible to do
manually that is extremely error-prone
and totally lacks static verification when
the number of test cases is huge to
potentially infinite. Even worse, the
offending cases do not show up in a
normally functioning system. So, when
detected, it is always too late.

P.S. Needless to say, the problems 1-3
fully apply to other two methods as well.
P.P.S. And nothing was said about
referential and recursive types...
From: Olivier Henley

<olivier.henley@gmail.com>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Mon, 31 Dec 2018 08:55:40 -0800
Interesting. I do not grasp the problem in
full though...
When you say "Sorry to disappoint you in
this festive time", do you mean trying a
solution from ASN.1 or only trying at
Protobuff?
I think I get why a Protobuff could not
cover "complete" transfer of Ada types
around, but how does other languages do?
(Almost everyone has it) Some of these
languages have relatively "complex" type
system..?
How do they achieve it? They express any
complex types with a limited subset of
primitive types(string, int32, etc)?
Can you give a more pragmatic example
that exemplifies the limitations in Ada?
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Mon, 31 Dec 2018 18:59:35 +0100
>> When you say "Sorry to disappoint

you in this festive time", do you mean
trying a solution from ASN.1 or only
trying at Protobuff?

Both. They are useless, up to harmful.
> I think I get why a Protobuff could not

cover "complete" transfer of Ada types
around, but how does other languages
do? (Almost everyone has it) Some of

these languages have relatively
"complex" type system..?

The very concept of a data
definition/description language (DDL) is
wrong as I tried to explain. It has a very
long and sad history in process
automation, control, communication (e.g.
CORBA), databases (e.g. SQL). Almost
everybody and everyone tried it and
failed. There are countless protocol
describing "languages" around in process
automation. I fought with them for
decades, wrote several compilers for this
mess. One could save huge amount of
money and time if there were a law to
punish people introducing this stuff... (:-))
> How do they achieve it? They express

any complex types with a limited subset
of primitive types (string, int32, etc)?

You cannot express a type in a DDL. Data
/= Type. Type = data + operations. If you
want to express complex typed objects
you lose before you start with a DDL.
You throw all type semantics overboard.
If you are OK without semantics then
there is no need to introduce this mess.
Use Ada stream attributes and simply read
and write what you want and how you
want. It is clean, easy, fast and 100% Ada.
> Can you give a more pragmatic

example that exemplifies the limitations
in Ada?

Any limitations Ada might have are
unrelated to the issue of language
impedance: DDL vs Ada unless you make
DDL embedded like embedded SQL,
which does not work either.
I believe AdaCore has a product of the
sort. Though I don't think that would be
much better, but I would rather trust them
than anybody else...
From: G. B. <nonlegitur@nmhp.invalid>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Wed, 2 Jan 2019 06:57:14 -0000
> *If* you are OK without semantics then

there is no need to introduce this mess.
Use Ada stream attributes and simply
read and write what you want and how
you want. It is clean, easy, fast and
100% Ada.

What kind of stream do you write for your
partners in business? Three of them have
different needs than you WRT data and
none of them is using Ada.
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Wed, 2 Jan 2019 11:02:10 +0100
> [...]
> What kind of stream do you write for

your partners in business?
Stream of octets.

> Three of them have different needs than
you WRT data and none of them is
using Ada.

They still can read and write the stream.
You are confusing description of a
protocol with the implementation of.
The OP suggested having descriptions in
protobuff and partial implementation
generated from that. It is a bad idea.
BTW, it is very easy to write things like
protobuff straight in Ada with Simple
Components
http://www.dmitry-kazakov.de/ada/
components.htm#17.2.1
This feature is rarely used because, as I
said, the concept is too limited and
constraining if not wrong altogether.
Here is a small example. Consider an
example in protobuff:
 message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
 }
This direct Ada code:
 type Person is new State_Machine with
 Name : String_Data_Item
 (Max_String_Length);
 ID : Unsigned_32_Data_Item;
 Email : String_Data_Item
 (Max_String_Length);
 end record;

Thanks to Ada's "introspection" that is all.
It will be read or written by the
connections server automatically. On the
packet receipt callback, you get values
like Person_Session.ID.Value. Before
sending a new packet you assign
Person_Session.ID.Value. Note, this is
Ada 95, no fancy stuff.
I didn't show here alternation for using
optional fields because the transport level
representation would be different anyway.
Which is the point actually. Such key
details are all left unspecified in the
protobuff "description" above along with
endianness and other encoding issues. Yet
exactly these details are essential in
practice where the protocol is already
defined. Present or not bits might kept
combined in the message header, special
values of integers are reserved to indicate
exceptional states and so on and so forth.
And, again, no semantics whatsoever, just
buckets of bits.
From: Per Sandberg

<per.s.sandberg@bahnhof.se>
Subject: Re: protobuff for Ada
Newsgroups: comp.lang.ada
Date: Tue, 1 Jan 2019 09:05:38 +0100
From my perspective absolutely biggest
flaw with technologies like protobuff is:
* Its backed by a large corporation.
* The technology is well known.

6 Ada-related Tools

Volume 40, Number 1, March 2019 Ada User Journal

* 99.9% of the programming population
think that they are the salvation to
serialization.

* The licensing is open.
And on top.
* There are significantly more than one

project where the lack of protobuff
support has ruled out Ada as
implementation technology.

And my intent was to eliminate at least
the last points even if the technology is
inferior.

AdaControl
From: "J-P. Rosen" <rosen@adalog.fr>
Subject: [Ann] AdaControl V1.20r7

released
Newsgroups: comp.lang.ada
Date: Thu, 3 Jan 2019 14:03:30 +0100
Adalog is pleased to announce the release
of a new version of AdaControl. Thanks
to the support of several sponsors, there
are several interesting new controls (see
file HISTORY), with a grand total of 70
rules and 565 possible tests! The
automatic fixes feature has been extended
too.
More details, download, etc. from
http://adacontrol.fr. The executable
version is now provided for Gnat
Community edition 2018.
Reminder: If you have any issue with
AdaControl, please report it using
http://sourceforge.net/p/adacontrol/ticket
And if you use it for an industrial project,
commercial support is available from
Adalog, don't hesitate to ask for
information at info@adalog.fr

GNU ELPA
From: Stephen Leake

<stephen_leake@stephe-leake.org>
Subject: GNU ELPA package ada-ref-man

version 2012.4 is now available
Newsgroups: comp.lang.ada
Date: Sat, 5 Jan 2019 10:26:23 -0800
GNU ELPA package ada-ref-man version
2012.4 is now available. This version
adds '<' '>' annotation to indicate italics in
syntax element names:
 generic_instantiation ::=
 package defining_program_unit_name is
 new <generic_package_>name
 [generic_actual_part]
 [aspect_specification];

Simple Components
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: ANN: Simple Components for Ada

v4.36
Newsgroups: comp.lang.ada
Date: Tue, 8 Jan 2019 12:50:31 +0100

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.
http://www.dmitry-kazakov.de/ada/
components.htm
Changes to the previous version:
- The package

GNAT.Sockets.Server.Blocking was
added to provide connection servers
handling blocking I/O;

- Procedures Send_Socket and
Receive_Socket were added to the
package GNAT.Sockets.Server;

- Procedures Reconnect and
Request_Disconnect were added to the
package GNAT.Sockets.Server;

- The functions Is_Configured, Is_In,
Has_Device_Configuration were added
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client;

- Airing time decoding/encoding error in
GNAT.Sockets.Connection_State_Mach
ine.ELV_MAX_Cube_Client.

SparForte
From: koburtch@gmail.com
Subject: Ann: SparForte 2.2
Newsgroups: comp.lang.ada
Date: Tue, 8 Jan 2019 20:15:29 -0800
SparForte version 2.2 was released over
the holidays.
It is available for download from the
SparForte website:
 https://www.sparforte.com/
This version brings preliminary
programming-by-contract, side-effect
detection and additional shell features. An
overview can be found on my blog:
https://www.pegasoft.ca/coder/
coder_december_2018.html
There are also several recent blog articles
on the design of SparForte, as requested
by the mailing list subscribers.
SparForte is a shell, scripting language
and web template engine with a core
feature set based on Ada. I hope you will
find it useful.
Note: I do not regularly read this
newsgroup. Please direct questions to the
SparForte mailing list.

VTKAda
From: leonid.dulman@gmail.com
Subject: VTKAda 8.2.0
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 11:19:09 -0800
I'm pleased to announce VTKAda version
8.2.0 free edition release 01/02/2019.
VTKAda is Ada-2012 port to VTK
(Visualization Toolkit by Kitware, Inc)
and Qt5 application and UI framework by
Nokia VTK version 8.2.0, Qt version
5.12.0 open source and vtkc.dll, vtkc2.dll,
qt5c.dll (libvtkc.so, libvtkc2.so,
libqt5c.so) were built with Microsoft
Visual Studio 2017 (15.9) in Windows
(WIN32) and gcc in Linux x86-64
Package was tested with gnat gpl 2017
ada compiler in Windows 10 64bit,
Debian 9.4 x86-64
As a role ADA is used in embedded
systems, but with VTKADA(+QTADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing and many others thinks.
VTKADA you can be used without
QTADA subsystem
Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/

Florist
From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Florist is in Ada !
Newsgroups: comp.lang.ada
Date: Tue, 19 Feb 2019 17:10:08 +0100
See: https://www.carolslaneflorist.com/
about-us
(found this while browsing for Florist, the
Ada interface to Posix) :-)

OpenGLAda
From: Felix Krause <contact@flyx.org>
Subject: ANN: OpenGLAda 0.7.0
Newsgroups: comp.lang.ada
Date: Sat, 9 Mar 2019 19:18:49 +0100
This release includes some additions to
the API, but primarily adds GNAT
Community 2018 support. It is also the
first release with a Windows installer.
This installer includes the optional
dependencies (GLFW and Freetype) and
installs OpenGLAda on top of an existing
GNAT installation.
The dependency on the 3rd party library
Strings_Edit has been removed and UTF-
8 decoding is now part of the project. This
hopefully reduces confusion.
Release and further information is
available here:
https://github.com/flyx/OpenGLAda/
releases

Ada-related Products 7

Ada User Journal Volume 40, Number 1, March 2019

Ada-related Products
SPARK
From: addaon@gmail.com
Subject: New to Spark, working an example
Newsgroups: comp.lang.ada
Date: Sat, 15 Dec 2018 21:43:50 -0800
Folks, new to this list, so not quite sure on
etiquette.
I've been trying to understand Spark-2014
well enough to work through an example,
and understand the capabilities and
workflow of the tools. The example I
chose was an example of floor(lg(n)) for n
positive.
Rather than put a long post here, I'll refer
to my (long) post at stackoverflow:
https://stackoverflow.com/questions/
53752715/proving-floor-log2-in-spark.
(If this is bad etiquette here, let me know,
and I'll fix -- but it does seem a bit silly to
duplicate the content in two locations)
Since SO seems to have a very limited
Ada/Spark community, I'm hoping
someone here can point me in the right
direction. Basically, trying to understand
what tools I should be trying to
understand at this point. :-) Should I be
looking at proving this with just a better
understanding of how to write loop
invariants; through appropriate lemmas;
through an external prover like Coq; or
something else?
From: Simon Wright

<simon@pushface.org>
Subject: Re: New to Spark, working an

example
Newsgroups: comp.lang.ada
Date: Sun, 16 Dec 2018 09:48:17 +0000
I don't think there's anything wrong with
trying to attract attention (what gets my
goat a bit is people posting the same
question in both places at the same time).
I have to confess that I hadn't set up my
SO account to watch the tags [spark-
2014] or [spark-ada] (why both?), or even
[gnat] or [ada2012] - rectified. You would
have got more views if you'd included
[ada] (but not necessarily any (more)
answers :)
Your problems are an indication of why I,
as a person who has no access to
professional SPARK support, haven't
invested any effort to speak of in SPARK
(my difficulties were with tasking/time
rather than mathematical loops, which
tend to be rare in control systems).
That said, it looks to me as though the
version of gnatprove in GNAT CE 2018
may not fully understand exponentiation:
util.ads:3:14: medium: postcondition
might fail, cannot prove
2 ** Floor_Log2'Result <= X
util.ads:3:16: medium: overflow check
might fail

