

Ada User Journal Volume 41, Number 1, March 2020

ADA
USER
JOURNAL

Volume 41

Number 1

March 2020

Contents
Page

Editorial Policy for Ada User Journal 2

Editorial 3

Quarterly News Digest 4

Conference Calendar 21

Forthcoming Events 29

Anniversary Articles

 J. Barnes

“From Byron to the Ada Language” 31

 C. Brandon

“CubeSat, the Experience” 36

 B. M. Brosgol

“How To Succeed in the Software Business While Giving Away the Source Code:

The AdaCore Experience” 43

Special Contribution

 J. Cousins

“ARG Work in Progress IV” 47

Proceedings of the "Workshop on Challenges and New Approaches for Dependable and

 Cyber-Physical Systems Engineering" of Ada-Europe 2019

 L. Nogueira, A. Barros, C. Zubia, D. Faura, D. Gracia Pérez, L. M. Pinho

“Non-functional Requirements in the ELASTIC Architecture” 51

Puzzle

 J. Barnes

“Forty Years On and Going Strong” 57

Ada-Europe Associate Members (National Ada Organizations) 58

Ada-Europe Sponsors Inside Back Cover

To receive the Ada User Journal, apply to Ada-Europe at:

http://www.ada-europe.org/join

http://www.ada-europe.org/join

4

Volume 41, Number 1, March 2020 Ada User Journal

Quarterly News Digest
Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigación en

Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Ada-related Events 5
Ada-related Resources 10
Ada-related Tools 11
Ada and Operating Systems 15
Ada Practice 15

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes.
 —arm]

Ada-related Events

25th Ada-Europe Int'l Conf.
on Reliable Software
Technologies

[This year’s edition has been cancelled
(see cancellation post below). This
extended call is reproduced here for
reference. —arm]

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Ada-Europe 2020 Conference -
EXTENDED 14 January deadline

Date: Thu, 19 Dec 2019 18:29:46 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

The Ada-Europe 2020 Conference
organizers decided to provide more time
for authors to prepare their contributions.
The deadline for most submissions is
extended to Tuesday 14 January 2020.
3+ weeks remain!

Call for Contributions

UPDATED Call for Papers -
EXTENDED DEADLINE

25th Ada-Europe International
Conference on

Reliable Software Technologies
(AEiC 2020)

8-12 June 2020, Santander, Spain

www.ada-europe.org/conference2020

Organized by University of Cantabria and
Ada-Europe

in cooperation with ACM SIGAda
(pending)

and the Ada Resource Association (ARA)

*** Extended DEADLINE
14 JANUARY 2020 AoE ***

#AdaEurope #AEiC2020
#AdaProgramming

General Information

The 25th Ada-Europe International
Conference on Reliable Software
Technologies (AEiC 2020 aka Ada-
Europe 2020) will take place in
Santander, Spain, in the week of 8-12
June. The conference schedule includes a
technical program and vendor exhibition,
and parallel tutorials and workshops.

The 2020 edition of the conference
continues the major revamp in the
registration fees introduced in 2019,
redesigned to extend participation from
industry and academia, and to reward
contributors, especially but not solely,
students and post-doc researchers.

Schedule

14 January 2020: Submission of journal-
track papers, industrial presentation
outlines, and tutorial and workshop
proposals (EXTENDED)

20 March 2020: Notification of
acceptance for journal-track papers,
industrial presentations, tutorials and
workshops

31 March 2020: Submission of Work-in-
Progress (WiP) papers

30 April 2020: Notification of acceptance
for WiP papers

Topics

The conference is a leading international
forum for providers, practitioners and
researchers in reliable software
technologies. The conference
presentations will illustrate current work
in the theory and practice of the design,
development and maintenance of long-
lived, high-quality software systems for a
challenging variety of application
domains. The program will allow ample
time for keynotes, Q&A sessions and
discussions, and social events.
Participants include practitioners and
researchers from industry, academia and
government organizations active in the
promotion and development of reliable
software technologies.

The topics of interest for the conference
include but are not limited to:

- Design and Implementation of Real-
Time and Embedded Systems: Real-
Time Scheduling, Design Methods and
Techniques, Architecture Modelling,
HW/SW Co-Design, Reliability and
Performance;

- Design and Implementation of Mixed-
Criticality Systems: Scheduling
Methods, Mixed-Criticality
Architectures, Design Methods,
Analysis Methods;

- Theory and Practice of High-Integrity
Systems: Medium to Large-Scale
Distribution, Fault Tolerance, Security,
Reliability, Trust and Safety, Languages
Vulnerabilities;

- Software Architectures for Reliable
Systems: Design Patterns, Frameworks,
Architecture-Centered Development,
Component-based Design and
Development;

- Methods and Techniques for Quality
Software Development and
Maintenance: Requirements
Engineering, Model-driven Architecture
and Engineering, Formal Methods, Re-
engineering and Reverse Engineering,
Reuse, Software Management Issues,
Compilers, Libraries, Support Tools;

- Ada Language and Technologies:
Compilation Issues, Runtimes,
Ravenscar, Profiles, Distributed
Systems, SPARK;

- Mainstream and Emerging Applications
with Reliability Requirements:
Manufacturing, Robotics, Avionics,
Space, Health Care, Transportation,
Cloud Environments, Smart Energy
Systems, Serious Games, etc;

- Achieving and Assuring Safety in
Machine Learning Systems;

- Experience Reports in Reliable System
Development: Case Studies and
Comparative Assessments, Management
Approaches, Qualitative and
Quantitative Metrics;

- Experiences with Ada: Reviews of the
Ada 2012 language features,
implementation and use issues,
positioning in the market and in the
software engineering curriculum,
lessons learned on Ada Education and
Training Activities with bearing on any
of the conference topics.

mailto:amosteo@unizar.es

Ada-re lated Events 5

Ada User Journal Volume 41, Number 1, March 2020

Call for Journal-Track Papers

The journal-track papers submitted to the
conference are full-length papers that
must describe mature research work on
the conference topics. They must be
original and shall undergo anonymous
peer review.

Accepted journal-track papers will get a
presentation slot within a technical
session of the conference and they will be
published in an open-access special issue
of the Journal of Systems Architecture
with no additional costs to authors.

The corresponding authors shall submit
their work by 14 January 2020 via the
Special Issue web page:
https://www.journals.elsevier.com/journal
-of-systems-architecture/call-for-
papers/advances-in-reliable-software-
technologies

Submitted papers must follow the
guidelines provided in the "Guide-for-
Authors" of the JSA
(https://www.elsevier.com/journals/journa
l-of-systems-architecture/1383-
7621/guide-for-authors). In particular,
JSA does not impose any restriction on
the format or extension of the
submissions.

Call for WiP-Track Papers

The Work-in-Progress papers (WiP-track)
are short (4-page) papers describing
evolving and early-stage ideas or new
research directions. They must be original
and shall undergo anonymous peer
review. The corresponding authors shall
submit their work by 31 March 2020, via
https://easychair.org/
conferences/?conf=aeic2020, strictly in
PDF and following the Ada User Journal
style (http://www.ada-europe.org/auj/).

Authors of accepted WiP-track papers
will get a presentation slot within a
regular technical session of the
conference and will also be requested to
present a poster. The papers will be
published in the Ada User Journal as part
of the proceedings of the Conference.

The conference is listed in the principal
citation databases, including DBLP,
Scopus, Web of Science, and Google
Scholar. The Ada User Journal is indexed
by Scopus and by EBSCOhost in the
Academic Search Ultimate database.

Call for Industrial Presentations

The conference seeks industrial
presentations that deliver insightful
information value but may not sustain the
strictness of the review process required
for regular papers. The authors of
industrial presentations shall submit their
proposals, in the form of a short (one or
two pages) abstract, by 14 January 2020,
via https://easychair.org/conferences/
?conf=aeic2020, strictly in PDF and
following the Ada User Journal style
(http://www.ada-europe.org/auj/).

The Industrial Committee will review the
submissions anonymously and make
recommendations for acceptance. The
abstract of the accepted contributions will
be included in the conference booklet, and
authors will get a presentation slot within
a regular technical session of the
conference.

These authors will also be invited to
expand their contributions into articles for
publication in the Ada User Journal, as
part of the proceedings of the Industrial
Program of the Conference.

Awards

Ada-Europe will offer an honorary award
for the best presentation.

Call for Educational Tutorials

The conference is seeking tutorials in the
form of educational seminars including
hands-on or practical demonstrations.
Proposed tutorials can be from any part of
the reliable software domain, they may be
purely academic or from an industrial
base making use of tools used in current
software development environments. We
are also interested in contemporary
software topics, such as IoT and artificial
intelligence and their application to
reliability and safety.

Tutorial proposals shall include a title, an
abstract, a description of the topic, an
outline of the presentation, the proposed
duration (half day or full day), and the
intended level of the tutorial
(introductory, intermediate, or advanced).
All proposals should be submitted by e-
mail to the Educational Tutorial Chair.

The authors of accepted full-day tutorials
will receive a complimentary conference
registration. For half-day tutorials, this
benefit is halved. The Ada User Journal
will offer space for the publication of
summaries of the accepted tutorials.

Call for Workshops

Workshops on themes that fall within the
conference scope may be proposed.
Proposals may be submitted for half- or
full-day events, to be scheduled at either
end of the conference days. Workshop
proposals should be submitted by e-mail
to the Workshop Chair. The workshop
organizer shall also commit to producing
the proceedings of the event, for
publication in the Ada User Journal.

Call for Exhibitors

The commercial exhibition will span the
core days of the main conference.
Vendors and providers of software
products and services should contact the
Exhibition Chair for information and for
allowing suitable planning of the
exhibition space and time.

Special Registration Fees

Authors of accepted contributions and all
students will enjoy reduced registration
fees.

Venue

Santander is a nice tourist city in the north
of Spain, with a well-connected airport
and at a 100 km drive from Bilbao airport.

The conference venue and hotel is the
Bahia Hotel in the city center and beside
Santander bay.

Organizing Committee

* Conference Chair

Michael González Harbour, Universidad
de Cantabria, Spain

mgh at unican.es

* Program Chair

Mario Aldea Rivas, Universidad de
Cantabria, Spain

aldeam at unican.es

* Work-in-Progress Chair

Kristoffer Nyborg Gregertsen, SINTEF
Digital, Norway

kristoffer.gregertsen at sintef.no

* Tutorial & Workshop Chair

Jorge Garrido Balaguer, Universidad
Politécnica de Madrid, Spain

jorge.garrido at upm.es

* Industrial Chair

Patricia Balbastre Betoret, Universitat
Politècnica de València, Spain

patricia at ai2.upv.es

* Exhibition & Sponsorship Chair

Ahlan Marriott, White Elephant GmbH,
Switzerland

software at white-elephant.ch

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium

dirk.craeynest at cs.kuleuven.be

*** Program Committee

Mario Aldea Rivas, Univ. de Cantabria,
ES

Iain Bate, University of York, UK

Johann Blieberger, Vienna Univ. of
Technology, AT

Bernd Burgstaller, Yonsei Univ., KR

Daniela Cancila, CEA LIST, FR

António Casimiro, Univ. Lisboa, PT

Juan A. de la Puente, Univ. Pol. de
Madrid, ES

Barbara Gallina, Mälardalen Univ., SE

Marisol García Valls, Univ. Pol. de
València, ES

J. Javier Gutiérrez, Univ. de Cantabria,
ES

Jérôme Hugues, CMU/SEI (USA)

Hubert Keller, Karlsruhe Institute of
Technology, DE

Patricia López Martínez, Univ. de
Cantabria, ES

6 Ada-re lated Events

Volume 41, Number 1, March 2020 Ada User Journal

Kristoffer Nyborg Gregertsen, SINTEF
Digital, NO

Laurent Pautet, Telecom ParisTech, FR

Luís Miguel Pinho, CISTER/ISEP, PT

Erhard Plödereder, Univ. Stuttgart, DE

Jorge Real, Univ. Pol. de València, ES

José Ruiz, AdaCore, FR

Sergio Sáez, Univ. Pol. de València, ES

Frank Singhoff, Univ. de Bretagne
Occidentale, FR

Tucker Taft, AdaCore, USA

Elena Troubitsyna, Åbo Akademi Uni., FI

Santiago Urueña, GMV, ES

Tullio Vardanega, Univ. of Padua, IT

Eugenio Villar Bonet, Univ. de Cantabria,
ES

Industrial Committee

Ian Broster, Rapita Systems, UK

Javier Coronel, FentISS, ES

Dirk Craeynest, Ada-Belgium & KU
Leuven, BE

Thomas Gruber, Austrian Institute of
Technology (AIT), AT

Ismael Lafoz, Airbus Defence and Space,
ES

Ahlan Marriott, White Elephant, CH

Maurizio Martignano, Spazio IT, IT

Laurent Rioux, Thales R&T, FR

Marian Roselló, Terma, NL

Jean-Pierre Rosen, Adalog, FR

Emilio Salazar, GMV, ES

Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 25th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), and Warsaw,
Poland ('19).

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement. Please
circulate widely.

Dirk.Craeynest@cs.kuleuven.be, Ada-
Europe 2020 Publicity Chair

*** 25th Ada-Europe Int'l. Conf. on
Reliable Software Technologies ***

June 8-12, 2020 * Santander, Spain *
www.ada-europe.org/conference2020

Ada-Europe Int'l
Conference 2020 (AEiC
2020) Cancelled!

From: dirk@orka.cs.kuleuven.be. (Dirk
Craeynest)

Subject: Ada-Europe Int'l Conference 2020
(AEiC 2020) cancelled!

Date: Sat, 21 Mar 2020 20:15:38 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

[Notice of Cancellation is included in the
Forthcoming Events Section —arm]

10th Ada Developer Room at
FOSDEM 2020 - Summary
of Talks

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: FOSDEM 2020 - Ada Developer
Room - Sat 1 Feb 2020 - Brussels

Date: Sun, 22 Dec 2019 21:53:32 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

Ada-Belgium is pleased to announce its

10th Ada Developer Room at
FOSDEM 2020

Ada at the Free and Open source Software
Developers' European Meeting
on Saturday 1 February 2020

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/

200201-fosdem.html

fosdem.org/2020/schedule/track/ada

--
General Information

FOSDEM, the Free and Open source
Software Developers' European Meeting,
is a free and non-commercial two-day
weekend event organized early each year
in Brussels, Belgium. It is highly
developer-oriented and brings together
8000+ participants from all over the
world.

The goal is to provide open source
developers and communities a place to
meet with other developers and projects,
to be informed about the latest
developments in the open source world, to
attend interesting talks and presentations
on various topics by open source project
leaders and committers, and to promote

the development and the benefits of open
source solutions.

The 2020 edition takes place on Saturday
1 and Sunday 2 February. It is free to
attend and no registration is necessary.

In this edition, Ada-Belgium organizes
once more a series of presentations related
to the Ada Programming Language and
Free or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2020 is held on the first day of the event,
Saturday 1 February 2020.

This year FOSDEM has a total of 13 Ada-
related presentations by 12 authors from 8
countries! A mini-poster about the Ada
DevRoom [1], as well as a one-page Call
for Participation for the Ada DevRoom
[2] is available; they can be used to help
announce the event, and to give an idea
about its scope.

[1] www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem-cfpart-poster.jpg

[2] www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem-cfpart-a4.pdf

Ada Programming Language and
Technology

Ada is a general-purpose programming
language originally designed for safety-
and mission-critical software engineering.
It is used extensively in air traffic control,
rail transportation, aerospace, nuclear,
financial services, medical devices, etc. It
is also perfectly suited for open source
development.

Awareness of safety and security issues in
software systems is ever increasing.
Multi-core platforms are now abundant.
These are some of the reasons that the
Ada programming language and
technology attracts more and more
attention, among others due to Ada's
support for programming by contract and
for multi-core targets. The latest Ada
language definition was updated early
2016. Work on new features is ongoing,
such as improved support for fine-grained
parallelism, and will result in a new Ada
standard scheduled for 2021. Ada-related
technology such as SPARK provides a
solution for the safety and security aspects
stated above. More and more tools are
available, many are open source,
including for small and recent platforms.
Interest in Ada keeps further increasing,
also in the open source community, and
many exciting projects have been started.

The Ada DevRoom aims to present the
facilities offered by the Ada language
(such as for object-oriented, multicore, or
embedded programming) as well as some
of the many exciting tools and projects
using Ada. FOSDEM is an ideal fit for an
Ada Developer Room. On the one hand, it
gives the general open source community
an opportunity to see what is happening in
the Ada community and how Ada

Ada-re lated Events 7

Ada User Journal Volume 41, Number 1, March 2020

technology can help to produce reliable
and efficient open source software. On the
other hand, it gives open source Ada
projects an opportunity to present
themselves, get feedback and ideas, and
attract participants to their project and
collaboration between projects.

Video/Volunteers

This year as well, audio/video equipment
and network facilities are provided by the
FOSDEM organizers, to enable recording
and live streaming all DevRoom
presentations. Volunteers "man" that
equipment during the day. After
postprocessing the recordings, links to
them are made available via the "More
information" entry for each presentation.

Additional volunteers to help with various
logistic issues during the day are needed
as well, such as monitoring room
overflow and refusing entry when the
room is too full, defragmenting the room
in between presentations, helping
speakers with microphone adjustments,
monitoring the timeslots and warning
speakers when they have to start or when
they risk running out of time, as well as
various practical issues that need to be
handled ASAP when they occur.

If you'd like to help, please get in touch
(see below).

Ada Developer Room Presentations
(room: AW1.125, 76 seats)

The presentations in the Ada DevRoom
start after the opening FOSDEM
keynotes. The program runs from 10:30 to
19:00.

10:00-10:30 - Arrival & Informal
Discussions

Feel free to arrive early, to start the day
with some informal discussions while the
set-up of the DevRoom is finished.

10:30-10:35 - Welcome to the Ada
DevRoom by Dirk Craeynest - Ada-
Belgium

Welcome to the Ada Developer Room at
FOSDEM 2020, which is organized by
Ada-Belgium in cooperation with Ada-
Europe. Ada-Belgium and Ada-Europe
are non-profit organizations set up to
promote the use of the Ada programming
language and related technology, and to
disseminate knowledge and experience
into academia, research and industry in
Belgium and Europe, resp. Ada-Europe
has member-organizations, such as Ada-
Belgium, in various countries, and direct
members in many other countries.

10:35-11:20 - An Introduction to Ada for
Beginning and Experienced Programmers
by Jean-Pierre Rosen - Adalog, France

An overview of the main features of the
Ada language, with special emphasis on
those features that make it especially
attractive for free software development.
Ada is a feature-rich language, but what
really makes Ada stand-out is that the

features are nicely integrated towards
serving the goals of software engineering.
If you prefer to spend your time on
designing elegant solutions rather than on
low-level debugging, if you think that
software should not fail, if you like to
build programs from readily available
components that you can trust, you should
really consider Ada!

11:30-11:50 - HAC: the Compiler which
will Never Become Big by Gautier de
Montmollin - Ada-Switzerland

In the Ada world, we are surrounded by
impressive and professional tools that can
handle large and complex projects. Did
you ever dream of a tiny, incomplete but
compatible system to play with? Are you
too impatient, for developing small pieces
of code, for long compile-bind-link-run
cycles? Are you a beginner intimidated by
project files and sophisticated tools? Then
HAC (the HAC Ada Compiler, or the
Hello-world Ada Compiler) is for you.
HAC is a revival of the SmallAda project,
which supported the "Pascal subset" plus
tasking.

12:00-12:50 - Tracking Performance of a
Big Application from Dev to Ops by
Philippe Waroquiers - Eurocontrol,
Belgium

This talk describes how performance
aspects of a big Air Traffic Flow
Management mission critical application
are tracked from development to
operations. Tracking performance is
needed when new functionality is added,
to balance the additional services versus
the resource increase needed. Measuring
and tracking performance is also critical
to ensure a new release can cope with the
current or expected load. We will discuss
various aspects such as which tools and
techniques are used for performance
tracking and measurements, what are the
traps and pitfalls encountered for these
activities. The application in question is
using Ada, but most of the items
discussed are not particularly Ada related.

13:00-13:20 - Cappulada: What we've
Learned by Johannes Kliemann -
Componolit, Germany

Last year I presented Cappulada, a C++
binding generator for Ada that intended to
overcome the shortcomings of existing
solutions and to provide usable bindings
even for complex C++ code. This year I
want to show our conclusions on why
automatic bindings between C++ and Ada
are hard (if not impossible) and where
existing solutions (including our own)
fail.

13:30-13:50 - Programming ROS2 Robots
with RCLAda by Alejandro R. Mosteo -
Centro Universitario de la Defensa, Spain

The Robot Operating System (ROS) is
one of the chief frameworks for service
robotics research and development. The
next iteration of this framework, ROS2,
aims to improve critical shortcomings of

its predecessor like deterministic memory
allocation and real-time characteristics.
RCLAda is a binding to the ROS2
framework that enables the programming
of ROS2 nodes in pure Ada with seamless
integration into the ROS2 workflow.

14:00-14:50 - Live Demo of Ada's
Distribution Features by Jean-Pierre
Rosen - Adalog, France

Ada incorporates in its standard a model
for distributed execution. It is an abstract
model that does not depend on a
particular kind of network or any other
communication mean, and that preserves
full typing control across partitions. This
presentation briefly exposes the principles
of Ada's distribution model, then shows
the possibilities with life demos across
different machines and operating systems.

15:00-15:20 - Writing Shared Memory
Parallel Programs in Ada by Jan
Verschelde - University of Illinois at
Chicago, USA

Multitasked Newton's Method for Power
Series Tasks in Ada are effective to speed
up computations on multicore processors.
In writing parallel programs we determine
the granularity of the parallelism with
respect to the memory management. We
have to decide on the size of each job, the
mapping of the jobs to the tasks, and on
the location of the input and output data
for each job. A multitasked Newton's
method will show the effectiveness of
Ada to speed up the computation of
power series. This application belongs to
the free and open source package
PHCpack, a package to solve polynomial
systems by polynomial homotopy
continuation.

15:30-15:50 - Spunky: a Genode Kernel
in Ada/SPARK by Martin Stein - Genode
Labs, Germany

The Genode OS framework is an open-
source tool kit for building highly secure
component-based operating systems
scaling from embedded devices to
dynamic desktop systems. It runs on a
variety of microkernels like SeL4,
NOVA, and Fiasco OC as well as on
Linux and the Muen SK. But the project
also features its own microkernel named
"base-hw" written in C++ like most of the
Genode framework. Spunky is a pet
project of mine. Simply put it's an
approach to re-implement the design of
the "base-hw" kernel first in Ada and later
in SPARK with the ultimate goal to prove
its correctness. It is also an opportunity to
learn how Genode can benefit from Ada
and SPARK in general and promote the
use of safety-oriented languages in the
project.