(e.g. when Floor_Log2'Result = 0)
From: Brad Moore

<bmoore.ada@gmail.com>
Subject: Re: New to Spark, working an

example
Newsgroups: comp.lang.ada
Date: Tue, 18 Dec 2018 18:41:59 -0800
I am by no means a SPARK expert, but I
am also interested in exploring SPARK
capabilities.
My approach led me to the following
solution using just the SPARK 2018 GPL
download from Adacore.... (no extra
provers were needed here, other than the
ones that come with GNAT CE 2018)
As an aside, it appears the version of
gnatprove in GNAT CE 2018 does have a
pretty good understanding of
exponentiation, given that I was able to
get the following proven.
package Util with SPARK_Mode is
 Max_Log2 : constant := Positive'Size - 1;
 subtype Log_Result is Natural
 range 0 .. Max_Log2;

 function Floor_Log2 (X : Positive) return
 Log_Result with
 Global => null,
 Depends => (Floor_Log2'Result => X),
 Post => X >= 2**Floor_Log2'Result
 and then X / 2 < 2**Floor_Log2'Result;
end Util;

pragma Ada_2012;
package body Util with SPARK_Mode is
 function Floor_Log2 (X : Positive) return
 Log_Result is
 begin -- Floor_Log2
 Log_Loop :
 for I in Log_Result loop
 pragma Loop_Invariant
 (for all J in 0 .. I => X >= 2**J);
 pragma Assert
 (X / 2 < 2**Log_Result'Last);
 if X / 2 < 2**I then
 pragma Assert (X >= 2**I);
 pragma Assert (X / 2 < 2**I);
 return I;
 end if;
 pragma Assume(I /= Log_Result'Last);
 end loop Log_Loop;
 return Log_Result'Last;
 end Floor_Log2;
end Util;

I technically didn't need to use the Global
aspect or the Depends Aspect to prove
this function, but I think it is a good idea
to provide a more detailed contract using
additional SPARK and Ada features,
when possible.
The approach I took is to first of all make
use of Ada 2012 contracts to constrain the
results to only allow valid values. The
Log_Result subtype only includes valid
result values.
I think this is an important goal in general
to eliminate bugs, whether writing code
for regular Ada as well as SPARK.

My view is that in general, types such as
Integer and Float should not be used since
they are types that describe memory
storage, not types that describe values of
interest in the application domain.
By creating types that more accurately
represent the application domain, I
believe it makes the job of writing proofs
in SPARK much easier, since the prover
can reason that the values assigned to
such values have specific value ranges
and properties.
Another point, is to try to write an
implementation that is easier to prove. For
that reason, I wrote this is a for loop
rather than a while loop, because the
compiler can reason statically about how
many iterations are performed, and what
the values of the loop parameters can be.
The prover was able to prove all the
assertions in the implementation.
I had to leave in one assumption, (the
pragma assume),
 pragma Assume(I /= Log_Result'Last);

Without that, the prover complains that
the post condition,
 X / 2 < 2**Floor_Log2'Result

cannot be proven. It appears that the
prover is not able to prove that the loop
exited by the return statement, rather than
iterating the full loop and exiting the loop
without entering the if statement.
However, I think this can be visually
inspected and confirmed to be true, since
the assert for the if statment,
pragma Assert(X / 2 < 2**Log_Result'Last);

just prior to the if statement was proven.
It follows that if the assertion is true, then
the if statement would have to be entered
on the following line, and that the return
would exit the loop.
Thus, the reader should be able to visually
tell that it is impossible to get by the if
statement when I = Log_Result'Last, and
thus the pragma Assume is true.
The return at the end of the function
should never get executed, as the only
way to exit the function is via the return
inside the loop.
I didn't need to have the return inside the
loop for the purpose of proving the
function. I just did that to eliminate the
need of extra variable declarations.
Probably the prover could be improved so
that such an assume could be eliminated
while still proving the overall function.
There may be a way to add additional
asserts or pragmas to eliminate the need
for the pragma Assume. So far I haven't
found any, but perhaps someone else
might come up with a way. Otherwise,
I'm pretty happy with the solution I ended
up with, given that the one assume in the

8 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

code can be visually checked easily for
correctness.
I am sure that other SPARK solutions
exist. I think when it comes to proving
something, it is better to start with
something simple, and to have in mind
choosing an implementation that is easier
to prove. This should make it easier to
arrive at a proof.
From: Simon Wright

<simon@pushface.org>
Subject: Re: New to Spark, working an

example
Newsgroups: comp.lang.ada
Date: Wed, 19 Dec 2018 16:58:41 +0000
>> util.ads:3:16: medium: overflow check

might fail (e.g. when >>
Floor_Log2'Result = 0)

> As an aside, it appears the version of
gnatprove in GNAT CE 2018 does have
a pretty good understanding of
exponentiation, given that I was able to
get the following proven.

Apparently so. But the part of gnatprove
that gives examples of when the assertion
might fail is quite misleading: for
example,
util.ads:7:14: medium: postcondition
might fail, cannot prove
2 ** Floor_Log2'Result <= X
(e.g. when Floor_Log2'Result = 0
and X = 0) *when X is Positive* !!
and util.adb:19:15: medium: overflow
check might fail (e.g. when I = 0)
 l.18 for I in 1 .. Log_Result'Last loop
 l.19 if 2 ** I > X then
From: Brad Moore

<bmoore.ada@gmail.com>
Subject: Re: New to Spark, working an

example
Newsgroups: comp.lang.ada
Date: Wed, 19 Dec 2018 20:34:13 -0800
I agree that the error messages are
misleading, as I was getting similar
messages when I was working on this.
While the values "0" mentioned in the
error messages were confusing to me, I
think the messages were helpful at least in
suggesting the sort of tests the prover was
trying to prove, which ultimately helped
me figure out the assertions that were
needed to get this to pass. The values
given can be a bit of a red herring
sometimes, but I think the underlying test
described by the message is more helpful.
This is my second problem that I
attempted to prove in SPARK, so I didn't
know if I would succeed, or know much
about how to approach this. It's kind of a
rewarding feeling when you get the
prover to pass.
One suggestion I have to prove post
conditions, is to state the post condition as
an assert before returning from the
subprogram, and work backwards from
there.

References to
Publications
Ravenscar References
From: lyttlec <lyttlec@removegmail.com>
Subject: Ravenscar References
Newsgroups: comp.lang.ada
Date: Wed, 16 Jan 2019 12:48:28 -0500
Can anyone suggest a good reference on
using the ravenscar profile? In the Ada
books I have, it only gets a one or two
page mention. A reference with an
extended case study would be great.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Wed, 16 Jan 2019 18:15:03 +0000
You might find something useful at
http://cubesatlab.org e.g.
http://www.cubesatlab.org:430/
PUBLIC/brandon-chapin-HILT-2016.pdf
From: lyttlec <lyttlec@removegmail.com>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Fri, 18 Jan 2019 14:18:10 -0500
Thanks all for the links. They are a help.
However, I'm looking for something
along the lines of porting legacy code to
be ravenscar "safe".
As an illustration, consider making
Dmitry A Kazakov's code meet
Ravenscar. I need to port lots of existing
more or less standard components to meet
Ravenscar. This is to satisfy some
regulatory authorities.
From: "Jeffrey R. Carter"

<spam.jrcarter.not@spam.not.acm.org>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Sun, 20 Jan 2019 18:12:11 +0100
I don't know that "port" is a good word
for this activity. I once looked at
implementing Sandén's FMS problem
using Ravenscar. Starting from the
requirements, I first had to find a
Ravenscar-suitable design. The standard
design has a dynamic task per job, and is
clearly not possible using Ravenscar. An
alternative design using a task per
workstation had to be used.
From that choice, Ravenscar drove a
proliferation of protected objects and
helper tasks. Things that were simple in
full Ada became much more complex to
meet the restrictions of the profile.
Presumably you would need to apply a
similar process to each of the components
you need to convert.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Mon, 21 Jan 2019 17:19:43 -0600

Note that the less strict profile Jorvik,
defined in Ada 2020 (and already
implemented in GNAT) would simplify
this process.
I don't think it is possible to "convert"
regular Ada code into Ravenscar (unless,
of course, it doesn't use any tasks ;-). You
pretty much have to completely rewrite it
with Ravenscar in mind. (In this way, it is
very much like using SPARK.)
From: "J-P. Rosen" <rosen@adalog.fr>
Subject: Re: Ravenscar References
Newsgroups: comp.lang.ada
Date: Tue, 22 Jan 2019 10:25:08 +0100
I don't fully agree with that statement; it
all depends where you start from.
I recently helped one of my clients who
wanted to move to Ravenscar. The
original structure was all Ada83,
communicating with rendezvous.
However, it was already safety critical,
therefore based on cyclic, never ending
tasks, and limited communications. It was
reasonably easy to define patterns for
matching the existing structure into
Ravenscar patterns.

Ada Inside
Compilation Issues
From: alexander@junivörs.com
Subject: Licensing Paranoia and Manual

Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 03:46:02 -0800
I've read some threads on here regarding
the licensing situation of AdaCore's Libre
compiler. For my upcoming project, I'm
going to need (= very strong desire) to use
Ada and I'm also going to need to be able
to license the executable produced thereof
in any way I desire.
In regards to the aforementioned, I have
two questions. I realize I come forth as
somewhat paranoid in the upcoming
paragraphs (which undoubtedly I am).
The licensing situation worries me a great
deal.
1. ```As for the compiler build provided
by (the GetAdaNow Mac OS X section's
link to Sourceforge)[1]; which parts of
that GCC build for compiling Ada can
you safely use and still be covered by the
"GCC Runtime Library Exception"? I can
see it states you can use `GNATCOLL`
and `XMLAda`. I'm assuming the
standard library is included as well. Can
you on the other hand use all console
commands? `gnat <command>`?
`gprbuild`? Or would these inject "non-
runtime library exception'd" GPL code
into the executable?```2. ```I've been
attempting to compile and link some code
through the use of the `gcc` command
solely, but haven't been successful in
doing so. I have, on the other hand, been
able to successfully generate an

Ada Inside 9

Ada User Journal Volume 40, Number 1, March 2019

executable by utilizing the `gnatbind` and
`gnatlink` commands consecutively after
compiling with `gcc -c <file>`. Is it
possible to use only the `gcc` command
for the matter, or do you need to also
throw in a few calls to the `gnat`
commands?
When executing the following
commands...
$ gcc -c src/main.adb -o obj/main.o
$ gcc -o main obj/main.o
I wind up with the following error (on the
second command, which should be a
GCC link):
Undefined symbols for architecture
x86_64:
 "_main", referenced from:
 implicit entry/start for main executable
 (maybe you meant: __ada_main)
ld: symbol(s) not found for architecture
x86_64
collect2: error: ld returned 1 exit status
A similar error occurs when I attempt to
create `.so` libraries manually using the `-
shared` compiler switch. With all that
being said, is it simply not possible to do
these things through solely `gcc`, or am I
missing something?```
It may be worth noticing that I've fallen in
love with Ada to the utmost degree over
the past year. As such, I'm planning on, at
the very least, stalking "comp.lang.ada"
like some creepy figure. You'll probably
see more from me beyond these first two
questions, is what I'm saying.
[1] https://sourceforge.net/projects/
gnuada/files/GNAT_GCC 20Mac OS X/
8.1.0/native-2017/
From: Simon Wright

<simon@pushface.org>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 16:11:48
Let me start by saying that I'm not a
lawyer.
> 1. ```As for the compiler build provided

by (the GetAdaNow Mac OS X
section's link to Sourceforge)[1]; which
parts of that GCC build for compiling
Ada can you safely use and still be
covered by the "GCC Runtime Library
Exception"? I can see it states you can
use `GNATCOLL` and `XMLAda`. I'm
assuming the standard library is
included as well. Can you on the other
hand use all console commands? `gnat
<command>`? `gprbuild`? Or would
these inject "non-runtime library
exception'd" GPL code into the
executable?```

They may (do) *generate* source code
that gets included in the executable
(gnatbind does this). But that isn't code
that's provided with the compiler and

might have a copyright issue; it's no
different in principle from object code
generated directly by the compiler.
> 2. ```I've been attempting to compile

and link some code through the use of
the `gcc` command solely, but haven't
been successful in doing so. I have, on
the other hand, been able to
successfully generate an executable by
utilizing the `gnatbind` and `gnatlink`
commands consecutively after
compiling with `gcc -c <file>`. Is it
possible to use only the `gcc` command
for the matter, or do you need to also
throw in a few calls to the `gnat`
commands?

 [...]
Building even hello_world* is sufficiently
complex that you need gnatbind, gnatlink.
As you've seen, you can use gcc for the
actual compilation.
Building a dynamic library (do you mean
.so? are you on a Mac or Linux?
You mention my darwin 8.1.0 release) is
more so.
To see what gnatbind gets up to while
doing its work, look at the b__* (or b~*)
files it generates. Not much fun or point
in generating those by hand.
* You can build a simple null program for
an embedded system on an MCU without
gnatbind, gnatlink. But you have to bother
about storage mappings, prcessor startup,
linker scripts etc instead.
From: Lucretia

<laguest9000@googlemail.com>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 08:31:59 -0800
[...].
What version is that compiler on
sourceforge? Is it from FSF directly, i.e.
gcc.gnu.org? Or is it GNAT-GPL/CE, i.e.
from AdaCore.com? If the latter, the
licence is GPL-3.0 no linking exception,
otherwise it's GPL-3.0 with linking
exception. Basically, avoid anything
GPL-3.0 no linking exception, especially
Adacore's libraries.
From: G. B. <nonlegitur@nmhp.invalid>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 18:50:45 -0000
> I've read some threads on here

regarding the licensing situation of
AdaCore's Libre compiler. For my
upcoming project, I'm going to need (=
very strong desire) to use Ada and I'm
also going to need to be able to license
the executable produced thereof in any
way I desire.

For licensing in arbitrary ways, the
aforementioned Ada distribution is not the
suitable one. Another compiler
distribution might meet your needs,

including some FSF GNAT. GPL means
tit-for-tat and thus intentionally puts
restrictions on licensing, no back doors.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 19:21:04 +0000
> What version is that compiler on

sourceforge? [...]
It's vanilla FSF with Adacore libraries,
some of which have the runtime library
exception, some of which don't (as noted
at the link).
The Adacore sources, at
https://github.com/AdaCore, are on the
whole GPLv3 with the runtime exception.
I've taken care to report the status:
from https://sourceforge.net/projects/
gnuada/files/GNAT_GCC MacOS X/
8.1.0/native-2017/
Tools included:
Full GPL:
 ASIS from https://github.com/

simonjwright/ASIS at [8ba68f3].
 AUnit and GDB from GNAT GPL 2017.
 Gprbuild from https://github.com/

AdaCore/gprbuild at commit [1e551df]
(note, libgpr is GPL with Runtime
Library Exception[1]).

GPL with Runtime Library Exception[1:
 GNATCOLL from:
 https://github.com/AdaCore/

gnatcoll-core at commit [a093d11].
 https://github.com/AdaCore/

gnatcoll-bindings at commit [2c426fe].
 https://github.com/AdaCore/

gnatcoll-db at commit [b66441c].
 XMLAda from

https://github.com/AdaCore/xmlada at
commit [8a4b2bf]

From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 12:50:42 -0800
> Building a dynamic library (do you

mean .so? are you on a Mac or Linux?
> You mention my darwin 8.1.0 release)

is more so.
Yes. According to (this page)[1] it's
accomplishable using the following
command:
$ gcc -shared -o libmy_lib.so *.o
but that causes an error mentioning how
there are "Undefined symbols for
architecture x86_64:".
> For licensing in arbitrary ways, the

aforementioned Ada distribution is not
the suitable one. Another compiler
distribution might meet your needs,
including some FSF GNAT. GPL

10 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

means tit-for-tat and thus intentionally
puts restrictions on licensing, no back
doors.

GPL on its own, I must say, does serve a
purpose. It's nice for the author to be able
to share their source or works and still be
certain nobody can (legally anyway) steal
their work and distribute it for a fee
themselves.
When it comes to source code licensed
under GPL lacking the runtime library
exception, on the other hand, I can't say
I'm too fond of it. Compilers on their
own, featuring a standard library, should
always be free to use; whereupon the user
may licence their executable in any way
they want.
[1] http://beru.univ-brest.fr/~singhoff/
DOC/LANG/ADA/gnat_ugn_20.html
From: Simon Wright

<simon@pushface.org>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Tue, 11 Dec 2018 23:45:48 +0000
> [1] http://beru.univ-brest.fr/~singhoff/

DOC/LANG/ADA/gnat_ugn_20.html
Because that page (and even the latest one
at [2]) is wrong.
Almost all Ada code requires the services
of the Ada runtime, and you need to
reference the runtime at the link stage.
$ gcc -shared -o libmy_lib.dylib *.o -
L<whereever> -lgnat -lgnarl
(<whereever>: e.g. /opt/gcc-8.1.0/lib/gcc/
x86_64-apple-darwin15/8.1.0/adalib)
This is why it is *so* much easier to use
gprbuild (I see that that reference talks
about using gnatmake; that's because
gnatmake is part of GCC Ada, and
gprbuild isn't. But modern gnatmakes will
delegate to gprbuild if they find one, at
any rate if libraries are involved; they
can't generate libraries, because it's too
complicated for Adacore to maintain in
two places, the GCC tree and the gprbuild
tree).
If you want to see what's going on you
can use -v.
[2] http://docs.adacore.com/gnat_ugn-
docs/html/gnat_ugn/gnat_ugn/the_gnat_c
ompilation_model.html#general-ada-
libraries
>> For licensing in arbitrary ways, the

aforementioned Ada distribution >> is
not the suitable one. Another compiler
distribution might meet >> your needs,
including some FSF GNAT. GPL
means tit-for-tat and thus intentionally
puts restrictions on licensing, no back
doors.

> GPL on its own, I must say, does serve
a purpose. It's nice for the author to be
able to share their source or works and
still be certain nobody can (legally

anyway) steal their work and distribute
it for a fee themselves.

> When it comes to source code licensed
under GPL lacking the runtime library
exception, on the other hand, I can't say
I'm too fond of it. Compilers on their
own, featuring standard library, should
always be free to use; whereupon the
user may licence their executable in any
way they want.

I don't understand. The first para says it's
good, the second says it's bad.
From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Wed, 12 Dec 2018 01:34:01 -0800
> I don't understand. The first para says

it's good, the second says it's bad.
Perhaps I've misunderstood something
regarding the licensing situation. Is not
the reason you cannot use a bunch of
AdaCore developed packages due to the
fact that it's licensed under GPL without
the runtime library exception, ultimately
meaning your executable must be licensed
under GPL too?
Let's assume someone made a tool to aid
people with a repetitive task in Ada. Give
that the GPL license and it'd be
impossible for someone to "steal"
(redistribute for a fee) the original author's
code, still allowing people to learn from
the code that makes up the tool.
In the second situation, I'm speaking of
any library package offering nigh on
essential functionality to a programming
language (in this case Ada), that does not
contain the runtime library exception. I
believe that all code developed to ship
with a compiler should contain that
exception.
I will make sure to await further
responses before I justify my belief
mentioned in the previous paragraph,
should I prove to having gotten something
wrong.
Whilst quickly scouring the Internet for
some information that would substantiate
the claim that some library package files
do not contain the runtime library
exception, I came across the
(`GNAT.Regpat` source)[1], which does
contain some form of the runtime library
exception.
I presume perhaps that is an older source
file than the one shipped with the
compiler at this day (Copyright (c) 1996-
2002)?
[1] https://www2.adacore.com/gap-static/
GNAT_Book/html/rts/g-regpat__adb.htm
From: Björn Lundin

<b.f.lundin@gmail.com>
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 10:21:54 +0100

> [...]
You can always "steal" GPL code, and
redistribute it for a fee as you see fit. The
freedom in GPL is not free as free beer,
but free as free speach. So you would
need to provide the sources to the
customers you sell to. And I think, a fairly
easy way to reproduce an
executable/library.
You code depending on GPL (linked
with) will inherit the GPL license.
But you can charge your customers
whatever you want.
However you likely need to provide
something better that the original code for
people _wanting_ to pay you, I guess.
From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 02:30:20 -0800
> [...]
I don't know wherefrom I got my
information that you can't sell a GPL
application. Thank you for clarifying this!
From: alexander@junivörs.com
Subject: Re: Licensing Paranoia and

Manual Compilation Issues
Newsgroups: comp.lang.ada
Date: Thu, 13 Dec 2018 02:32:47 -0800
> I don't know wherefrom I got my

information that you can't sell a GPL
application. Thank you for clarifying
this!

Or rather, clarifying the contrary;
correcting me.

Coextension Bug In GNAT
From: Jere <jhb.chat@gmail.com>
Subject: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 07:59:00 -0800
I was messing around and trying to learn
coextensions and I came across some
counter intuitive functionality. If I directly
initialize one via an aggregate, it works
fine.
However, if I initialize through a
constructing function, it seems to treat the
access discriminant as a normal access
type and finalizes it at the end of the
program instead of when the object leaves
scope. I don't fully understand them yet
and there isn't much on them listed in the
RM but one section (at least according to
the index)[1]. That one section does
indicate that initialization via a function
should be valid however, so maybe I am
back to I am doing it wrong or potentially
a GNAT bug.
I'm using GNAT 7.1.1
Here is my test program

Ada Inside 11

Ada User Journal Volume 40, Number 1, March 2019

with Ada.Text_IO; use Ada.Text_IO;
with Ada.Finalization; use Ada.Finalization;

procedure Hello is

 type Thing_1 is new Limited_Controlled
 with null record;

 overriding
 procedure Finalize(Self : in out Thing_1)
 is
 begin
 Put_Line("Finalize Thing_1");
 end Finalize;

 type Thing_2
 (Other : not null access Thing_1)
 is limited null record;

 procedure Test_Coextension_1 is
 The_Thing : Thing_2(new Thing_1);
 begin
 Put_Line("Coextension directly
 initialized");
 end Test_Coextension_1;

 function Make_Thing_2 return Thing_2 is
 begin
 return (Other => new Thing_1);
 end Make_Thing_2;

 procedure Test_Coextension_2 is
 The_Thing : Thing_2 := Make_Thing_2;
 begin
 Put_Line("Coextension initialized
 through build in place");
 end Test_Coextension_2;

begin
 Test_Coextension_1;
 Test_Coextension_2;
 Put_Line("Test Finished");
end Hello;

Any thoughts?
[1] Ada 2012 tc1 RM 3.10.2(14.4/3) -
http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-3-10-2.html#I2301
From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 08:02:27 -0800
> [...]
Sorry, forgot to put the program output:
$gnatmake -o hello *.adb
gcc -c hello.adb
gnatbind -x hello.ali
gnatlink hello.ali -o hello
$hello
Coextenson directly initialized
Finalize Thing_1
Coextension initialized through build in
place
Test Finished
Finalize Thing_1

From: Simon Wright
<simon@pushface.org>

Subject: Re: Potential Coextension Bug in
GNAT

Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 16:56:11 +0000
> [...]
Compiling with -gnatwa I see "warning:
coextension will not be finalized when its
associated owner is deallocated or
finalized", so GNAT clearly meant to do
it!
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 20:16:09 -0600
> [...]
This message is nonsense, because a
coextension is effectively part of the
associated object. What they presumably
mean to say is that the declaration in
question is *not* a coextension, thus it
will not be finalized with the owner.
P.S. I hate coextensions. One of the least
necessary complications of Ada.
(Janus/Ada gives you a "feature not
implemented" message if you try to create
one.)
From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 03:24:43 -0800
> [...]
> Compiling with -gnatwa I see "warning:

coextension will not be finalized when
its associated owner is deallocated or
finalized", so GNAT clearly meant to
do it!

that's pretty interesting. The compiler I
was using did not give that warning when
compiled with -gnatwa. You're right, that
definitely looks intentional.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 17:58:11 +0000
> [...]
> procedure Test_Coextension_1 is
> The_Thing : Thing_2(new

Thing_1);
This is a case of 14.1/3, an allocator used
to define the discriminant of an object,
> begin
> Put_Line("Coextension directly

initialized");
> end Test_Coextension_1;
> function Make_Thing_2 return

Thing_2 is

> begin
> return (Other => new Thing_1);
I think GNAT thinks this is a case of
14.2/3, an allocator used to define the
constraint in a subtype_indication, though
I'm hard put to it to see the difference
from the first case.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Thu, 20 Dec 2018 20:25:40 -0600
> This is a case of 14.1/3, an allocator

used to define the discriminant of an
object,

Right, because 14.2/3 says
"subtype_indication in any other context",
meaning that 14.1/3 applies in an object
declaration.
> I think GNAT thinks this is a case of

14.2/3, an allocator used to define the
constraint in a subtype_indication,
though I'm hard put to it to see the
difference from the first case.