16:00-16:50 - Alire: Ada Has a Package
Manager by Alejandro R. Mosteo -
Centro Universitario de la Defensa, Spain,
Pierre-Marie de Rodat and Fabien
Chouteau - AdaCore, France

8 Ada-re lated Events

Volume 41, Number 1, March 2020 Ada User Journal

Alire (Ada LIbrary REpository) is a
package manager project for the
Ada/SPARK community. The goal of a
package manager is to facilitate
collaboration within the community and
to lower the barrier of entry for beginners.
In this talk we will present the Alire
project, what it can do for you and how
you can contribute and give more
visibility to your Ada/SPARK projects.
We will also provide a tutorial to show
how to use Alire to create a library and
then publish it for others to use.

17:00-17:20 - Protect Sensitive Data with
Ada Keystore by Stephane Carrez -
Twinlife, France

Storing passwords and secret
configuration is a challenge for an
application. Ada Keystore is a library that
stores arbitrary content by encrypting
them in secure keystore (AES-256,
HMAC-256). The talk presents the project
and shows how to use the Ada Keystore
library to get or store secret information
in a secure manner. The presentation
explains how the Ada features such as
types, protected types, tasks, pre/post
conditions have helped during the
development of this project.

17:30-17:50 - EUgen: a European Project
Proposal Generator by Riccardo
Bernardini - University of Udine, Italy

Whoever wrote a research project
proposal knows how much unnerving it
can be. The actual project description
(made of work packages, tasks,
deliverable items…) has lots of
redundancies and cross-references that
makes its coherency as frail as a house of
cards. For example, if the duration of a
task is changed most probably you'll need
to update the effort in person-months of
the task and of the including work
package; you must update the start date of
depending tasks and the delivery date of
any deliverable items; most probably also
the WP efforts and length need update
too; not to mention the need of updating
all the summary tables (summary of
efforts, deliverable, ..) and the GANTT
too. Any small changes is likely to start a
ripple of updates and the probability of
forgetting something and getting an
incoherent project description is large.
Given the harsh competition in project
funding, if your project is incoherent the
probability of getting funded is nil.

One day I got sick of this state of affair
and I wrote my own project generator:
10k lines of Ada code that reads a non-
redundant project description from a
simple-format text file and produces a set
of files ready to be imported in the
proposal, GANNT chart included. The
user can specify dependences between
different items (e.g., this deliverable is
produced at the end of this task, this
milestone is reached when this deliverable
is available, this task must begin after this
other task...) and the program

automatically computes all the dates. Both
input parser and output processors are
implemented using a plugin structure that
makes it easy to write new parsers to read
different formats or new output
processors to produce output in different
formats. Currently a parser for a simple
ad-hoc format and an output processor
that produces LaTeX files are provided; a
new processor based on the template
expander *protypo* is currently being
implemented. Did I eat my own dog food?
Well, yes, I did. I used it to write a
proposal (still under evaluation) and it
served me well.

18:00-18:20 - On Rapid Application
Development in Ada by Tomasz
Maluszycki - Poland

In the Ada world we typically write
mission critical software that just has to
work, but in a way one could argue that a
lot more software is mission critical than
is usually admitted. What does it take to
actually perform rapid application
development in any language? Can we do
it in Ada and why would we do so? A
quick look into some language features
that can be [ab]used for enabling quick
development of 'just a prototype' - which,
as practice shows is often deployed into
production, usually without proper quality
controls and predictable outcome.

18:30-18:50 - Ada-TOML: a TOML
Parser for Ada by Pierre-Marie de Rodat
AdaCore, France

The world of generic structured data
formats is full of contenders: the mighty
XML, the swift JSON, the awesome
YAML… Alas, there is no silver bullet:
XML is very verbose, JSON is not
convenient for humans to write, YAML is
known to be hard to parse, and so on.
TOML is yet another format whose goal
is to be a good configuration language:
obvious semantics, convenient to write
and easy to parse in general-purpose
programming languages. In this talk, I'll
shortly describe the TOML format and
show a few use cases in the real world. I'll
then present the ada-toml library itself: its
high-level architecture and examples.

18:50-19:00 - Informal Discussions &
Closing

 Informal discussion on ideas and
proposals for future events.

More information on Ada Developer
Room

Speakers’ bios, pointers to relevant
information, links to corresponding
FOSDEM pages, etc., are available on the
Ada-Belgium site at

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/
200201-fosdem.html

We invite you to attend some or all of the
presentations: they will be given in
English. Everybody interested can attend

FOSDEM 2020; no registration is
necessary.

We hope to see many of you there!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

Livestream for Ada
Developer Room at
FOSDEM 2020

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Livestream for Ada Developer
Room at FOSDEM 2020

Date: Sat, 1 Feb 2020 09:17:27 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc,
be.comp.programming

10th Ada Developer Room at FOSDEM

2020

Ada at the Free and Open source Software
Developers' European Meeting
on Saturday 1 February 2020

Université Libre de Bruxelles (ULB),
Solbosch Campus, Room AW1.125

Avenue Franklin D. Roosevelt Laan 50,
B-1050 Brussels, Belgium

Organized in cooperation with
Ada-Europe

www.cs.kuleuven.be/~dirk/
ada-belgium/events/20/

200201-fosdem.html

fosdem.org/2020/schedule/track/ada

Today, February 1 2020, marks the start
of the 20th edition of FOSDEM, the Free
and Open source Software Developers'
European Meeting, held this weekend in
Brussels, Belgium.

In this edition, Ada-Belgium organizes
once more a series of presentations related
to the Ada Programming Language and
Free or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2020 is held today, starting at 10:30. This
year the Ada DevRoom has a total of 13
Ada-related presentations by 12 authors
from 8 countries! There are also 4 more
Ada-related presentations in other
DevRooms.

If (like me) you can't be in the Ada
DevRoom, follow the livestream or watch
the recordings later!

On the Ada DevRoom page of the Ada-
Belgium site, you see the schedule for the
day, both in that DevRoom and others.
Each entry points to the resp. page on the
FOSDEM site, which has at the bottom
the link for the livestream from the resp.
room.

For the Ada DevRoom the live video
stream is at:

Ada-re lated Resources 9

Ada User Journal Volume 41, Number 1, March 2020

https://live.fosdem.org/watch/aw1125

Enjoy!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

FOSDEM 2020
Presentations & Videos

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: FOSDEM 2020 Ada Developer
Room - presentations & videos online

Date: Tue, 4 Feb 2020 14:19:28 -0000
Newsgroups: comp.lang.ada,

fr.comp.lang.ada, comp.lang.misc

*** Presentations and video recordings
available online ***

10th Ada Developer Room at FOSDEM
2020

Saturday 1 February 2020

Brussels, Belgium

www.cs.kuleuven.be/~dirk/ada-
belgium/events/20/200201-fosdem.html

fosdem.org/2020/schedule/track/ada

--

All presentations and video recordings
from the 10th Ada Developer Room, held
at FOSDEM 2020 in Brussels recently,
are available via the Ada-Belgium and
FOSDEM web sites now.

- "Welcome to the Ada DevRoom" by
Dirk Craeynest - Ada-Belgium, Jean-
Pierre Rosen - Ada-France

- "An Introduction to Ada for Beginning
and Experienced Programmers" by Jean-
Pierre Rosen - Adalog, France

- "HAC: the Compiler which will Never
Become Big" by Gautier de Montmollin -
Ada-Switzerland

- "Tracking Performance of a Big
Application from Dev to Ops" by Philippe
Waroquiers - Eurocontrol, Belgium

- "Cappulada: What we've Learned" by
Johannes Kliemann - Componolit,
Germany

- "Programming ROS2 Robots with
RCLAda" by Alejandro R. Mosteo -
Centro Universit. de la Defensa, Spain

- "Live Demo of Ada's Distribution
Features" by Jean-Pierre Rosen - Adalog,
France

- "Writing Shared Memory Parallel
Programs in Ada" by Jan Verschelde -
Univ. of Illinois at Chicago, USA

- "Spunky: a Genode Kernel in
Ada/SPARK" by Martin Stein - Genode
Labs, Germany

- "Alire: Ada Has a Package Manager" by
Alejandro R. Mosteo - Centro Universit.
de la Defensa, Spain

 & Pierre-Marie de Rodat and Fabien
Chouteau - AdaCore, France

- "Protect Sensitive Data with Ada
Keystore" by Stephane Carrez - Twinlife,
France

- "EUgen: a European Project Proposal
Generator" by Riccardo Bernardini -
University of Udine, Italy

- "On Rapid Application Development in
Ada" by Tomasz Maluszycki - Poland

- "Ada-TOML: a TOML Parser for Ada"
by Pierre-Marie de Rodat - AdaCore,
France

- "Securing Existing Software using
Formally Verified Libraries” by Tobias
Reiher - Componolit (in Security room)

- "BSP Generator for 3000+ ARM
Microcontrollers" by Fabien Chouteau -
AdaCore (in Hardware room)

- "Gneiss: A Nice Component Framework
in SPARK" by Johannes Kliemann -
Componolit (in Microkernels room)

- "A Component-based Environment for
Android Apps" by Alexander Senier -
Componolit (in Microkernels room)

Presentation abstracts, speaker bios,
pointers to relevant information, copies of
slides, links to corresponding pages and
video recordings, are available via the
Ada-Belgium and FOSDEM sites at the
URLs above.

Some pictures will be posted later as well.
If you have pictures or other material you
would like to share, or know someone
who does, then please contact me.

Finally, thanks once more to all presenters
and helpers for their work and
collaboration, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

Dirk Craeynest, FOSDEM Ada DevRoom
coordinator

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

#AdaFOSDEM #AdaDevRoom
#AdaProgramming

#AdaBelgium #AdaEurope
#FOSDEM2020

Make with Ada Winners
Announced

From: dirk@orka.cs.kuleuven.be.
(Dirk Craeynest)

Subject: Make with Ada 2019-2020
competition - winners announced

Date: Wed, 4 Mar 2020 18:49:43 -0000
Newsgroups: comp.lang.ada

I didn't see this mentioned on
comp.lang.ada yet, so...

The winners of the latest "Make with
Ada" programming competition [1] have
been announced [2]: 10 winners were

awarded a Finalist Prize, one of which got
an additional First Prize and another one a
Student Prize.

Congratulations to all winners!

[1] http://www.makewithada.org/

[2] https://www.hackster.io/contests/
adacore2

Check out the many exciting projects!