That doesn't make any sense, since 14.2/3
is talking about a syntactic
subtype_indication, and there is no
subtype_indication in the above
aggregate. 14.2/3 would be talking about
a case like:
 function Make_Thing_3 return Thing_2 is
 subtype Silly is Thing_2 (new Thing_1);
 Some_Thing : Silly;
 begin
 return Some_Thing;
 end Make_Thing_3;

This function does NOT define a
coextension.
So it does look like a GNAT bug. There is
the possibility that they are associating the
discriminant with the temporary object
associated with the allocator, and not the
return object, but that seems unnecessarily
unfriendly of an interpretation. And it
would be wrong for any type that requires
built-in-place (I didn't look at the actual
declaration of the type). I think the rules
are supposed to prevent that
interpretation, but whether they really do
is an interesting question that I have no
interest in exploring.
P.S. Did I mention I hate coextensions??
They provide an endless opportunity to
puzzle over rules that really don't matter
in the end (and most likely aren't quite
right). I suppose they've helped me keep
employed running the ARG. :-)
From: Jere <jhb.chat@gmail.com>
Subject: Re: Potential Coextension Bug in

GNAT
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 03:32:03 -0800
> So it does look like a GNAT bug. There

is the possibility that they are
associating the discriminant with the

12 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

temporary object associated with the
allocator, and not the return object, but
that seems unnecessarily unfriendly of
an interpretation. And it would be
wrong for any type that requires built-
in-place (I didn't look at the actual
declaration of the type). I think the
rules are supposed to prevent that
interpretation, but whether they really
do is an interesting question that I have
no interest in exploring.

Ok, that makes me feel better. I was
concerned I was misinterpreting the RM
about the function return (for build in
place). The type was limited, which I
believe requires it to be built in place.
> P.S. Did I mention I hate

coextensions?? They provide an endless
opportunity to puzzle over rules that
really don't matter in the end (and most
likely aren't quite right). I suppose
they've helped me keep employed
running the ARG. :-)

Overall, they aren't super useful and are
not very intuitive. I don't know the history
for why they were added to the language
though. I will say they do provide one
thing to Ada that no other feature in the
language seems to, so there is that. But I
don't know the cost versus reward of
them.

grpexec Tool
From: VM Celier <vmcelier@gmail.com>
Subject: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Fri, 11 Jan 2019 14:00:10 -0800
I am starting a new project that I have
been thinking for several years: gprexec.
gprexec is a "Make build automation tool
using GPR project files to describe goals,
dependencies, and processes".
It uses a new package: Execution.
Here is an example of a project that can
be used by gprexec:
project Toto is
 for Main use ("toto.adb");
 package Execution is
 for Process ("display_main") use ("cat",
 "toto.adb");
 for Dependency ("display") use
 ("display_main");
 for Process ("display") use ("cat",
 "toto.gpr");
 for Process ("date") use ("date");
 for Process ("toto") use ("gprbuild", "-f",
 "-q", "toto.gpr");
 for Dependency ("default") use
 ("display", "toto", "date");
 for Process ("default") use ("toto");
 end Execution;
end Toto;

Package Execution has these attributes:
- Dependency, to indicate the goals that

need to be processed before the indexed
goal.

- Process, to indicate the process to be
invoked, with its arguments, for the
indexed goal.

gprexec needs to be invoked with a single
project file and an optional goal. When no
goal is specified on the command line, the
goal "default" is implied.
For example with the project file toto.gpr
above, invoking
 gprexec toto.gpr
the goal default will be used, and
according to the dependencies processes
will be invoked in the following order:
(goal "display_main): cat toto.adb
(goal "display"): cat toto.gpr
(goal "toto"): gprbuild -f -q toto.gpr
(goal "date"): date
(goal "default"): toto
After displaying the main toto.adb and the
project file toto.gpr, toto.adb is compiled,
bound and linked, the date is displayed
and the executable "toto" is invoked.
gprexec uses the project file "gpr.gpr",
part of the gprbuild repository.
I just created a public repository for
gprexec on Github:
 https://github.com/vmcelier/gprexec
Anybody interested?
-- Vincent Celier
(no longer associated with AdaCore)
From: Shark8

<onewingedshark@gmail.com>
Subject: Re: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 13:06:35 -0800
> [...]
Yes, but no.
Some of the ideas behind GPR are good,
but if we're being honest its tendency to
be "stringly-typed" is annoying given its
obvious designed similarity to Ada -- and
there are a lot of missed opportunities --
and the sort-of configuration purposes
which don't fully support producing an
Ada executable (e.g. IIRC you have to use
a completely separate configuration to
handle DSA.)
From: VM Celier <vmcelier@gmail.com>
Subject: Re: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 16:49:14 -0800
> Some of the ideas behind GPR are

good, but if we're being honest its
tendency to be "stringly-typed" is
annoying given its obvious designed
similarity to Ada

It is true that the syntax of the project
language is similar to the one of Ada, but
there is a big difference between the two
languages:

- Ada is an executable language
- the project language is a declarative

language
You don't "execute" project files, you use
it to describe a system for different tools.
This is why there are almost no types in
the project language because types are not
really needed and they would complexify
the language for no real benefit.
> -- and there are a lot of missed

opportunities
Could you tell us one or two of these
missed opportunities?
From: Shark8

<onewingedshark@gmail.com>
Subject: Re: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 08:41:01 -0800
> It is true that the syntax of the project

language is similar to the one of Ada,
but there is a big difference between the
two languages:

> - Ada is an executable language
> - the project language is a declarative

language
This is actually less of an issue than might
be thought; though some of the "fix-ups"
might be a bit stifling to some. You could,
for example, impose
restrictions/mandatory-structure on the
configuration and have all configurations
be valid Ada.
> You don't "execute" project files, you

use it to describe a system for different
tools. This is why there are almost no
types in the project language because
types are not really needed and they
would complexify the language for no
real benefit.

No, real enumerations (and attendant
Ada-like case-coverage) would be
excellent for providing bounded
alternations of the configuration.
> > -- and there are a lot of missed

opportunities
> Could you tell us one or two of these

missed opportunities?
Given Ada's strong generic-system
configurations could be described as
generic parameters [esp enumerations],
which the tools could use to provide
bounded options in the absence of
defaults.
Package PROJECT_NAME
From: Shark8

<onewingedshark@gmail.com>
Subject: Re: New tool "gprexec", basically

"make with project file"
Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 09:22:07 -0800
Sorry, I accidentally submitted the form
while composing my example... which is
here:

Ada Inside 13

Ada User Journal Volume 40, Number 1, March 2019

Package PROJECT_NAME is
 Type Archetectures is (x86, x86_64, ARM,
 SPARC, MIPS_V);
 Type Node_Type is (Storage, Processing);
 Type Partition_Type is (Active, Passive);
 Type Compilation_Parameters is record
 CPUs : Natural := 0; -- Use as many
 -- cores as available.
 Symbols : Boolean := True; -- Don't strip
 -- symbols.
 Target : Archetectures;
 --...
 end record;

 Type Partition(Params :
 Compilation_Parameters; Style :
 Partition_Type) is record
 null; --... Other DSA parameters.
 end record;

 Type Node(Style : Node_type) is record
 Archetecture : Archetectures;
 case Style is
 when Storage => null; --...
 when Processing => null; --...
 end case;
 end record;

 Generic
 Params : Compilation_Parameters;
 Procedure Compile;

 --- CONCEPTUAL GENERIC PACKAGE
 Generic
 Partitions : Array (Positive range <>) of
not null access Partition;
 Package Compiler is
 Procedure Execute;
 End Compiler;

 --- CONCEPTUAL BODY FOR COMPILER
 Package Body Compiler is
 Procedure Execute is
 Begin
 For P of Partitions loop
 declare
 Procedure Make is new
 Compile(P.Params);
 begin
 Make;
 end;
 End loop;
 End Execute;
 End Compiler;

End PROJECT_NAME;

Now, obviously there would have to be
standardization -- and it would probably
work better if "Archetectures" were a
parameter to PROJECT_NAME --
because if all config-packages were
generic we could "nest" dependencies:
Generic
 Type STANDARD_PARAM is limited
 private;
 -- "Configuration standard param"
 with Package P1 is new Project_1
 (STANDARD_PARAM);
 with Package P2 is new Project_2
 (STANDARD_PARAM);
 -- P3 depends on P1&2

 with Package P3 is new Project_3
 (STANDARD_PARAM, P1, P2);
Package Project_4 is
 -- ... STANDARD STRUCTURE.
End Project_4;

Now, all of that is operating with the idea
of using Ada as a config-language, which
is doable, but perhaps a bit ugly... It might
be a bit better to sit down, think about
configurations (esp. in the presence of
DSA) and develop an Ada-like language
for that. (Perhaps in conjunction with a
new Ada IR similar to DIANA, such that
this configuration-description "compiles
down to" the proper generic-nodes which
can then be interpreted by the compiler as
the configuration[s] to use; or processed
by tools to inter-operate with current tools
[ie IR → (GPR_File,
Gnatdist_Configuration_File) for
GNAT].)

Program entry in GPR
From: Jesper Quorning

<jesper.quorning@gmail.com>
Subject: Package procedure as program

entry in GPR project
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 07:12:22 -0800
Hello All,
With the package specification:
package My_Program_Package is
 procedure Program_Entry_Procedure;
end My_Program_Package;

How do i make
Program_Entry_Procedure as the program
entry procedure in a GPR project?
I think it is possible, but cannot find out
how.
I know how to use a stand-alone
procedure file as program entry and how
to name the executable.
From: Jere <jhb.chat@gmail.com>
Subject: Re: Package procedure as program

entry in GPR project
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 09:05:24 -0800
> [...]
With that specific setup, I am not sure.
But if you are willing to change a couple
of things you can do:
-- my_program_package.ads
package My_Program_Package is
 -- Notice no declaration here for the
 -- procedure, but you can put other
 -- things if you like
end My_Program_Package;

-- my_program_package-
program_entry_procedure.adb
procedure My_Program_Package.
 Program_Entry_Procedure is
begin
 -- your main stuff
end My_Program_Package.
Program_Entry_Procedure;

Then you modify the GPR file to point to
it as the main:
for Main use ("my_program_package-
program_entry_procedure.adb");

I do something similar for my Gnoga GUI
projects so I can have program level stuff
in the top package but have the main a
child of that top level package.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Package procedure as program

entry in GPR project
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:42:12 -0600
> [...]
I realize you are asking for GPR, so by
definition you don't care about portability,
but:
Ada only requires Ada implementations
to support library-level procedures as the
main. See 10.2(29). A particular
implementation can allow more, but there
is no requirement.
So if you ever might want to use some
other Ada compiler (I for one, hope so),
use such a routine.
It's trivial to write one, after all:
with My_Program_Package;
procedure My_Program_Main is
begin
 My_Program_Package.
 Program_Entry_Procedure;
end My_Program_Main;

From: Jesper Quorning
<jesper.quorning@gmail.com>

Subject: Re: Package procedure as program
entry in GPR project

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 17:47:30 -0800
I just wanted a way to avoid the trivial
main file.
I also considered
package simple is
 procedure main
end simple;

package body simple is
 procedure main is
 begin
 ...
 end main;
private
 main;
end simple;

But GPR would not do that either. I will
stick to the simple procedure file.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Package procedure as program

entry in GPR project
Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 12:05:35 +0000
> [...]