Dirk

Dirk.Craeynest@cs.kuleuven.be (for
Ada-Belgium/Ada-Europe/SIGAda/WG9)

*** 25th Ada-Europe Int'l. Conf. on
Reliable Software Technologies ***

June 8-12, 2020 * Santander, Spain *
www.ada-europe.org/conference2020

Ada-related Resources
[Delta counts are from Dec 2nd to Apr
2nd. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media
Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

Ada groups on various social media:

- LinkedIn: 2_903 (+7) members [1]

- Reddit: 3_341 (+921) members [2]

- StackOverflow: 1795 (+49) questions
 [3]

- Freenode: 95 (+10) users [4]

- Gitter: 51 (+7) people [5]

- Telegram: 61 (+11) users [6]

- Twitter: 88 (+15) tweeters [7]

 169 (+80) unique tweets [7]

[1] https://www.linkedin.com/
groups/114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/details.php
?room=%23ada&net=freenode

[5] https://gitter.im/ada-lang

[6] https://t.me/ada_lang

[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

GitHub: 576 (+3) developers [1]

Rosetta Code: 707 (+41) examples [2]

 38 (+2) developers [3]

https://netsplit.de/channels/details.php

10 Ada-re lated Tools

Volume 41, Number 1, March 2020 Ada User Journal

Sourceforge: 271 (+1) projects [4]

Open Hub: 211 (+2) projects [5]

Bitbucket: 88 (+1) repositories [6]

Codelabs: 49 (+2) repositories [7]

AdaForge: 8 (=) repositories [8]

[1] https://github.com/search?
q=language%3AAda&type=Users

[2] http://rosettacode.org/wiki/
Category:Ada

[3] http://rosettacode.org/wiki/
Category:Ada_User

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags
?names=ada

[6] https://bitbucket.org/repo/all
?name=ada&language=ada

[7] https://git.codelabs.ch/
?a=project_index

[8] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Thu, 2 Apr 2020 14:56:21 +0100
To: Ada User Journal readership

[Positive ranking changes mean to go
down in the ranking. —arm]

- TIOBE Index: 37 (+1) 0.23% (=) [1]

- IEEE Spectrum (general): 43 (=)
Score: 24.8 [2]

- IEEE Spectrum (embedded): 13 (=)
Score: 24.8 [2]

[1] https://www.tiobe.com/tiobe-index/

[2] https://spectrum.ieee.org/static/
interactive-the-top-programming-
languages-2019

Ada Learning Resources

[Follow-up to topic “Exercism” in AUJ
2019.4. —arm]

From: mario.blunk.gplus@gmail.com
Subject: Re: Ada learning resources
Date: Wed, 18 Dec 2019 10:47:59 -0800
Newsgroups: comp.lang.ada

Over the years I have put together lots of
simple demo programs. The collection is
growing. Perhaps it helps to understand
Ada step by step. Your feedback is highly
welcome.

https://github.com/Blunk-electronic/
ada_training

From: charlet@adacore.com
Date: Sun, 15 Dec 2019 01:34:37 -0800

> There are a variety of Ada learning
resources collected at
https://www.adaic.org/learn/materials/,

in a variety of forms (books, > tutorials,
wikis, etc.).

By the way Randy,

https://learn.adacore.com/ should have a
more prominent place in this page, it is
the most up to date and well maintained
training material for Ada, and is really
much more than a tutorial, it contains
complete training courses. It should be the
first link IMO, instead of the current first
section which is now getting outdated
("This series of articles is an introduction
to Ada 95. The content is in the process of
being updated to reflect the revisions
introduced in Ada 2005 and the revisions
currently underway for Ada 2012. But
this is still an excellent introduction into
the core technical features and benefits of
Ada." isn't really the best advocate for
recent training Ada material).

Ada-related Tools

Gnu Emacs Ada Mode Beta
Test 7.0.0

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode beta test
7.0.0

Date: Fri, 20 Dec 2019 09:15:42 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode beta test 7.0.0 is
now available at
http://www.nongnu.org/ada-mode/. This
is a significant refactoring, which may
affect some user custom code, so it is not
in Gnu ELPA yet.

To install, download the candidate ELPA
archive, set package-archives to point to
it, and use list-packages (more detailed
instructions at
http://www.nongnu.org/ada-mode/).

The wisi package now provides a more
complete integration with Emacs
project.el.

Several bugs have been fixed.

You may want to work thru the tutorials
in ada-mode.info again; they now cover
many of the new features.

See the NEWS files in
~/.emacs.d/elpa/ada-mode-7.0.0 and wisi-
3.0.0, for more details. See wisi.info in
the release for more information on the
package.el integration.

Gnu Emacs Ada Mode 7.0.1

From: Stephen Leake
<stephen_leake@stephe-leake.org>

Subject: Gnu Emacs Ada mode 7.0.1
released.

Date: Fri, 31 Jan 2020 06:01:11 -0800
Newsgroups: comp.lang.ada

Gnu Emacs Ada mode 7.0.1 is now
available in GNU ELPA.

Relative to the previous Ada mode release
(6.2.1), this is a significant refactoring,
which may affect some user custom code.

The wisi package now provides a more
complete integration with Emacs
project.el.

You may want to work thru the tutorials
in ada-mode.info again; they now cover
many of the new features.

Relative to the previous beta test (7.0.0),
this is a minor feature and bug fix release.

See the NEWS files in ~/.emacs.d/elpa/
ada-mode-7.0.1 and wisi-3.0.1, or at
http://www.nongnu.org/ada-mode/, for
more details.

The required Ada code requires a manual
compile step, after the normal
list-packages installation ('install.sh' is
new in this release):

cd ~/.emacs.d/elpa/ada-mode-7.0.1

./build.sh

./install.sh

This requires AdaCore gnatcoll packages
which you may not have installed; see
ada-mode.info Installation for help in
installing them.

Qt5Ada 5.14.0 Free Edition

From: leonid.dulman@gmail.com
Subject: Announce: Qt5Ada version 5.14.0

(571 packages) release 13/12/2019 free
edition

Date: Tue, 17 Dec 2019 06:34:49 -0800
Newsgroups: comp.lang.ada

Qt5Ada is Ada-2012 port to Qt5
framework (based on Qt 5.14.0 final)
Qt5ada version 5.14.0 open source and
qt5c.dll,libqt5c.so(x64) built with
Microsoft Visual Studio 2019 in
Windows, gcc x86-64 in Linux.

Package tested with GNAT GPL 2019
Ada compiler in Windows 64bit, Linux
x86-64 Debian 10.

It supports GUI, SQL, Multimedia, Web,
Network, Touch devices,
Sensors,Bluetooth, Navigation and many
other things.

Changes for new Qt5Ada release:

Added new packages:

Qt.QTest for simulate mouse and
keyboard events

Speech recognitions based on CMU
Phenix

Prebuilt unofficial Qt 5.14.0 and VTK
8.2.0 win64 on Windows and x86-64 on
*nix

My configuration script to build Qt 5.14.0
is:

configure -opensource -release -nomake
tests -opengl dynamic -qt-zlib -qt-libpng -
qt-libjpeg -openssl-linked

https://www.openhub.net/tags
https://bitbucket.org/repo/all

Ada-re lated Tools 11

Ada User Journal Volume 41, Number 1, March 2020

OPENSSL_LIBS="-lssleay32 -llibeay32"
-plugin-sql-mysql -plugin-sql-odbc -
plugin-sql-oci -icu -prefix "e:/Qt/5.14"

As a role Ada is used in embedded
systems, but with QTADA (+VTKADA)
you can build any desktop applications
with powerful 2D/3D rendering and
imaging (games, animations, emulations)
GUI, Database connection, server/client,
Internet browsing, Modbus control and
many other things.

Qt5Ada and VTKAda for Windows,
Linux (Unix)
https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html

Google drive:

https://drive.google.com/folderview?id=
0B2QuZLoe-yiPbmNQRl83M1dTRVE
&usp=sharing

(It can be mounted as virtual drive or
directory or viewed with Web Browser)

The full list of released classes is in
"Qt5 classes to Qt5Ada packages relation
table.docx"

VTKAda version 8.2 is based on VTK
8.2.0 (OpenGL2) is fully compatible with
Qt5Ada 5.14.0

I hope Qt5Ada and VTKAda will be
useful for students, engineers, scientists
and enthusiasts. With Qt5Ada you can
build any application and solve any
problems easily and quickly.

If you have any problems or questions, let
me know.

VisualAda 1.2.5

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.2.5

Date: Fri, 10 Jan 2020 14:05:44 -0800
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.2.5 has been
released.

Fixes include the following:

- Source code navigation implemented (ie
goto definition and goto
implementation).

- Quickinfo support has been added.

- Rudimentary statement completion
support has been added.

- Project templates are now tagged
appropriately under Visual Studio 2019,
making it easier to find Ada related
templates.

Please feel free to download the free
plugin from the following URL:

https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

VisualAda 1.2.7

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.2.7

Date: Sat, 8 Feb 2020 22:51:12 -0800
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.2.7 has been
released.

Enhancements include the following:

- Improved project load time (only load
projects once if they are referenced
multiple times within a solution)

- Improved statement completion
response times (editor was significantly
lagging when opening large projects /
solutions)

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

VisualAda 1.3

From: alby.gamper@gmail.com
Subject: ANN: VisualAda (Ada Integration

for Visual Studio 2017 & 2019) release
1.3

Date: Fri, 17 Apr 2020 21:48:30 -0700
Newsgroups: comp.lang.ada

Dear Ada Community,

VisualAda version 1.3 has been released.

Enhancements include the following:

- Added preliminary support for the
GNAT Community edition 2019 ARM
toolchain and the associated runtimes.

The runtime that is to be used must be
selected in the "Ada RTS" property
located in the "General" property page for
the project.

Please feel free to download the free
plugin from the following URL:
https://marketplace.visualstudio.com/
items?itemName=
AlexGamper.VisualAda

SDLAda, LÖVE, and
Programming for Beginners

From: Ludovic Brenta
<ludovic@ludovic-brenta.org>

Subject: sdlada, löve and programming for
beginners

Date: Sat, 08 Feb 2020 12:40:54 +0100
Newsgroups: comp.lang.ada

At FOSDEM, my colleague Thomas
Maluszycki gave a talk [1] about rapid
application development in Ada. This
made me think. You see, I have a 14-year-
old son whom I teach programming to. He
is lukewarm about it but I think it is my
duty as a parent to give him basic
education in this field, as computers are

already everywhere and will probably
govern his live even more than ours. So I
played with him with Colobot[2], taught
him a little bit of Ada (with the French
translation of Barnes' book for Ada 95), a
little bit of ZX Spectrum BASIC, and now
he's writing a Pong clone with the LÖVE
framework[3], in Lua[4]. This framework
makes it very easy to have immediate
results... but Lua lacks strong typing and
in particular range checking, and a
debugger.

So it occurred to me that LÖVE is really a
Lua binding to SDL plus a predefined
event loop, and that it would be quite easy
to do something similar based on the
sdlada thick binding. The goal would be
to attract teenage programmers to the
language and to programming in general.
Possibly on a Raspberry Pi. I'd be willing
to make a Debian package for it. What do
you think?

[1] https://fosdem.org/2020/schedule/
event/ada_rad/

[2] http://colobot.info/

[3] http://love2d.org/

[4] https://www.lua.org/

From: Lucretia
<laguest9000@googlemail.com>

Date: Mon, 10 Feb 2020 06:27:31 -0800

On Saturday, 8 February 2020 11:41:01
UTC, Ludovic Brenta wrote:

Dragging this thread back on track...

> So it occurred to me that LÖVE is
really a Lua binding to SDL plus a

I never looked at it before, but knew of it,
never knew it was a wrapper around SDL.

> predefined event loop, and that it would
be quite easy to do something similar
based on the sdlada thick binding. The
goal would be to attract

Yeah, that would be pretty cool. Any
features required, just add a PR.

I want to get iterators around Surfaces
(old, not really for new projects) and
textures (for accelerated 2D and for new
stuff).

Definitely not having to mess about with
OpenGL/Vulkan is a good start.

> teenage programmers to the language
and to programming in general.
Possibly on a Raspberry Pi. I'd be
willing to make a Debian package for
it. What do you think?

Sounds good to me.

From: Chris Sykes <chris@amtiskaw.net>
Date: Tue, 11 Feb 2020 19:10:46 +0000

> So it occurred to me that LÖVE is
really a Lua binding to SDL plus a
predefined event loop, and that it would
be quite easy to do something similar
based on the sdlada thick binding. The
goal would be to attract teenage
programmers to the language and to
programming in general. Possibly on a

12 Ada-re lated Tools

Volume 41, Number 1, March 2020 Ada User Journal

Raspberry Pi. I'd be willing to make a
Debian package for it. What do you
think?

FWIW, I think it's an excellent idea.

One of the most important things for a
beginner is being able to achieve visible
results from simple code. So something
that allows you to draw to the screen and
respond to user input, while minimum
boiler-plate code (often confusing to
newbies) really helps.

If you're looking for inspiration for some
demos/examples, you should checkout the
"One Lone Coder" videos on YouTube:

https://www.youtube.com/channel/
UC-yuWVUplUJZvieEligKBkA/featured

He has written a really simple "game
engine" in C++ along the same lines, and
(IMO) his projects show just how
valuable lowering the barriers to
experimentation can be. Lots of fun too!

From: Lucretia
<laguest9000@googlemail.com>

Date: Tue, 11 Feb 2020 11:25:40 -0800

> If you're looking for inspiration for
some demos/examples, you should
checkout the "One Lone Coder" videos
on YouTube:

> https://www.youtube.com/channel/UC-
yuWVUplUJZvieEligKBkA/featured

Can confirm OLC is very good /
accessible, check out his SNES emulator
series.

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Sun, 9 Feb 2020 09:34:16 -0800

[Starting here the thread goes on a tangent
about Ada books and language
complexity. —arm]

> [Original message quoted verbatim
omitted. —arm]

[...]

On the topic of teenage programmers:
Although I am not a teenager I am new to
Ada. What is repelling is when you read
Barne's book and you throw up your arms
and think: How am I ever going to master
all that?!

But I guess what is true for C++ must be
true for Ada as well: People use 20% of
the language features 80% of the time. it
would be good to find a way to introduce
new programmers using these 20% to
start with. Barne's book is simply
overwhelming for the newcomer since it
covers nearly all aspects and you can start
out with much less

From: Ludovic Brenta <ludovic@ludovic-
brenta.org>

Date: Sun, 09 Feb 2020 23:55:05 +0100

> On the topic of teenage programmers:
Although I am not a teenager I am new
to Ada. What is repelling is when you
read Barne's book and you throw up

your arms and think: How am I ever
going to master all that?!

Even though it is out of date by now, I
still like and recommend the free book by
John English, "Ada 95: the Craft of
Object-Oriented Programming". This is a
gentle introduction to Ada as a first
programming language and it is not
overwhelming. Professionals and die-hard
enthusiasts can always learn from the
reference manual

https://www.adaic.org/resources/
add_content/docs/craft/html/contents.htm

From: "Nasser M. Abbasi"
<nma@12000.org>

Date: Sun, 9 Feb 2020 22:53:13 -0600

> On the topic of teenage programmers:
Although I am not a teenager I am new
to Ada. What is repelling is when you
read Barne's book and you throw up
your arms and think: How am I ever
going to master all that?!

One of the reasons a programming
language become less popular is that it
becomes more complicated with time.

Look at what happened to C++. Same
with Ada. They start relatively small and
simple, and each few years, they update
the standard and add more complication
and "advanced" features so that few could
understand it all. This has also happened
to Fortran with addition of OO to it,
where it is as complex as C++ and Ada.
Fortran used to be a very simple language.

One of the reasons why python is so
popular (even though I think it is a
horrible language myself) is that it is
"simple".

There should be something in between. A
simple, yet well designed and strongly
typed language. That is why I liked Pascal
the most of all the languages I
programmed in (followed by Ada).

From: Rick Newbie
<nuttin@nuttn.nowhere>

Date: Mon, 10 Feb 2020 02:05:45 -0800

That's actually very true. I have to work in
C++ professionally but I always
remember the day of Turbo Pascal or
Modula-2. Install, run the IDE and ready
to go, no fighting about missing libraries
or esoteric features. I must admit that I
look at some new C++ programs and I
don't understand what's going on. Same
with forums. Sometimes I browse
Stackexchange just for fun and I read
questions from people about the behavior
of pieces of code that they don't
understand and the answers just make me
shake my head. Who would have ever
thought of that?!

When I learned C I had a book about 200
pages. I read that and afterwards I was
able to write my first small programs. I
don't have the feeling it will be that easy
with Ada. In fact I try to keep it simple
and get me some exercise by translating

some of the games from David Ahl's
1970's book from BASIC to Ada because
I think that it is possible to translate those
games with the more simple features of
Ada to get me going.

I think when the language becomes so
complicated that you need professional
help, not with algorithmic problems but
with syntactical questions, it is too
bloated. Hence my above remark that you
use 20% of the features 80% of the time. I
know certain modern features are a
blessing, for instance I love Lambdas in
C++ because they allow me to put active
code in a datatable instead of in a long
switch statement, but I could live without
it if necessary.

If I remember my early teachings
correctly you can formulate nearly every
problem on a Turing Machine.

Stack Usage

From: Simon Wright
<simon@pushface.org>

Subject: ANN: Stack usage
Date: Thu, 20 Feb 2020 22:24:02 +0000
Newsgroups: comp.lang.ada

Want a worst-case estimate of your
embedded app's stack usage? (so you can
allocate your tasks only enough stack to
avoid stack overflow ...)

https://github.com/simonjwright/
stack_usage

[Summary from the above link follows.
—arm]

The Python program stack_usage.py is
intended to help with this (it's not a
panacea, though! if you have AdaCore
support, you'll be better off using
GNATstack).

The initial motivation for this work was a
hard fault encountered while writing a test
program to check that Ada timing events
work properly (well, usably) with the
FreeRTOS-based Cortex GNAT RTS.

stack_usage has been developed on
macOS Mojave using Python 2.7 and 3.7
and PLY (Python Lex and Yacc). To
install PLY,

 pip install --user ply

It relies on the information generated by
the GCC compiler (FSF GCC 10 or later,
GNAT GPL 2015 or later) using the
switch -fcallgraph-info=su,da.

Threefish-256

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Threefish-256
Date: Sun, 16 Feb 2020 17:46:34 +0100
Newsgroups: comp.lang.ada

I have made an implementation of the
Threefish-256 encryption algorithm
available at
https://github.com/jrcarter/Threefish
in the hope that some will find it useful.

Ada-re lated Tools 13

Ada User Journal Volume 41, Number 1, March 2020

While I think it's correct, I cannot be sure,
and would appreciate additional people
inspecting it for errors.

KDF9 Emulator Release
4.1d

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Subject: ee9, KDF9 emulator release 4.1d
Date: Wed, 26 Feb 2020 18:13:50 +0000
Newsgroups: comp.lang.ada

If you are interested in historical
computers you might like to take a look at
the new release of ee9, my emulator of
the English Electric KDF9, now available
here:

http://www.findlayw.plus.com/KDF9/
#Emulator

where you can find pre-built binaries for
macOS and Linux. I expect that the Linux
binary will also work on Windows 10, but
have not tried that.

For the first time, this release of ee9
enables both the use of the Kidsgrove
optimising Algol 60 compiler and the
execution of object programs under the
control of the Time Sharing Director,
KDF9's elegantly simple
multiprogramming operating system.

In the download package are papers
describing the hardware and software of
the KDF9, and its role in the development
of machine-independent benchmarking.

ee9 and its ancillary programs are written
in Ada 2012 (of course). Source code, and
instructions on using the build process,
are also included.

From: Paul Rubin
<no.email@nospam.invalid>

Date: Wed, 26 Feb 2020 12:49:38 -0800

Cool! Do you have the KDF9 source code
for the Algol 60 compiler or the
timesharing OS?

From: Bill Findlay
<findlaybill@blueyonder.co.uk>

Date: Thu, 27 Feb 2020 00:47:48 +0000

The ee9 download includes listings of the
Whetstone Algol system.

You can find a lot more original or
resurrected KDF9 material, starting here:

http://sw.ccs.bcs.org/KDF9/index.html

See also the Bibliography included in the
download.

Simple Components v4.47

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.47

Date: Sun, 1 Mar 2020 13:11:28 +0100
Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,

stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations. The library is kept
conform to the Ada 95, Ada 2005, Ada
2012 language standards.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- MODBUS RTU client implementation
was added;

- On_Reader_Start and On_Writer_Start
primitive operation were added to
Blocking_Server;

- On_Start primitive operation was added
to Call_Service;

- On_Pooled_Server_Start primitive
operation was added to Pooled_Server;

- On_Worker_Start primitive operation
was added to Connections_Server;

- Activated primitive operation was added
to Connection.

Zip-Ada v56

From: gautier_niouzes@hotmail.com
Subject: Ann: Zip-Ada v.56
Date: Thu, 26 Mar 2020 10:02:16 -0700
Newsgroups: comp.lang.ada

New in v.56:

- Zip: the Zip_info type is now controlled
(no need to call Delete; additionally,
clones are done correctly).

- UnZip.Streams: added Size and Name
functions for Zipped_File_Type.

- LZ77: added nice simple LZ77
compressor by Rich Geldreich, Jr.

- (Tools) Added Zip_Dir_List.

New in v.55:

- Zip_Streams: ZS_Size_Type is now 64-
bit signed, enabling Zip.Create to
capture archive size overflows in Zip_32
mode.

- Zip.Create raises
Zip_Capacity_Exceeded when archive
creation exceeds the Zip_32 format's
capacity: 4GB total size, 65,535 entries.

- Zip.Create is now using an Ada 2005+'s
Containers's Hashed Maps; creation is
much faster on Zip archives with many
entries.

- (Tools) ReZip has a new option for
working only with its own internal
compression algorithms - those provided
by Zip.Compress. This option is useful
if external tools are not available.

- New Trained_Compression package:
generic streaming encoder-decoder
engine with the capability of training the
engine with data known in advance, in
order to achieve better compression. Not
Zip-related.

-!- Minimum required Ada version is now
Ada 2005 (was Ada 95 before).

Full history: http://unzip-ada.sf.net/
hist.htm

Main site & contact info:

http://unzip-ada.sf.net

Project site:

https://sf.net/projects/unzip-ada/

GitHub clone:

https://github.com/zertovitch/zip-ada

AdaNetFramework - Proof
of Concept Alpha Release

From: alby.gamper@gmail.com
Subject: Ann: AdaNetframework - Proof of

concept / alpha release
Date: Thu, 26 Mar 2020 02:11:35 -0700
Newsgroups: comp.lang.ada

Dear Ada Community

For those interested in Microsoft
NetFramework, I have developed a set of
bindings, runtime that allows native Ada
applications built using GNAT to use the
NetFramework. Conceptually this is very
similar to "Embedinator 4000" developed
by the "Mono" development team. Note
this is not Ada compiled into CLR/VM
bytecode, but a native (albeit for the
moment) Windows x64 application that
can make use of the functionality
provided by the NetFramework.

Note this is a Proof of concept/alpha
release, but it is functional

The git repo contains 3 branches, these
being

1) Master - a cutdown version of mscorlib
(only includes subset of mscorlib)

2) System.dll - contains the core system
bindings (core dependency)

3) System.Windows.forms.dll - contains
winforms bindings

I suggest that if you want to build/test the
repo, please start with the "Master"
branch (which contains a rudimentary test
application (i.e., VS/GPR project) and
then progress to System and finally
System.Windows.Forms branch. Note that
the Winforms branch will take ~45 min to
complete, so be patient (it's a large lib!)

Notes:

1) Please use the latest version of
VisualAda to build the projects. There
was a memory leak which may/will
cause the final part of the build to fail

2) I am intending to support NetCore
going forward, so that Mac, Linux
clients will be supported. But this may

14 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

 take some time, since the CLR hosting
/interop Api's are very different from
NetCore to NetFRamework

Git repo is https://github.com/
Alex-Gamper/Ada-NetFramework.git

Feel free to raise questions / comments

From: Shark8
<onewingedshark@gmail.com>

Date: Tue, 31 Mar 2020 08:25:18 -0700

So, this allows you to use DOTNET stuff
in native applications; that's pretty nifty.