14 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

This isn't a GPR thing, it's a GNAT thing:
GNAT has no extensions here beyond the
requirement.
If you have a minimal bare-board project
without any requirement for the Ada
runtime system, it's possible to do what
you ask: see Maciej Sobczak's 'Ada and
SPARK on ARM Cortex-M' tutorial[1], in
particular the 'First Chapter'[2].
It would be hard (and pointless) to
attempt this for a program intended to run
on a typical operating system.
[1] http://www.inspirel.com/articles/
Ada_On_Cortex.html
[2] http://www.inspirel.com/articles/
Ada_On_Cortex_First_Program.html

GNAT Bug
From: George Shapovalov

<gshapovalov@gmail.com>
Subject: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 06:51:50 -0800
This will probably sound more like
venting frustration. Sorry if so. But how
does anybody get anything done? gnat is
the major Ada compiler and pretty
much the only one implementing the
standard in full. Yet I cannot seem to get
it working past really small size in any
project. As soon as I try to get any basic
type composition done (only 3-4
inheritance levels, with, perhaps double
interface overlay), I get that dreaded gnat
bug message.. This is at least the 3rd one
just within past week or two..
Specifically this:
https://github.com/gerr135/wann/tree/
gnat_bug01
(the bug triggering code is in a separate
branch pointed to by that link).
This is still early in design phase and far
from being functional in any way, so I
don't really expect much comments on the
code itself (thus that "venting frustration"
comment above). But the pattern that
seems to universally trigger these gnat
bugs is something along these lines:
type Base_Interface is interface;
..

type Derived1_Interface is new
Base_Interface and ..;
..

perhaps few more layers here..
then
type Base_impl1 is new Base_Interface with
private;
..
type Derived1 is new Base_impl1 and
Derived1_Interface with private..

basically trying to stitch together
functional interface hierarchy (containing
algorithmic stuff) and data storage type

hierarchy. Somehow gnat very often just
cannot handle this type of design :(.
(and yes, I am avoiding having to lay
generics on top of other generics like
Dmitry suggests - keeps design and
compilation times sane, but apparently
overloads gnat capacity to deal with
abstraction).
So, I guess my question would be - how
people deal with such situations
(combining algorithmic and data
representation type hierarchies) in their
experience? Or, whether too many child
modules makes any difference? I seem to
have noticed that the more hierarchical
my packages are (but this one is only like
3rd level child!) the more often I trigger
that gnat bug message.. (but then keeping
the code in one huge module is really
messy too!)
And yeah, the specific message here is:
gprbuild -P wann.gpr
Compile
 [Ada] run_customnn.adb
+===GNAT BUG DETECTE===+
| Community 2018 (20180524-73)
(x86_64-pc-linux-gnu) GCC error: |
| in gnat_to_gnu_entity, at ada/gcc-
interface/decl.c:429 |
| Error detected at wann-nets-vectors.ads:
106:5 [run_customnn.adb:23:5] |
| Please submit a bug report by email to
report@adacore.com. |
| GAP members can alternatively use
GNAT Tracker: |
| http://www.adacore.com/ section 'send a
report'. |
| See gnatinfo.txt for full info on
procedure for submitting bugs. |
| Use a subject line meaningful to you and
us to track the bug. |
| Include the entire contents of this bug
box in the report. |
| Include the exact command that you
entered. |
| Also include sources listed below.
| Use plain ASCII or MIME
attachment(s). |
+=======================+
and the "please include" list of files lists
pretty much all of them in the src dir.
But as I said, this is rather a pattern I
observe, not just one-off situation..
This is with the latest FSF gnat compiler
(2018 release based on gcc-7.3.1 backend,
Gentoo Linux, relatively fresh everything
else).
Sigh, I guess another report to file with
AdaCore..
Sorry for disturbance here..

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 19:47:31 +0100
> So, I guess my question would be - how

people deal with such situations
(combining algorithmic and data
representation type hierarchies) in their
experience? Or, whether too many child
modules makes any difference? I seem
to have noticed that the more
hierarchical my packages are (but this
one is only like 3rd level child!) the
more often I trigger that gnat bug
message.

Do not panic. In many cases the bug is
triggered by an illegal program. Try an
older version of GNAT compiler to find
what triggers it. In other cases you can
work around it using minor code
variations.
From: George Shapovalov

<gshapovalov@gmail.com>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 13:32:52 -0800
> [...]
Oh, I am far from panic. It is, as I
mentioned, already like 3rd project where
I trigger a similar bug in the space of a
week or two. Just, when you finally laid
out thing just the way you wanted and
then gnat explodes on that final compile
attempt. Then you get such an expression
of frustration :).
Thanks for the advice though! This is
pretty much how I handle these. But nice
to know I am not alone in this. Well, in
fact not so nice - would be nicer if this
never happened of course :). But at least
reassuring. So thanks again.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 01 Feb 2019 20:41:06 +0000
> gprbuild -P wann.gpr
> Compile
> [Ada] run_customnn.adb
> +===GNAT BUG DETECTE===+
> | Community 2018 (20180524-73)

(x86_64-pc-linux-gnu) GCC error: |
> | in gnat_to_gnu_entity, at ada/gcc-

interface/decl.c:429 |
> | Error detected at wann-nets-

vectors.ads:106:5
[run_customnn.adb:23:5] |

but I get
$ gprbuild -p -P wann
wann.gpr:5:32: "../../libs/ada_common/
src" is not a valid directory
gprbuild: "wann" processing failed

Ada Inside 15

Ada User Journal Volume 40, Number 1, March 2019

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 13:26:27 -0800
Oops, that's a stale import of an extra lib I
thought to use at one point but then rolled
back. Apparently I forgot to remove the
path, and I obviously still have that lib on
my system, even if it is not withed any
more.
Removed, you should be able to proceed
now. Sorry about that.
One other note: at first build the compiler
may complain about missing obj/dbg dir.
Please just run:
mkdir -p obj/dbg
from the project dir (not src, one level
above it).
I have obj/ in .gitignore to prevent it
tracking generated files (and git tends to
ignore the entire dir, not just its contents.
At least my very short attempts to force it
to ignore obj/* but not obj/ itself did not
succeed. I preferred the annoyance of
running once the mkdir command over
spending more time trying to beat git
when I set it up).
Thanks for your attempt!
From: Simon Wright

<simon@pushface.org>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 01 Feb 2019 23:17:17 +0000
OK, and all the compilers I have here fail
in the same way:
FSF GCC 6, 7, 8, 9
GNAT 2016, 2017, 2018
For GCC 9, the relevant code in decl.c is
 /* If we get here, it means we have not
yet done anything with this entity. If we
are not defining it, it must be a type or an
entity that is defined elsewhere or
externally, otherwise we should have
defined it already. */
 gcc_assert (definition
 || type_annotate_only
 || is_type
 || kind == E_Discriminant
 || kind == E_Component
 || kind == E_Label
 || (kind == E_Constant &&
 Present (Full_View (gnat_entity))
 || Is_Public (gnat_entity));
... and we are none the wiser.
I tried
 gprbuild -p -P wann.gpr -c -u -f wann-
nets-vectors.adb
and it compiled OK except for loads of
'unimplemented' warnings.

Poking around at your main program, it
seems that things go wrong at the line
 package PNetV is new PNet.vectors;
(i.e., I deleted stuff starting at the bottom,
by the time I'd deleted this line it
compiled "OK".
> One other note: at first build the

compiler may complain about missing
> obj/dbg dir. Please just run:
> mkdir -p obj/dbg
> from the project dir (not src, one level

above it).
'gprbuild -p' will create missing
directories.
Or you could add
 for Create_Missing_Dirs use "true";

to your GPR (recent ones only).
From: George Shapovalov

<gshapovalov@gmail.com>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Fri, 1 Feb 2019 23:16:32 -0800
> [...]
> I tried
> gprbuild -p -P wann.gpr -c -u -f wann-

nets-vectors.adb
> and it compiled OK except for loads of

'unimplemented' warnings.
Ok, so the file itself compiles (I gotta read
up on all those switches apparently. This
is a ways to quickly test stuff. Thanks for
a suggestion!)
But that is quite what I expect, given the
nature of the bugs I get - they clearly
come from gnat getting lost in all the
inheritances I throw at it.
> Poking around at your main program, it

seems that things go wrong at the line
The specific offending lines are:
wann-nets-vectors.ads:104 and 106
these two full type definitions (if I
comment out one it still fails on the
other):
 type Cached_Proto_NNet is abstract new
Proto_NNet and Cached_NNet_Interface
with null record;

 type Cached_Checked_Proto_NNet is
abstract new Proto_NNet and
Cached_Checked_NNet_Interface with null
record;

These are null record at the moment, as I
did not yet get around to properly
implement them. Just placeholders
essentially. And this is what might be
confusing gnat I suspect. I did not yet try
to add any actual data inside.
> 'gprbuild -p' will create missing

directories.
> Or you could add
Thanks, I'll add this too.

A small note: I will be at the Fosdem
most of today and possibly tomorrow. So,
I may not be able to reply in a timely
manner these two days.
(But I will surely pass by the Ada dev
room today!)
From: Per Sandberg

<per.s.sandberg@bahnhof.se>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 08:13:02 +0100
I did put some effort to reduce the
problem and the workaround is quite
simple, in file "wann-nets.ads:69" mark
the procedure Del_Neuron as abstract
instead of null.
Here is the small reproducible I ended up
with after stripping the code:
pragma Warnings (Off);
generic
 type Real is digits <>;
package wann is
end Wann;
--
generic
package Wann.Neurons is
end Wann.Neurons;

generic
package Wann.Nets is
 type NNet_Interface is limited interface;
 procedure Del (Net : in out
 NNet_Interface) is null;
 -- Fails
 -- procedure Del (Net : in out
 -- NNet_Interface) is abstract;-- Works
 type Cached_NNet_Interface is limited
interface and NNet_Interface
end Wann.Nets;
--
generic
package wann.nets.vectors is
 type Proto_NNet is abstract new
 NNet_Interface with NULL record;
 type Cached_Proto_NNet is abstract new
 Proto_NNet and
 Cached_NNet_Interface with null record;
end wann.nets.vectors;
--
pragma Warnings (Off);
with wann.nets.vectors;
procedure run_customNN is
 package PW is new wann(Real => Float);
 package PNet is new PW.nets;
 package PNetV is new PNet.vectors;
begin
 null;
end Run_CustomNN;

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 11:05:19 -0800
Wow, thank you for your time!
Looking at how that final code is so small
and basic, and that snippet of gnat
internals that was dug out on another
comment above, it looks like gnat does

16 Ada Inside

Volume 40, Number 1, March 2019 Ada User Journal

not implement null primitives in full..
(which is a pity, as null method makes
more sense there than abstract, but well..)
Once I am completely back from Fosdem
I'll play with this a bit more, to see if
that's package hierarchy, generics or
combination thereof that is triggering it
and submit a bug with final details.
Thanks again!
From: Per Sandberg

<per.s.sandberg@bahnhof.se>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Sat, 2 Feb 2019 22:37:01 +0100
Well I think it's more about deeply nested
generics, since that is a real nightmare to
implement in its full context.
From: George Shapovalov

<gshapovalov@gmail.com>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 4 Feb 2019 04:28:45 -0800
Not exactly as far as I can tell.
I have played some more with the code
and could simplify it even more - there is
no need for that extra top package level.
Same thing happens if the interfaces are
declared at the top, and overridden in a
child. Flat package structure (still generic)
compiles fine. Removing generics (and
instead doing "type Real is new Float" at
the top) given unstable behavior - one
time I got the same bug triggered, but
after I renamed sources (originally names
"workaround" to "alternative" to reflect
better the situation) gnat started to
compile it properly (giving error message
about declaring vars of abstract type).
Apparently it has a sense of humor - this
is literally the situation of "what is written
here is a lie").
Anyway, I have created a github project
to keep the code producing gnat bugs I
have so far encountered (only one at the
moment, but there are two more I need to
clean-up and report). This project shows
the code triggering the bug, as well as
workarounds and the status of the bug
report. I think such a resource would be
rather useful (given that AdaCore
themselves don't really support the bug
tracker, at least for the community version
[1]). So, please feel free to consult or even
contribute, if there are any more
commonly encountered bugs.
The project can be found here:
https://github.com/gerr135/gnat_bugs
[1] I chatted with them briefly 2 days ago
on Fosdem and they told me that they
prefer an email report and that tracker is
not really functional for a community
version at least.
From: joakimds@kth.se
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 4 Feb 2019 07:30:30 -0800

George, thanks for your efforts in making
detailed gnat bug reports and your input
in the Ada dev room on Fosdem 2019.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Mon, 04 Feb 2019 16:11:47 +0000
> I chatted with them briefly 2 days ago

on FOSDEM and they told me that they
prefer an email report and that tracker
is not really functional for a community
version at least.