There was a GANT that targeted
DOTNET directly, though the latest one
is pretty old now (2014?) and there was
an Ada spec generator where you could
import DOTNET libraries for use in your
Ada programs. [I have a copy of
Delphi.NET, so of course I ran it over the
Delphi DLLs. ;) And had some fun
playing around with that.]

From: alby.gamper@gmail.com
Date: Fri, 3 Apr 2020 23:27:39 -0700

Hi Shark8

Yes it does allow you to use DOTNET
directly (ie from a native x64 binary) The
big difference between my approach and
targeting CLR/DOTNET directly as the
BNAT 2014 did, is that the Bindings need
to be generated based on a predefined set
of assemblies. Hence the reason for the 2
main branches in Git

The "system.dll" branch contains only the
bindings for system.dll and the
"System.windows.Forms.dll" branch
contains the bindings for WinForms and
all its dependencies (If there is demand I
can do another branch for WPF)

Ada and Operating
Systems

Ada and macOS Cocoa

From: Matt Borchers
<mattborchers@gmail.com>

Subject: Ada development resources for
Mac OSX Cocoa applications

Date: Sun, 8 Mar 2020 17:10:58 -0700
Newsgroups: comp.lang.ada

Doing a search here for "mac osx cocoa"
returns one hit from 1999. Needless to
say, any "help" in that thread would be
woefully outdated.

I am new to a team that needs to port a
32-bit Carbon graphical desktop
application written in Ada to its 64-bit
Cocoa equivalent. Searching the web for
any kind of Cocoa function library (in the
same spirit as .NET) is leading me to very
little of use aside from what I find at
developer.apple.com. Apple developers
seem to care mostly about iOS/phone
development than desktop apps. Can
anybody direct me to a good set of
reference guides, on-line or off-line, that
would be helpful to a programmer writing

a graphical Mac application using non-
native (i.e. non-Apple) tools. Being old-
school, I would even appreciate the name
of a good book.

I know that 20 years ago interfacing Ada
to Objective-C was a very difficult task. I
am hopeful that the past 20 years have
brought technologies that have made this
easier or even simple. Has anybody
written an Ada binding to AppKit or
Foundation with good documentation?

From: Optikos
<ZUERCHER_Andreas@outlook.com>

Date: Tue, 10 Mar 2020 07:09:31 -0700

The Carbon-to-Cocoa in any language is
going to be a near-total rewrite. While
performing that rewrite, you might
consider rewriting in a nonAda language
(e.g., Swift) anyway.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Tue, 10 Mar 2020 18:36:44 +0100

> That isn't the reply I was hoping to read,
but it is the one I expected.

Not what you're asking, but I would
suggest you use Gnoga for your desktop
applications (which Gnoga refers to as
"singleton" applications). Then your code
will be portable across platforms.

Ada Practice

Type Naming Conventions:
Any_Foo

[As this topic involves a degree of
personal preference, a large conversation
sprung around this question, requiring a
more extensive cherry-picking of posts. I
have selected what I feel most relevant,
but I apologize to the topic contributors if
they see some of their answers omitted.
—arm]

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Subject: Type naming conventions:
Any_Foo

Date: Wed, 4 Dec 2019 14:56:21 +0100
Newsgroups: comp.lang.ada

I've recently come across a new (to me)
type naming convention and I'm curious
about how extended it is. I was aware of
the

 Foo.Object -- where Foo is a package and

 -- Object is the type name

and

 Foos.Foo -- where Foos is a package and

 -- Foo is the type

and

 Foos.Bars -- where both packages and

 -- types are in plural

and

 Foo_Type -- where the enclosing package

 -- name is not used

This variant is

 Any_Foo -- enclosing package also not

 -- used

I've found only one example in the ARM
in System.Any_Priority. I find I like
better Any_Foo than Foo_Type, not sure
why. I've had since I can remember an
aversion for the _Type thing.

Anyway, just curious. Any champions of
the Any_Foo in the readership?

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Date: Wed, 4 Dec 2019 17:42:56 +0100

> Not come across this, is this for when
"use" is used? What's the name of the
package, Foos? Foo?

I was ambiguous, sorry. In this case I
think the enclosing package is secondary.
I guess the advantages are the same as in
_Type, that you can write Foo: Any_Foo;

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Thu, 5 Dec 2019 02:51:34 -0800
Of all of these schemes, my favorite is

 Package Foos

 Type Any_Foo

 Object Foo

This is tightly related to the discussion
predefined types vs. user defined types.
It's not always easy, ahem it's often
difficult to find good names.

I think finding good names and spending
time on this is well spent effort.

I do not know who posted this example a
long time ago, but I like it:

Do not use abbreviations. Good names
make a program understandable. What is
Wpn?

type Weapon_Type is (Broadsword,

 Catapult, Bow_and_Arrow);

procedure Attack_Using (Weapon:

 Weapon_Type);

 Weapon: Weapon_Type;

 Attack_Using (Weapon => Catapult);

 -- a bit talkative

 Attack_Using (Catapult);

 -- good only with positional association

versus

 type Weapon is (Broadsword, Catapult,

 Bow_and_Arrow);

 procedure Attack (Using: Weapon);

 My_Weapon, Foes_Weapon: Weapon;

 Attack (Using => Catapult);

 -- good only with named association

 Attack (Catapult);

 -- Do we attack the catapult or what?

From: AdaMagica <christ-usch.grein@t-
online.de>

Date: Fri, 6 Dec 2019 00:57:06 -0800

> procedure Attack (Using: Weapon);

> Attack (Using => Catapult);

As nice as this may read in user's code,
within the body of Attack, the parameter

Ada Pract ice 15

Ada User Journal Volume 41, Number 1, March 2020

name is not optimal.

Also a declaration like

 My_Weapon: Weapons.Weapon;

is awkward when use-clause is banned.
So a further point to consider is whether
you want your package to be used with
use-clause or without:

 My_Weapon: Weapons.Object;

I'm not sure I like this.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Fri, 6 Dec 2019 10:55:28 +0100

Small remark: do not confuse using the
use clause, and not using selected names.
You are perfectly allowed to use selected
names within the scope of a use clause if
you feel it is more readable!

I am a known supporter of the use clause,
however for classes, I use the package for
the object name, and "object" for the
record that's the data part of it. Of course,
I always use selected names in that case.

[small plug] There is an AdaControl rule
to check that some names always use
selected notation.

Whether or not you are hostile to the use
clause, the best advice is to choose a
name which is nice for your favorite
notation, and acceptable for the other one.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 5 Dec 2019 18:27:24 +0100

> (Broadsword, Catapult,
Bow_and_Arrow);

There are 2 ways to look at them:

1. These identify the possible weapons:
Weapon_ID

2. These are the names of the possible
weapons: Weapon_Name

Either of these are better than any name
derived using a convention, while still
leaving the best name (weapon) available
for parameter names. This because they
were created by thinking (which is what
S/W engineers are paid to do), while
conventions exist to allow developers to
avoid thinking.

I would even say that those who use
naming conventions such as T[y[p[e]]]
are either not S/W engineers or are
shirking their duties.

From: Lucretia
<laguest9000@googlemail.com>

Date: Fri, 6 Dec 2019 03:44:46 -0800

[...]

An alternative for enumerations would be:

 type All_Weapons is (Broadsword,

 Catapult, Bow_and_Arrow);

 Weapon : All_Weapons := Broadsword;

But this does look a bit weird, maybe a
renaming of All_Weapons to A_Weapon
would make the variable definition look
better?

 Weapon : A_Weapon := Broadsword;

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Fri, 6 Dec 2019 21:23:45 +0100

It has been demonstrated that the first few
characters of an identifier are the most
important in distinguishing them; having
lots of identifiers with the same first few
characters makes the code harder to read.
So common prefixes are even worse than
suffixes.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Fri, 6 Dec 2019 23:55:59 +0200

Some people have suggested decorating
the variable/component name instead of
the type name, for example

 function Is_Lethal (The_Weapon :

 Weapon) return Boolean

but (as you say) such prefixes are worse
than suffixes.

I have also seen coding rules that require
specific suffixes on formal parameters,
such as:

 function Is_Lethal (Weapon_P : Weapon)

 return Boolean;

but they tend to also require suffixes (like
"_T") on type names, so there we are
again.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Fri, 6 Dec 2019 21:46:33 +0100

>> But if a value of the type Weapon_Id
is an identifier of a Weapon, how can
you defend saying

>>

>> Weapon : Weapon_Id;

>>

>> The variable Weapon does not
represent a Weapon; it represents an
identifier of a Weapon, so the name
Weapon is IMO a little misleading.

> Obviously there are no weapons in the
S/W; there are only bit patterns that you
have decided to interpret in various
ways. But if you're modeling the
problem space and it contains
something called Weapon, then

> your software had better have
something named Weapon it in, too.

Which something is the variable Weapon
in the example above. Though
Holstered_Weapon, Current_Weapon
might be better. But then again,
"_Weapon" would look like a nasty
suffix.

I don't think there is a universal solution
and I agree with Randy that a consistent
convention is better than anything else
(unless pushed ad absurdum like
Hungarian notation).

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 5 Dec 2019 18:45:05 +0100

> I would even say that those who use
naming conventions such as _T[y[p[e]]]
are either not S/W engineers or are
shirking their duties.

There exist cases:

1. Formal generic types. They are
customarily named XXX_Type.

2. Types which are artifacts of language
issues or of design. These have no
separate problem space meaning and
thus no meaningful name. E.g.

 type Something is ...;

 type Something_Ptr is access Something;

 -- I don't want access type,

 -- I am required to have it

BTW, this includes all sorts of helper
types Ada kept introducing recently.

From: "Dmitry A. Kazakov"
<mailbox@dmitry-kazakov.de>

Date: Thu, 5 Dec 2019 22:51:36 +0100

> On 12/5/19 6:45 PM, Dmitry A.
Kazakov wrote:

>>

>> 1. Formal generic types. They are
customarily named XXX_Type.

>

> Well chosen names for generic formal
types do not end with _Type. The

> PragmAda Reusable Components have
many generic formal types, none of

> which end with _Type.

Ada standard library uses _Type, e.g.

 generic

 type Element_Type (<>) is private;

 with function "=" (Left, Right :

Element_Type) return Boolean is <>;

 package

Ada.Containers.Indefinite_Holders

As I said, the rationale is that there is no
meaningful name for Element_Type in
the problem space. There is no problem
space at all. Indefinite_Holders is a helper
package so general that considered in
isolation it has no meaning.

>> -- I don't want access type, I am
required to have it

> Please provide examples of being
required to have an access type.

There are lots of cases in Ada, you
certainly should know that. As a

practical example GtkAda declares all
widget types twice:

 type Gtk_Button_Record is ...

 type Gtk_Button is access all

 Gtk_Button_Record'Class;

The suffix _Record is an equivalent to
_Type.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 5 Dec 2019 17:12:57 -0600

16 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

> There are lots of cases in Ada, you
certainly should know that. As a
practical example GtkAda declares all
widget types twice: [...]

This is the only case where I've used
"Any_" as a type prefix, in Claw --
specifically, class-wide access types.

 type Root_Window_Type is abstract

 tagged private;

 type Any_Window_Access_Type is

 access all Root_Window_Type'Class;

Access-to-classwide is a different sort of
thing than access-to-specific, and I
wanted a different sort of name for it.

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Fri, 6 Dec 2019 18:57:19 -0600

[The conversation veers towards
examples in the ARM. —arm]

> On 2019-12-06 21:18, Jeffrey R. Carter
wrote:

>> On 12/5/19 10:51 PM, Dmitry A.
Kazakov wrote:

>>>

>>> Ada standard library uses _Type, e.g.

>>>

>>> generic

>>> type Element_Type (<>) is private;

>>> with function "=" (Left, Right :
Element_Type) return Boolean is <>;

>>> package
Ada.Containers.Indefinite_Holders

>>

>> Yes, and the ARM also includes such
abominations as anonymous access
types. Just because it's in the ARM
doesn't mean it's the best way to do
something. Element is be [sic] a better
name for that formal type.

>

> No, it would be misleading. Element
must be reserved for instances of the
type. They are actual elements. The
type of an element is not an element,
these are two totally different things.

Agreed. Ada.Containers all have a
function Element that retrieves a (copy of)
a single element object from the
container. If the type was named element,
what would this function be called?
Similarly, some of the parameters are
called Element (thus, Element:
Element_Type in many parameter lists);
those also would need alternate names.

There were a number of ARG members
that disliked the "_Type" notation, so we
looked at alternatives. And we didn't find
anything that worked as well. Sometimes,
package design is about the "least bad"
alternative.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Sat, 7 Dec 2019 14:36:51 +0200

>> Agreed. Ada.Containers all have a
function Element that retrieves a (copy
of) a single element object from the
container. If the type was named
element, what would this function be
called? [...]

>

> At a conference long ago (probably in
the Ada-83 days), a presenter claimed
that well designed Ada has 90% of its
operations named Put or Get.

Horror. The result of blind OO
convention :-)

> Get is an appropriate name for such an
operation.

I follow the convention that procedure
names are verbs ("Get") or verb phrases
("Remove_Last_Item") that describe the
action or its effects, while function names
are nouns ("Element") or noun phrases
("Largest_Element") that describe the
value returned by the function.

Therefore, IMO, "Get" is not a proper
name for a function (unless the program
models animal breeding, and the Get
function returns all the offspring of a
particular animal or pair of animals).

[...]

Importance of
GNAT.Source_Info

From: Jere <jhb.chat@gmail.com>
Subject: Importance of GNAT.Source_Info
Date: Mon, 6 Jan 2020 14:03:54 -0800
Newsgroups: comp.lang.ada

I'm working on a baremetal RTS and
while looking at
https://wiki.osdev.org/Ada_Bare_bones,
one of the files it suggests is part of the
minimum set of RTS files is g-souinf.ads
which contains the package
GNAT.Source_Info.

Does anyone know what part of the
compiler requires this? So far I haven't
had GNAT barf at me for not having it
while compiling the files I do have, but I
don't want to leave it out if it is indeed
necessary for something. I didn't see any
info on why it is necessary. It's definitely
useful in that it gives a lot of compile time
values, but not sure why it would be a
"required" file. I'm assuming something
will break without it, but don't know
what. [...]

From: charlet@adacore.com
Date: Fri, 10 Jan 2020 02:54:18 -0800

This package is completely optional and
standalone, and not used by the compiler
or other runtime units. It's just provided
because it doesn't have any associated
runtime so portable to all GNAT ports
and because it's convenient. You can

safely remove or ignore it if that's
convenient for you.

Peculiarities of "of"
Iteration Syntax

From: "Alejandro R. Mosteo"
<alejandro@mosteo.com>

Subject: Peculiarities of "of" syntax
Date: Sat, 11 Jan 2020 19:05:21 +0100
Newsgroups: comp.lang.ada

[...]

The following GNAT 2019-rejected
examples of iterating with the new "of"
are giving me some pause if this is an
oversight in the feature, a bug in the
compiler, or actually intended for some
good reason:

procedure Pro is

 type Int_Array is array (Positive range <>)

 of Integer;

 Arr : Int_Array (1 .. 10) := (others => 0);

begin

 -- 1)

 for Z of Arr loop -- of course valid

 null;

 end loop;

 -- 2)

 for Z of Int_Array'(Arr & Arr) loop

 -- also works

 null;

 end loop;

 -- INVALID

 -- 3)

 for Z of Arr & Arr loop

 -- Error is "missing loop"

 null;

 end loop;

 -- 4)

 for Z of (Arr & Arr) loop

 -- Error is "name expected"

 null;

 end loop;

end Pro;

The crux of the matter might be in 5.5.2,
where an "iterator_name" appears:

iterator_specification ::=
defining_identifier in [reverse]
iterator_name | defining_identifier
[: subtype_indication] of [reverse]
iterable_name

http://www.ada-auth.org/
standards/rm12_w_
tc1/html/RM-5-5-2.html

[...]

From some other related question [1] I
need to review the master rules in 7.6, but
my first instinct is that 3) and 4) could be
legal if the loop is the master of the
expression.

In conclusion: any insight on what's going
on with 3) and 4)? Thanks!

Ada Pract ice 17

Ada User Journal Volume 41, Number 1, March 2020

[1] https://groups.google.com/d/msg/
comp.lang.ada/veW6BNBGBfo/
gDFwEsyyAgAJ

From: Robert A Duff
<bobduff@TheWorld.com>

Date: Sat, 11 Jan 2020 16:45:07 -0500

The syntax rules require a name after
"of", and neither "Arr & Arr" nor "(Arr &
Arr)" are names. [...]

From: "Alejandro R. Mosteo"
<amosteo@unizar.es>

Date: Sat, 11 Jan 2020 17:38:00 -0800

So the question would be [...] why a name
is required instead of an expression, or
why a qualified expression is good
enough but an unambiguous plain
expression is not.

A normal function call will work there
too, so why not the poor infix operator...

From: Simon Wright
<simon@pushface.org>

Date: Sun, 12 Jan 2020 11:27:22 +0000

This is OK too:

 -- 3a)

 for Z of "&" (Arr, Arr) loop

 null;

 end loop;

[...]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 13 Jan 2020 17:32:36 -0600

[...]

A qualified expression, a type conversion,
and a function call are all "names". You
can always use a qualified expression to
turn any "expression" into a "name".

> A normal function call will work there
too, so why not the poor infix
operator...

The usual reason is that infix operators
would make the grammar ambiguous; that
depends on what follows them. There are
cases where that isn't a problem (this
might be one of them). I don't think
anyone was thinking about using
expressions in this context, the intent was
to iterate over an object.

Of course, Bob is right that the difference
between "name" and "expression" (and
similarly "value" and "object") are minor
enough that it would be nice to eliminate
them. (But it's also a lot of work, and we
decided not to try for Ada 202x.)

Ada 202X Syntax Legibility
Concerns

[This subthread derived from an unrelated
question about counting occurrences of
numbers in a sequence. —arm]

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Subject: Re: Tally
Date: Tue, 14 Jan 2020 22:08:07 +0100
Newsgroups: comp.lang.ada

> [...] I would like to get an advice on
how to program in a simple and fast
way the following [...]:

>

> Example_Input: (2, 3, 8, 2, 2, 2, 7, 2, 3,
4, 8) ; -- variable Length

>

> Output by function or procedure: ((2,
5), (3, 2), (8, 2), (7, 1), (4, 1)); --
unknown Length

A lot depends on what restraints the
problem domain puts on the input values.
If you can define something like

 type Input_Number is range 1 .. 10;

then you can do something
straightforward like

 type Count_Map is array (Input_Number)

 of Natural;

 Count : Count_Map := (others => 0);

 Number : Input_Number;

 ...

 loop

 exit when No_More_Numbers;

 Number:= Next_Number;

 Count (Number):= Count (Number) + 1;

 end loop;

If you can't limit the input numbers to a
sufficiently small range that an object like
Count can be declared, then you'll need to
use a map, as Holsti suggested, which is
only a little more complicated.

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 16 Jan 2020 07:35:28 -0800

In Ada 2020, I think one could use a
container aggregate to initialize the map
to contain the initial objects:

e.g.

 package Count_Maps is new

 Containers.Ordered_Maps

 (Key_Type => Natural,

 Element_Type => Natural);

 Counts : Count_Maps.Map

 := [for I in Input'Range

 when (for all J in Input'First .. I - 1 =>

 Input (I) /= Input (J))

 use I => 0];

The "when" clause should filter the input
to just the unique values.

The "use" clause creates the mapping
between key value and count value
(Initially 0).

Then you could just write:

 for Number of Input loop

 Counts (Number):= Counts (Number) + 1;

 end loop;

To update the counts.

I leave it to the reader to decide whether
this is clearer than what you had, as I
think many would prefer what you had.

For that matter, you could do it all in one
shot and even make the map a constant.

 Counts : constant Count_Maps.Map

 := [for I in Input'Range

 when (for all J in Input'First .. I - 1 =>

 Input (I) /= Input (J))

 use I =>

 [for K in Input'Range when Input

 (K) = Input (I)) => 1]

 'Reduce("+", 0)];

Using a reduction expression to count the
values. But this is definitely quite a
mouthful.

I think if one wanted a constant object, it
would be clearer to write a function that
returns the map container object using a
simpler form of expression to create the
return object.

It would be nice however, if one could
test membership of an array or container
using "in" or "not in" to see if a particular
element value can be found.

Then one could write;

Counts : Count_Maps.Map :=

 [for I in Input'Range when (Input (I) not in

 Input (1 .. I - 1)) use I => 0];

To create the initial map objects, which is
easier to read.

Similarly, it would be nice to apply 'Max
or 'Min to an array or container object,
which could be shorthand forms for
reduction expressions using Ada 2020
syntax to return the largest or smallest
element in the array or container.

e.g.

Put_Line ("Biggest=>" &

 Natural'Image(Input'Max));

But if these ideas have any merit, you'd
have to look past Ada 2020 to a future
version of the language.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Thu, 16 Jan 2020 14:20:13 -0600

> Counts : constant Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input

> (J))

> use I =>

> [for K in Input'Range when
Input (K) = Input (I)) => 1]

> 'Reduce("+", 0)];

>

> Using a reduction expression to count
the values. But this is definitely quite a
mouthful.

So Ada 202x will allow us to catch up to
C++ and many other "expressive"
languages by allowing us to have "guess
what this code does" contests!! :-)

Compared to Jere's loop, the above is
impenetrable. And it's hard to guess the

18 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

performance of that (I'd have to expand
the aggregate into its underlying
operations to figure out whether it is more
or less expensive than the simple loop
would be).

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 16 Jan 2020 23:00:58 +0100

> Counts : Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input (J))

> use I => 0];

I think you want

 use Input (I) => 0

here (and further on). I can figure out
what this does, but I wouldn't call it
clear.

> Counts : constant Count_Maps.Map

> := [for I in Input'Range

> when (for all J in Input'First .. I -
1 => Input (I) /= Input (J))

> use I =>

> [for K in Input'Range when
Input (K) = Input (I)) => 1]

> 'Reduce("+", 0)];

This is getting close to write-only code.

From: Brad Moore
<bmoore.ada@gmail.com>

Date: Thu, 16 Jan 2020 18:51:39 -0800

> > This is getting close to write-only
code.

> Already there.

That'll be the challenge, I think. With
more tools (and new ones) to work with,
one hopes people will end up choosing
the right tool for the job. Some of the new
tools are powerful, and there might be a
tendency to want to use them, but a
simpler tool can get the job done faster
sometimes.

This example feels like using a big new
table saw to slice bread, when a good 'ol
bread knife can get it done faster and
better.