Do you mean the GCC Bugzilla? I can
quite understand why reports against just
GNAT CE wouldn't really be appropriate
there.
AdaCore do respond to reports on FSF
GCC there, especially if the report is
about the GCC build system or about bad
code generation. However, old bugs don't
really get curated as they are fixed in new
releases.
This doesn't work where the sources
concerned aren't publicly visible in the
repository: for example, the embedded
runtimes.
Personally I like to report on Bugzilla
where appropriate, because reports to
report@adacore.com aren't publicly
visible. I don't know how annoying it'd be
to report in both places.
From: George Shapovalov

<gshapovalov@gmail.com>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Tue, 5 Feb 2019 11:16:51 -0800
> Do you mean the GCC Bugzilla? I can

quite understand why reports against
just GNAT CE wouldn't really be
appropriate there.

No, I meant the tracker mentioned on the
bug message:
>GAP members can alternatively use

GNAT Tracker: |
>| http://www.adacore.com/ section 'send

a report'.
From his reaction I took it that that tracker
is not that active. Although it would not
be so useful for many people anyway, if it
has usage limitations.
> AdaCore do respond to reports on FSF

GCC there, especially if the report is
about the GCC build system or about
bad code generation.

Oh, they do? Thanks for the info!
That's not something I directly thought
about, as the problem is with the upstream
(of FSF), so it makes sense to take it
directly to upstream (the most common
reaction of many projects and
distributions is to first try to figure out if
its them or upstream, and if its upstream,
then its universally - "report it to
upstream". Which is totally logical, in

avoiding messy duplication of effort. In
fact it is often not something they would
even have control over).
So, I just took it directly to upstream,
strictly following the procedure described
in the bug message :).
> Personally I like to report on Bugzilla

where appropriate, because reports to
report@adacore.com aren't publicly
visible. I don't know how annoying it'd
be to report in both places.

Yes, that's indeed a concern. This is why I
created that github project, as I had a few
bugs lying around already. I'll populate it
with more when I get around to it.
But to the credit of AdaCore, they react
quickly - I already got a confirmation that
they got it and will look into it..
From: Simon Wright

<simon@pushface.org>
Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Tue, 05 Feb 2019 20:37:16 +0000
> [...]
> From his reaction I took it that that

tracker is not that active. Although it
would not be so useful for many people
anyway, if it has usage limitations.

If you have a contract with AdaCore then
Tracker is the point of contact; and the
response when I worked for a company
with a contract was terrific.
If not, your only direct contact is
report@adacore.com (with GNAT in the
subject line).
> That's not something I directly thought

about, as the problem is with the
upstream (of FSF), so it makes sense to
take it directly to upstream (the most
common reaction of many projects and
distributions is to first try to figure out
if its them or upstream, and if its
upstream, then its universally - "report
it to upstream". Which is totally logical,
in avoiding messy duplication of effort.
In fact it is often not something they
would even have control over). So, I
just took it directly to upstream, strictly
following the procedure described in
the bug message :).

The AdaCore people working on FSF
GCC are the same people working on the
'upstream' product, which is why I've
never thought of it like that; but
I see your point.
And, I've occasionally added 'same
problem with GNAT CE' to Bugzilla
reports where I thought it might stimulate
interest.
> [...]
> But to the credit of AdaCore, they react

quickly - I already got a confirmation
that they got it and will look into itIt
helps if they know you!

Ada in Context 17

Ada User Journal Volume 40, Number 1, March 2019

From: George Shapovalov
<gshapovalov@gmail.com>

Subject: Re: Yet another gnat bug
Newsgroups: comp.lang.ada
Date: Wed, 6 Feb 2019 02:53:18 -0800
> The AdaCore people working on FSF

GCC are the same people working on
the 'upstream' product, which is why
I've never thought of it like that; but

> I see your point.
Oh, so they do have people working on
gcc directly? Nice!
Sure, that makes total sense (for a
company that essentially sells a gcc-based
compiler). But unfortunately this rarely
happens in reality.
AdaCore seems like a real nice company!
(A bit of praise never hearts, but
seriously, thanks to AdaCore people for
nice work overall!)
> > But to the credit of AdaCore, they

react quickly - I already got a
confirmation that they got it and will
look into it.

>
> It helps if they know you!
Maybe, but then I only saw them once in
a person, and that likely were other
people.
But more importantly, this particular issue
seems to be a general omission affecting
gnat universally, which would affect all
kinds of users. I am just puzzled how this
thing was not triggered before by at least
some users? Is nobody fond of trying to
lay out their types in the most abstract
way possible? That *does* force better
design and ends up saving quite a bit of
work down the road (to the point of
coding becoming really boring after the
general structure is in and successfully
compiled by gnat). Well, I guess people
just always write "is abstract" even where
"is null" would make more sense (or that
not many people mix generics and OOP
abstraction)..

Alignment issue
From: Simon Wright

<simon@pushface.org>
Subject: Alignment issue
Newsgroups: comp.lang.ada
Date: Sat, 16 Feb 2019 19:40:38 +0000
I have code like this (written while
working on a StackOverflow question),
and GNAT ignores apparent alignment
requests.
 with System.Storage_Pools;
 with System.Storage_Elements;
 package Alignment_Issue is

 type Data_Store is new
System.Storage_Elements.Storage_Array
 with Alignment => 16; --
Standard'Maximum_Alignment;

 type User_Pool (Size :
System.Storage_Elements.Storage_Count)
 is record
 Flag : Boolean;
 Data : Data_Store (1 .. Size);
 end record
 with Alignment => 16; --
Standard'Maximum_Alignment;

 end Alignment_Issue;

(Standard'Maximum_Alignment is a
GNAT special) and compiling with
GNAT CE 2018 (and other GNAT
compilers) I see
 $ /opt/gnat-ce-2018/bin/gnatmake -c -u
-f -gnatR alignment_issue.ads
 gcc -c -gnatR alignment_issue.ads
 Representation information for unit
Alignment_Issue (spec)
 for Data_Store'Alignment use 16;
 for Data_Store'Component_Size use 8;

 for User_Pool'Object_Size use ??;
 for User_Pool'Value_Size use ??;
 for User_Pool'Alignment use 16;
 for User_Pool use record
 Size at 0 range 0 .. 63;
 Flag at 8 range 0 .. 7;
 Data at 9 range 0 .. ??;
 end record;

which means that GNAT has ignored the
alignment specified for Data_Store when
setting up User_Pool.Data.
 Is this expected? OK?
I found a workround of sorts:
 type Data_Store (Size :
System.Storage_Elements.Storage_Count)
is record
 Data :
System.Storage_Elements.Storage_Array (1
.. Size);
 end record
 with Alignment => 16; --
Standard'Maximum_Alignment;

 type User_Pool (Size :
System.Storage_Elements.Storage_Count)
 is record
 Flag : Boolean;
 Stack : Data_Store (Size);
 end record;

giving
 Representation information for unit
Alignment_Issue (spec)
 for Data_Store'Object_Size use ??;
 for Data_Store'Value_Size use ??;
 for Data_Store'Alignment use 16;
 for Data_Store use record
 Size at 0 range 0 .. 63;
 Data at 8 range 0 .. ??;
 end record;

 for User_Pool'Object_Size use ??;
 for User_Pool'Value_Size use ??;
 for User_Pool'Alignment use 16;
 for User_Pool use record

 Size at 0 range 0 .. 63;
 Flag at 8 range 0 .. 7;
 Stack at 16 range 0 .. ??;
 end record;

(but even then I see that Stack.Data is
offset by 8 bytes because of the
discriminant)
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Alignment issue
Newsgroups: comp.lang.ada
Date: Mon, 18 Feb 2019 17:01:02 -0600
>I have code like this (written while

working on a StackOverflow question),
and GNAT ignores apparent alignment
requests.

I wouldn't have expected Alignment to
cause the effect, but when you specify
representation for a record type, any
requirements on the components are can
be ignored. Perhaps GNAT is taking that
somewhat too far??

Ada in Context
Create Attributes
From: eduardsapotski@gmail.com
Subject: Сreate attributes.
Newsgroups: comp.lang.ada
Date: Fri, 21 Dec 2018 21:37:12 -0800
Sorry for the stupid question...
For example. I have type:
 type Person is record
 First_Name : Unbounded_String :=
 Null_Unbounded_String;
 Last_Name : Unbounded_String :=
 Null_Unbounded_String;
 end record;

There is a list:
 package People_Package is new
Ada.Containers.Vectors(Natural, Person);
 People : People_Package.Vector;

Next, I want to display this list with
headers:

| NAME | SURNAME |

| John | Smith |
| Ada | Lovelace |
...

Can I use attributes to display headers?
For example something like this:
People'First_Name_Header
How can this be implemented?
From: Brad Moore

<bmoore.ada@gmail.com>
Subject: Re: Сreate attributes.
Newsgroups: comp.lang.ada
Date: Sat, 22 Dec 2018 11:13:40 -0800

18 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

You could use a class-wide type or a type
with discriminants such as;
 type Person_Attribute_Kinds is (Name,
Surname);
 type Person_Attribute (Attribute_Name :
Person_Attribute_Kinds
 :=
Person_Attribute_Kinds'First) is
 record
 case Attribute_Name is
 when Name | Surname =>
 Name_String : Unbounded_String
:= Null_Unbounded_String;
 end case;
 end record;

 type Person is
 record
 First_Name :
Person_Attribute(Name);
 Last_Name :
Person_Attribute(Surname);
 end record;

 X : Person;
begin
 Put_Line ("| " &
X.First_Name.Attribute_Name'Image &
 " | " &
X.Last_Name.Attribute_Name'Image & " |");

Overloading operators
From: daicrkk@googlemail.com
Subject: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Fri, 11 Jan 2019 13:46:22 -0800
I am working my way through Barnes'
excellent Ada book. This is a code sample
for deep comparison of linked lists from
section 11.7:
type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;
function "=" (L, R: access Cell) return
Boolean is
begin
 if L = null or R = null then -- universal =
 return L = R; -- universal = (Line
A)
 elsif L.Value = R.Value then
 return L.Next = R.Next; -- recurses OK
(Line B)
 else
 return False;
 end if;
end "=";

I can't seem to wrap my head around why
in Line A operator "=" of the
universal_access type is called (because
of the preference rule), on Line B,
however, the user-defined operator "=" is
called (which makes recursion possible in
the first place), this time with no
preference for operator "=" of
universal_access.

Both L and R, as well as L.Next and
R.Next are of the same anonymous type
"access Cell". Why the difference in
"dispatching"? Does it have to do with L
and R being access parameters? If so,
what is the rule there?
I did my best to find anything in the
AARM, especially section 4.5.2, but
could not make any sense of it.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 09:50:14 +0000
Given ARM 4.5.2(9.1 ff),
 At least one of the operands of an
equality operator for universal_access
shall be of a specific anonymous access
type. Unless the predefined equality
operator is identified using an expanded
name with prefix denoting the package
Standard, neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a user-
defined primitive equality operator such
that:
 * its result type is Boolean;
 * it is declared immediately within the
same declaration list as D or any partial or
incomplete view of D; and
 * at least one of its operands is an
access parameter with designated type D.
I'm not at all clear why the example code
is legal, or why it would be legal to call it;
since 'access Cell' appears to match
"neither operand shall be of an access-to-
object type whose designated type is D or
D'Class, where D has a user-defined
primitive equality operator ..."
Might explain why compiling this
example with GNAT (CE 2018) results in
stack overflow.
From: Simon Wright

<simon@pushface.org>
Subject: Re: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 14:01:43 +0000
> I'm not at all clear why the example

code is legal, or why it would be legal
to call it; since 'access Cell' appears to
match "neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a
user-defined primitive equality operator
..."

Still not clear.
Note to self: do *not* attempt to define
"=" for anonymous access types!
Would have liked the AIs to have said "it
is illegal to define "=" for anonymous
access types".

From: daicrkk@googlemail.com
Subject: Re: Overloading operator “=” for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Sat, 12 Jan 2019 07:15:38 -0800
> [...]
> I'm not at all clear why the example

code is legal, or why it would be legal
to call it; since 'access Cell' appears to
match "neither operand shall be of an
access-to-object type whose designated
type is D or D'Class, where D has a
user-defined primitive equality operator
..."

I second that. Access Cell is an access-to-
object type whose designated type is Cell
(check), Cell has a user-defined primitive
equality operator (check) such that its
result type is Boolean (check), it is
declared immediately within the same
declaration list as Cell (check), at least
one of its operands is an access parameter
with designated type Cell (both operands
are, check).
According to 4.5.2, universal_access "="
should never be allowed to kick in at all
here, not even with "L = null". Or am I
missing something?
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Overloading operator "=" for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 17:08:32 -0600
>I second that. Access Cell is an access-

to-object type whose designated type is
Cell (check), Cell has a user-defined
primitive equality operator (check) such
that its result type is Boolean (check), it
is declared immediately within the
same declaration list as Cell (check), at
least one of its operands is an access
parameter with designated type Cell
(both operands are, check).

>According to 4.5.2, universal_access "="
should never be allowed to kick in at all
here, not even with "L = null". Or am I
missing something?

Yup, I agree with this. My first thought
when reading that example is that it is
wrong, because I don't remember
anywhere in Ada where the same operator
with arguments of the same type means
different things. I don't think the use of
"null" could change that.
Dunno if John wrote that for a different
version of Ada, or he was just confused
by a rule that barely makes sense anyway.
As always, best avoid anonymous access
types unless you have to use one of their
special features (dynamic accessibility,
dispatching, special discriminant
accessibility, or closures [for access-to-
subprograms]). And better still, lets lobby
to get those special features optionally
available for named access types so no
one ever has to use an anonymous
anything. :-)

Ada in Context 19

Ada User Journal Volume 40, Number 1, March 2019

From: Shark8
<onewingedshark@gmail.com>

Subject: Re: Overloading operator "=" for
anonymous access types?

Newsgroups: comp.lang.ada
Date: Mon, 14 Jan 2019 16:34:42 -0800
> As always, best avoid anonymous

access types unless you have to use one
of their special features (dynamic
accessibility, dispatching, special
discriminant accessibility, or closures
[for access-to-subprograms]). And
better still, lets lobby to get those
special features optionally available for
named access types so no one ever has
to use an anonymous anything. :-)

Well, I'm all for getting rid of anonymous
access types altogether -- though that
might not be acceptable to the rest of the
ARG as it would make previously-valid
Ada non-valid, I think reducing the
complexity of the language (and reduce
instances of "a rule that barely makes
sense anyway").
I thought there was an AI for first class
subprograms / subprogram types, but I
couldn't find it with a quick search... so
either I'm misremembering or I'm just
hitting all the wrong keywords in the
search.
 From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: Overloading operator "=" for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 09:38:11 +0100
> Yup, I agree with this. My first thought

when reading that example is that it is
wrong, because I don't remember
anywhere in Ada where the same
operator with arguments of the same
type means different things. I don't
think the use of "null" could change
that.

But the types are not same. It is
universal_access vs. access.
> Dunno if John wrote that for a different

version of Ada, or he was just confused
by a rule that barely makes sense
anyway.

> As always, best avoid anonymous
access types unless you have to use one
of their special features (dynamic
accessibility, dispatching, special
discriminant accessibility, or closures
[for access-to-subprograms]). And
better still, lets lobby to get those
special features optionally available for
named access types so no one ever has
to use an anonymous anything. :-)

Named or anonymous it makes little
difference, IMO.
Here is a classic multi-method case. "=" is
such an operation. null is universal_access
(4.2). For any access type P there are 3
equality operations "=":

function "=" (Left, Right : universal_access)
return Boolean;
 type P is access T;
 function "=" (Left : P; Right :
universal_access) return Boolean;
 function "=" (Left : universal_access; Right
: P) return Boolean;
 function "=" (Left, Right : P) return
Boolean;

When the last one is overridden, what
happens with the second and the third?
One of three possibilities:
1. It inherits the base operation:
 function "=" (Left : P; Right :
universal_access) return Boolean is
 begin
 return universal_access (Left) = Right;
 end "=";

2. It silently overrides:
 function "=" (Left : P; Right :
universal_access) return Boolean is
 begin
 return Left = P (Right);
 end "=";

3. It gets overridden abstract and
comparison to null becomes illegal
because the operation is not defined.
[The reference manual is shy to say
anything about it. It claims that
universal_access is kind of class-wide,
which would mean, if taken seriously, that
"=" overloads and must clash with the
original "=". Since it does not,
universal_access is more like a parent
type than class-wide.]
It seems that in the OP's case as in the
case with named access types #2 is in
effect, which is illogical, inconsistent,
unsafe, but would be expected by most
people.
Barnes' code presumes rather #1, which is
logical, but confusing and error-prone.
#3 would be consistent and safe:
 if Ptr_Value = Ptr_Type (null) then --
Type conversion required
But it would not work with anonymous
access types. So, if #3 were adopted, then
overriding for anonymous types must be
banished.
All this is fine and good, except that
overriding
 function "=" (Left, Right : access T)
return Boolean;
is also a primitive of T! You cannot
banish it.
P.S. And, wouldn't it be better to fix the
type system, no?
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Overloading operator "=" for

anonymous access types?
Newsgroups: comp.lang.ada
Date: Tue, 15 Jan 2019 15:00:31 -0600

> [The reference manual is shy to say
anything about it. It claims that
universal_access is kind of class-wide,
which would mean, if taken seriously,
that "=" overloads and must clash with
the original "=".

This is what happens. However, such a
clash would mean that you could never
write a user-defined "=" for an
anonymous access type. That would have
been a good idea, but it would have to
have been enforced with a Legality Rule
to be sensible. Some thought that bad
because of compatibility, so...
> Since it does not, universal_access is
more like a parent type than class-wide.]
...there is a hack to have a preference for

the user-defined one. That doesn't
change the fact that universal_access is
class-wide, it just make it possible to
write a user-defined operator.

>P.S. And, wouldn't it be better to fix the
type system, no?

This wart would be one of the things that
would make "fixing the type system" so
much harder. A proper solution (and the
one we should have used in the first
place) is to declare a "=" for every access
type. I think we wanted to avoid that as
anonymous access can be declared in
places where declarations aren't allowed,
so we came up with something worse. :-)
It's the idea of anonymous access types
that destroys the type system that you
have in mind. Your system keeps the
types and operations together, and that
makes no sense for an anonymous type
(what are the operations for an
anonymous type, and where are they
declared? Any answer is either magical or
nonsense.)
One has to get rid of nonsense things
before one could regularize the type
system, especially upon the lines you
have been suggesting for years. It's not
really possible for Ada; you would end up
with an Ada-like language.
This is just another Ada

Return types
From: danielcheagle@gmail.com
Subject: ? Is ok return a type derived from

ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Thu, 24 Jan 2019 15:56:10 -0800
Is ok return a type derived from
ada.finalization.controlled from a function
declared "Pure_Function" ?
Or yet, is ok declare a fuction returning a
controlled type as "pure_function" ?
Thanks in Advance!!!
note1 : the type has a access value.
note2 : initialize, adjust and finalize
overrided and working :-)

20 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

 fragment example code:

pragma Ada_2012;
pragma Detect_Blocking;

with Ada.Finalization;

package Arbitrary
 with preelaborate
is

 type Arbitrary_Type (size : Positive) is
 new Ada.Finalization.Controlled with
private;

 function To_Arbitrary (value : Integer;
 precision : Integer)
 return Arbitrary_Type
 with inline; -- Can I add "pure_function" ?

private

 type Mantissa_Type is array (Positive
 range <>) of Integer;
 type Mantissa_Pointer is access
 Mantissa_Type;

 type Arbitrary_Type (size : Positive) is
 new Ada.Finalization.Controlled with
record
 mantissa : Mantissa_Pointer;
 exponent : Integer;
 sign : Integer range -1 .. 1;
 precision : Positive := size;
 end record;

end arbitrary;

pragma Ada_2012;
pragma Detect_Blocking;

with Ada.Unchecked_Deallocation;

package body Arbitrary is

 procedure Delete is new
 Ada.Unchecked_Deallocation
 (Mantissa_Type,
 Mantissa_Pointer);

 -- Initialize an Arbitrary_Type
 --
 procedure Initialize (Object : in out
 Arbitrary_Type) is
 begin
 Object.mantissa := new Mantissa_Type
 (1 .. Object.precision);
 Object.exponent := 0;
 Object.sign := 1;
 -- "here" for diminish race condition from
 -- OS' s
 Object.mantissa.all := (others => 0);
 end Initialize;

 --
 -- Fix an Arbitrary_Type after being --
 -- assigned a value
 --
 procedure Adjust (Object : in out
 Arbitrary_Type) is

 begin
 Object.mantissa := new
 Mantissa_Type'(Object.mantissa.all);
 end Adjust;

--
 -- Release an Arbitrary_Type;
--
 procedure Finalize (Object : in out
 Arbitrary_Type) is
 begin
 if Object.mantissa /= null then
 Delete (Object.mantissa);
 end if;
 Object.mantissa := null;
 end Finalize;

 -- Convert an Integer type to an
 -- Arbitrary_Type
--
 function To_Arbitrary (value : Integer;
 precision : Integer)
 return Arbitrary_Type is
 result : Arbitrary_Type (precision);
 begin
 result.mantissa (result.exponent + 1) :=
 value;
 Normalize (result);
 return result;
 end To_Arbitrary;

end arbitrary;

From: "Randy Brukardt"
<randy@rrsoftware.com>

Subject: Re: ? Is ok return a type derived
from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:20:47 -0600
Of course it's OK, "Pure_Function" is
some GNAT-specific nonsense. :-)
My recollection is that GNAT does not
check if Pure_Function makes sense, so
the only question is whether you can live
with the possible implications. (And I
don't know why you would want to use
Pure_Function anyway.)
Note that in Ada 2020, you would use the
Global aspect to declare the usage of
globals by your subprogram, and those
are checked, so either the aspect is legal
or your program won't compile. But
GNAT hasn't implemented that yet, so far
as I know.
From: Shark8

<onewingedshark@gmail.com>
Subject: Re: ? Is ok return a type derived

from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 16:22:33 -0800
IIRC, Pure_Function doesn't need to be in
a Pure unit to be tagged as such, and the
GNAT-specific meaning is: given a call
with a particular set of parameter-values
always returns the same result.

As I recall GNAT doesn't actually check
this is case, but rather uses it for
optimization purposes.
> Or yet, is ok declare a function

returning a controlled type as
"pure_function" ?

See above: "Pure_Function" has nothing
to do with categorization or restrictions
and is just an attribute denoting allowance
for certain optimizations. (Again, IIRC.)
From: Simon Wright

<simon@pushface.org>
Subject: Re: ? Is ok return a type derived

from ada.finalization.controlled from a
"Pure_Function" ? thanks.

Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 11:48:46 +0000
Given that the documentation of
Pure_Function[1] says
 ... the compiler can assume that there are
no side effects, and in particular that two
calls with identical arguments produce the
same result
and that
 ... there are no static checks to try to
ensure that this promise is met
it would be a Bad Idea to apply it to your
function.
[1] https://gcc.gnu.org/onlinedocs/
gnat_rm/Pragma-Pure_005fFunction.html

Forbid local generic
instantiations
From: joakimds@kth.se
Subject: Why forbid local generic

instantiations?
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 01:43:29 -0800
[...]
Consider the following code:
procedure Main is
 package Integer_Vectors is new
Ada.Containers.Vectors (Positive, Integer);
begin
 null;
end Main;

It has a generic package instantiation local
to the subprogram Main and not defined
on package level. Both in AdaControl and
GNATCheck there are rules to forbid
local generic instantiations.
For example GNATCheck:
23.7.25 Generics_In_Subprograms
 Flag each declaration of a generic unit in
a subprogram. Generic declarations in the
bodies of generic subprograms are also
flagged. A generic unit nested in another
generic unit is not flagged. If a generic
unit is declared in a local package that is
declared in a subprogram body, the
generic unit is flagged.
This rule has no parameters.

Ada in Context 21

Ada User Journal Volume 40, Number 1, March 2019

Using AdaControl one can use the
following rule to detect instantiations of
generic packages/subprograms:
5.10 Declarations
This rule controls usage of various kinds
of declarations, possibly only those
occurring at specified locations.
...
Why is it considered bad practise to use
local generic instantiations? Within the
C++ Community, limiting the use of
templates doesn't seem an issue. On the
contrary, going all in with template
metaprogramming is the norm.
Does local generic instantiations have a
performance penalty? Is it something that
may be error-prone? Limit cross-compiler
compatibility? Why does the rule exist to
ban local instantiations? I've been
googling/searching the web for an answer
to this question but have not found an
explanation. Does anybody know?
From: "Jeffrey R. Carter"

<spam.jrcarter.not@spam.not.acm.org>
Subject: Re: Why forbid local generic

instantiations?
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 17:36:33 +0100
> Why is it considered bad practise to use

local generic instantiations? Within the
C++ Community, limiting the use of
templates doesn't seem an issue. On the
contrary, going all in with template
metaprogramming is the norm.

It isn't bad practice. Mostly such rules are
premature optimization. Are there rules
against regular pkgs in such places?
There's no difference.
It makes perfect sense for things to be
declared in the smallest scope in which
they're needed. This is true of anything,
not just pkgs.
A pkg in a subprogram is elaborated
every time the subprogram is called. If the
elaboration of a specific pkg is expensive
and timing requirements are tight, it might
make sense to move that pkg to a larger
scope. But a general rule against them for
"efficiency" doesn't make sense. Limiting
it to pkgs that are generic instantiations
makes less sense.
Perhaps such people don't know that
instantiation takes place during
compilation and has no run-time impact.
As a 1st-order approximation, anything
the "C++ Community" does should be
avoided.
From: "Randy Brukardt"

<randy@rrsoftware.com>
Subject: Re: Why forbid local generic

instantiations?
Newsgroups: comp.lang.ada
Date: Fri, 25 Jan 2019 15:23:55 -0600
> Perhaps such people don't know that

instantiation takes place during

compilation and has no run-time
impact.

I agree with most of what you said, but
this statement is false, since the instance
is elaborated at the point of the
instantiation. Depending on the generic,
that could be a substantial amount of
execution time. (Note that is even more
true for a code-shared implementation
like Janus/Ada, since the elaboration of
the instance creates the instantiation
descriptor.)
From: "Jeffrey R. Carter"

<spam.jrcarter.not@spam.not.acm.org>
Subject: Re: Why forbid local generic

instantiations?
Newsgroups: comp.lang.ada
Date: Sat, 26 Jan 2019 10:56:27 +0100
> [...]
I can't tell from what you've written if
what I said is wrong or if we're saying
basically the same thing in different ways.
I'm not familiar with the way shared-code
generics are instantiated. Macro-
expansion instantiation is straightforward.
The rule I learned (Ada 83) was:
Instantiation happens during compilation;
elaboration happens during run time.
In more detail: Instantiation is the process
whereby a compiler effectively replaces
an instantiation with a regular pkg (the
instance). The result is no different from
having written the resulting regular pkg
instead of the instantiation, except for
possible code sharing with other
instantiations of the same generic
[ignoring the case of an instantiation in a
pkg spec].
All pkgs, regular or generic instances, are
elaborated during run time. That
elaboration can be as complex as the
developer wants. In the case of a pkg in a
subprogram, that elaboration happens
every time the subprogram is called.
That's what I learned back when dinosaurs
ruled the earth. I gather from what you've
written that a shared-code compiler may
increase the amount of elaboration by
some (hopefully small, fixed?) amount, so
it's not technically correct unless the
increase is small enough to be considered
negligible. I think it's correct for
compilers that do macro-expansion
instantiation, and close enough for the
rule to be correct as a 1st-order
approximation.
If I'm wrong, I'd like to be corrected.
From: Jere <jhb.chat@gmail.com>
Subject: Private extension of a synchronized

interface
Newsgroups: comp.lang.ada
Date: Fri, 15 Feb 2019 16:52:07 -0800
I'll get to my ultimate goal later, but while
following various rabbit trails, I came
across a situation I couldn't solve. GNAT
allows you to make private extensions to
synchronized interfaces and it allows you

to complete those private extensions with
protected types. I can't, however, figure
out how it overrides the abstract
procedures and functions of the
synchronized interface.
If I don't specify an override and try to
call the procedure, it complains that the
procedure is abstract. If I try to override
the abstract function, it complains that the
signature doesn't match the one in the
protected body. I don't know if this is a
GNAT issue or something that Ada
doesn't allow. Here is some test code. It
compiles as is, but there are two parts that
if you uncomment either one of those it
fails to compile.
with Ada.Text_IO; use Ada.Text_IO;
procedure Hello is
 package Example is

 type An_Interface is synchronized
 interface;
 procedure p1(Self : in out
 An_Interface) is abstract;

 type Instance is synchronized new
 An_Interface with private;

 -- The following lines give the errors:
 -- "p1" conflicts with declaration at line
 --- xxx and missing body for "p1"

 --overriding
 --procedure p1(Self : in out Instance);

 private
 -- Some hidden implementation types,
 -- constants, etc.

 -- Instance full view is a protected type
 protected type Instance is new
 An_Interface with
 procedure p1;
 private
 -- some hidden stuff;
 end Instance;

 end Example;

 package body Example is
 protected body Instance is
 procedure p1 is
 begin
 Put_Line("Did Something");
 end p1;
 end Instance;

 end Example;

 v : Example.Instance;

begin
 Put_Line("Hello, world!");
 -- The following line gives the error:
 -- call to abstract procedure must be
 -- dispatching
 --v.p1;
end Hello;

My ultimate goal is not having to declare
a bunch of extra types and packages in the

22 Ada in Context

Volume 40, Number 1, March 2019 Ada User Journal

public view to only use them in the
private view of the protected object. I'd
prefer that all of the private stuff actually
be in a private section. So I'm not tied to
interfaces, but it was one attempt at
getting stuff moved down to the private
section. But while I went down the
interfaces rabbit hole, I just found the
issue I ran into odd.
Does anyone know how to create the
correct overrides for the example above?

Extension of synchronized
interfaces
 From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 10:50:21 +0100
> I'll get to my ultimate goal later, but

while following various rabbit trails, I
came across a situation I couldn't solve.
GNAT allows you to make private
extensions to synchronized interfaces
and it allows you to complete those
private extensions with protected types.
I can't, however, figure out how it
overrides the abstract procedures and
functions of the synchronized interface.

> If I don't specify an override and try to
call the procedure, it complains that the
procedure is abstract. If I try to override
the abstract function, it complains that
the signature doesn't match the one in
the protected body. I don't know if this
is a GNAT issue or something that Ada
doesn't allow. Here is some test code. It
compiles as is, but there are two parts
that if you uncomment either one of
those it fails to compile.

Reading RM 9.5.2 (13.2/2) does not really
help:
"if the overriding_indicator is overriding,
then the entry shall implement an
inherited subprogram;"
An inherited subprogram is already
implemented per, well, inheritance. May
be it means:
1. shall implement a primitive operation

(it overrides here);
2. shall implement an overridden

primitive operation (it implements
overriding declared earlier).

Neither #1 nor #2 work.
But synchronized interfaces are totally
bogus from the software design POV. It is
a pure implementation aspect exposed.
Why do you care?
Aggregate a protected object and delegate
primitive operations to it.
 From: Jere <jhb.chat@gmail.com>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 05:46:17 -0800

> But synchronized interfaces are totally
bogus from the software design POV. It
is a pure implementation aspect
exposed. Why do you care?

> Aggregate a protected object and
delegate primitive operations to it.

That's what I am doing as my own
solution. I was intrigued with the code
above as an alternate solution because it
could potentially give a compile time
indication that a procedure was a
protected operation (as opposed to me
relying on simply providing that via
comments). A delegate non protected
procedure has to rely on the comment. I
didn't even want the interface to use as an
interface, just as a means to at the API
level to have a compiler enforced
indication that the procedure was from a
protected object. I started with a protected
object in the public view but the
implementation details of the private part
of the protected object led to about 10
lines of code (type declarations and a
couple of package specifications) that had
no use to the public view but had to be
there because of how protected object
declarations work. I saw this as a potential
means of information hiding. My actual
solution is as you suggested with delegate
operations that call the protected object.
However, I honestly wanted to know why
Ada allowed one to setup the private
extension but not allow you to actually
provide the functions (or if this was a
GNAT issue or if I was just not using the
right syntax). So the reason I care was a
thirst for knowledge of how things work.
From: "Dmitry A. Kazakov"

<mailbox@dmitry-kazakov.de>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 15:52:38 +0100
Given to who? The compiler knows
already, the user should not care. It is an
implementation aspect which simply does
not belong here.
What could make sense is an entry
interface, a primitive operation which
could be queued/requeued to, used in
timed entry call etc.
> A delegate non protected procedure has

to rely on the comment.
There is no contract that could require it
protected. It is a property of the
object/task and no property of an
operation. You could not do anything
with a task or protected object that would
not resolve into a protected action
anyway.
[...]
> However, I honestly wanted to know

why Ada allowed one to setup the
private extension but not allow you to
actually provide the functions (or if this
was a GNAT issue or if I was just not
using the right syntax). So the reason I

care was a thirst for knowledge of how
things work.

Ada 2005 stuff, most of it makes little
sense to me. It was some halfhearted
attempt to unite tagged types with tasks
and protected objects with no desire to
actually do that...
From: Jere <jhb.chat@gmail.com>
Subject: Re: Private extension of a

synchronized interface
Newsgroups: comp.lang.ada
Date: Sun, 17 Feb 2019 07:36:18 -0800
The compiler cannot always tell
depending on how and where you call
buried protected operations. I always
prefer compile time catching over run
time catching.
> > A delegate non protected procedure

has to rely on the comment.
> There is no contract that could require it

protected. It is a property of the
object/task and no property of an
operation. You could not do anything
with a task or protected object that
would not resolve into a protected
action anyway.

Protected procedures/functions/entries are
particularly heavy operations.
I don't know if you generally work in low
level embedded environments, but being
able know and plan for that can be very
critical. It can change how you approach
your design. When you work in systems
where your system clock is 1-4MHz,
timing of operations does start to matter.
> > However, I honestly wanted to know

why Ada allowed one to setup the
private extension but not allow you to
actually provide the functions (or if this
was a GNAT issue or if I was just not
using the right syntax). So the reason I
care was a thirst for knowledge of how
things work.

> Ada 2005 stuff, most of it makes little
sense to me. It was some halfhearted
attempt to unite tagged types with tasks
and protected objects with no desire to
actually do that...

I'm just curious if or why the process was
stopped half way instead of abandoned or
completed (again that is assuming I didn't
use the wrong syntax, in which case it's
simply that I'm structuring the syntax
wrong).
I don't really need to marry them with
tagged types. I do appreciate the ability to
dispatch over a group of related but
different tasks much more easily and the
interfaces give that. The way that Ada
chose to implement interfaces is one of
many ways (not all of which would have
required tagged types).