Note that the simple loop accomplishes
the task with a single pass through the
date. The monster expression has 3 levels
of nested loops, so hard to imagine it
would beat the simple loop.

Getter Functions vs Record
Components

[The thread discusses visibility of record
components taking precedence over
functions with the same name when using
dot notation. —arm]

From: reinert <reinkor@gmail.com>
Subject: Is this a bug?
Date: Mon, 30 Dec 2019 07:44:35 -0800
Newsgroups: comp.lang.ada

Hello,

assume the following Ada procedure:

with Text_IO;

procedure test1 is

 package test_package is

 type rec1_t is tagged record

 a : integer := 2;

 -- b : integer := 2;

 end record;

 function a(x : rec1_t) return integer

 is (3);

 rec1 : rec1_t;

 end test_package;

begin

 Text_IO.Put(" test_package.rec1: " &

 Integer'image(test_package.rec1.a));

end test1;

It gives (for my computer):

 test_package.rec1: 2

If I change the statement

 "a : integer := 2;"

to

 "b : integer := 2;"

then I get:

 test_package.rec1: 3

Is this reasonable? Bug?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 30 Dec 2019 20:41:07 +0200

When rec1_t is tagged, the "selected
component" text "test_package.rec1.a"
could refer either to the rec1_t-component
"a" or to the subprogram (function) "a". In
RM 4.1.3(9.1/2) and RM 4.1.3(9.2/3), the
latter case is available only under the
condition that the tagged record type
(rec1_t) does not have a (visible)
component with the name "a". This means
that the ambiguity is resolved in favour of
the component "a", which has the value 2.

One could ask, why is such an ambiguity
not rejected (made illegal)? Probably
because such an illegality rule would have
made illegal many Ada programs that
were legal before the introduction of the
"object.operation" syntax for tagged-
record objects.

If this is a problem for you, you might
check if your compiler has an option to
warn about such cases, or if AdaControl
can do the same.

From: "J-P. Rosen" <rosen@adalog.fr>
Date: Tue, 31 Dec 2019 07:08:39 +0100

> If this is a problem for you, you might
check if your compiler has an option to
warn about such cases, or if
AdaControl can do the same.

Not yet, but it's a good idea. I keep it as
an improvement suggestion.

From: reinert <reinkor@gmail.com>
Date: Mon, 30 Dec 2019 11:50:37 -0800

> One could ask, why is such an
ambiguity not rejected (made illegal)?
Probably because such an illegality rule
would have made many illegal many
Ada programs that were legal before
the introduction of the

"object.operation" syntax for tagged-
record objects.

I have had the understanding that the
intention of primitive operations of
tagged (record) types in some way can be
looked at as an extension of the actual
record - especially if one uses the dot
notation. In this case I would expect (at
least) a warning from the compiler.

I discovered the ambiguity when I
accidentally did put in an extra
component in a tagged record and with
the same name as a primitive function of
it (introduced long ago). Then the (old)
primitive function suddenly seemed to
give strange results so after this
experience I will be careful about possible
name collisions between record
components and primitive functions.

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 30 Dec 2019 17:16:17 -0600

> One could ask, why is such an
ambiguity not rejected (made illegal)?

> Probably because such an illegality rule
would have made many illegal many

> Ada programs that were legal before the
introduction of the

> "object.operation" syntax for tagged-
record objects.

The other reason is that there isn't any
alternative notation available for
components, whereas there is an
alternative method for function calls.
Ergo, we assume that you mean a
component if both are available --
otherwise, it would be impossible to
access a component at all if there is a
function with the same name visible.
Since that function wouldn't even have to
be in the same scope, there would be a
significant maintenance hazard.

Moral: This is another reason to make
everything a private type (and also to not
use prefixed notation with types that aren't
private).

Generating Files with
GPRbuild

From: mockturtle <framefritti@gmail.com>
Subject: gpr and Makefiles
Date: Mon, 27 Jan 2020 08:22:40 -0800
Newsgroups: comp.lang.ada

I have a question about the interaction
between gprbuild and Makefile. I googled
a bit and found mostly how to use
gprbuild inside a Makefile, but, in a sense,
I am interested in the other way around.

Ada Pract ice 19

Ada User Journal Volume 41, Number 1, March 2020

More precisely, among all my source files
there is one package (say, foo.ads) that is
actually generated by an external file (say,
bar.txt) using a utility (call it "convert").
The matter is a bit more complex, but this
is the core of the issue.

I can express the dependency between
foo.ads and bar.txt in a Makefile like
foo.ads: bar.txt

 convert --from=bar.txt --to=foo.ads

What I would like is having gprbuild
checking if bar.txt is newer than foo.ads;
if it is, run convert and after that proceed
with the actual building.

Is this possible?

I also checked Gem #152
(https://www.adacore.com/gems/gem-
152-defining-a-new-language-in-a-
project-file) about defining a new
language inside a gpr file, but I am not
sure it can be a solution.

Thank you in advance for your help

From: Shark8
<onewingedshark@gmail.com>

Date: Mon, 27 Jan 2020 09:49:36 -0800

> [...]

> I also checked Gem #152 [...] about
defining a new language inside a gpr
file, but I am not sure it can be a
solution.

Why not?

Wouldn't you just use

 package Compiler is

 for Driver ("Converter") use "convert";

 for Object_Generated ("Converter")

 use "False";

 --...

 end Compiler;

From: mockturtle <framefritti@gmail.com>
Date: Mon, 27 Jan 2020 12:28:57 -0800

It worked, thank you.

Actually, it was less trivial than I
expected. The main problem was that
gprbuild expects a command line like

<compiler name> <pre-options>
<source> <post-options>

while my command line was

convert <output filename> <input
filename>

However, since convert is actually a Ruby
script I changed it to handle the case
<output>=-c as an "automagical" case
where the output filename is obtained
from the input.

From: briot.emmanuel@gmail.com
Date: Tue, 28 Jan 2020 03:57:51 -0800

gprbuild is pretty weak for generated
code. When I was working at AdaCore,
we had made a nice design to properly
handle this, but I don't know what
happened to that design.

Here, you are trying to generate Ada
code. So when you start gprbuild, it might

quickly compile a unit that depends on
one of the generated Ada packages,
without having generated them already. In
practice, you end up having to run
gprbuild multiple times (once to generate
the files, then to compile everything). A
proper build tool should be able to handle
that automatically in one pass, just by
having a full graph of dependencies.

Catching All Elaboration-
Time Exceptions

From: ahlan@marriott.org
Subject: Last chance handler on a PC
Date: Thu, 30 Jan 2020 00:55:41 -0800
Newsgroups: comp.lang.ada

Does anyone know if it is possible to
install a last chance handler for a PC
program. i.e., write a procedure that gets
called when a program issues an
unhandled exception If it is possible how
do you do it?

From: Egil H H <ehh.public@gmail.com>
Date: Thu, 30 Jan 2020 01:17:15 -0800

You can use the Termination_Handler in
Annex C.7.3 (Added in Ada 2005),
provided your compiler/runtime supports
it.

http://www.ada-auth.org/standards/
rm12_w_tc1/html/RM-C-7-3.html

Example usage is discussed in the Ada
2005 Rationale:

https://www.adaic.org/resources/
add_content/standards/05rat/html/
Rat-5-2.html#I1150

From: ahlan@marriott.org
Date: Thu, 30 Jan 2020 11:27:50 -0800

Very interesting but we want to catch all
unhandled exceptions, specifically those
raised during package elaboration.

From: ahlan@marriott.org
Date: Thu, 30 Jan 2020 11:35:56 -0800

To answer my own question...

To catch unhandled exceptions you only
need to write a simple procedure and
export it as __gnat_last_chance_handler.

This is linked into the program in
preference to the default last chance
handler provided by GNAT.

This procedure is called if nothing catches
a raised exception.

Including those raised during package
elaboration.

The procedure is not allowed to return so
after doing whatever it is you want to do
with the exception you must call
__gant_unhandled_terminate

The following is an example.

procedure Last_Chance_Handler

(Occurrence :

Ada.Exceptions.Exception_Occurrence)

 with

 No_Return, Unreferenced, Export,

 Convention => C,

 External_Name =>

 "__gnat_last_chance_handler";

 procedure Last_Chance_Handler

(Occurrence :

Ada.Exceptions.Exception_Occurrence) is

 procedure Unhandled_Terminate

 with

 No_Return, Import,

 Convention => C,

 External_Name =>

 "__gnat_unhandled_terminate";

 begin

 begin

 null; -- Process the exception here.

 exception

 when others =>

 null;

 end;

 Unhandled_Terminate;

 end Last_Chance_Handler;

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 30 Jan 2020 21:02:17 +0100

Doing

Ada.Task_Termination.Set_Specific_Handler

 (T =>

Ada.Task_Identification.Environment_Task,

 Handler => Last_Chance'access);

should do the same thing more portably. It
will be called when the environment task
terminates for any reason; you would only
want it to actually do something when
Cause = Unhandled_Exception.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Date: Thu, 30 Jan 2020 22:26:38 +0200

Looks good, but to catch all elaboration-
time exceptions (in other packages) the
package that executes that call, in its own
elaboration code, must be elaborated
before all other packages. Do you have
some easy way to ensure that, without
inserting elaboration pragmas in all other
packages?

I had a similar elaboration problem some
time ago in an embedded application,
where I wanted to set up some HW error-
trap handlers that I would like to be active
also during elaboration, but I found no
easy way to ensure that the trap-handling
package would be elaborated before all
other packages.

From: "Jeffrey R. Carter"
<spam.jrcarter.not@spam.not.acm.org>

Date: Thu, 30 Jan 2020 21:51:09 +0100

Of course that call has to be done before
anything that might raise an exception
during elaboration. Usually you'd put it in
its own pkg, and then every other library-
level unit in the system would with it with
a pragma Elaborate_Body for it. If
everything is part of a hierarchy, then
only the spec of the root package of the
hierarchy should need to do that.

20 Ada Pract ice

Volume 41, Number 1, March 2020 Ada User Journal

Time Image and ARM
Interpretations

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: Ada.Calendar.Formatting.Image
(or Time_Of) changing the time

Date: Mon, 2 Mar 2020 10:49:52 -0800
Newsgroups: comp.lang.ada

Feeding Ada.Calendar.Formatting.Image
with an Ada.Calendar.Time_Of the year,
month, day, seconds on the left, we get
the image on the right. Some images,
marked *, are 1 hour behind.

2015 1 21 32040 (8:54 AM) =>
2015-01-21 08:54:00

2015 1 21 39240 (10:54 AM) =>
2015-01-21 10:54:00

2015 7 21 32040 (8:54 AM) =>
2015-07-21 07:54:00 *

2015 7 21 39240 (10:54 AM) =>
2015-07-21 09:54:00 *

The different input is the month, January
versus July, so it looks like a daylight
savings thing. Is this expected behaviour?
Thanks.

[Compiler = GNAT Community 2018
(20180523-73)]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 03 Mar 2020 14:53:43 +0000

There was a conversation on Ada-
Comment in June last year, in which it
turned out that compiler implementers
may have been misinterpreting the ARM.
It was quite confusing.

Part of the problem is that
Ada.Calendar.Clock, implemented over
the OS facilities, may or may not be in
local time; and how does it treat times
which are not in the 'now' time zone?

[...]

From: Simon Wright
<simon@pushface.org>

Date: Tue, 03 Mar 2020 17:40:06 +0000

Also, see AI95-00160,

http://www.ada-auth.org/cgi-bin/
cvsweb.cgi/ais/ai-00160.txt?
rev=1.4&raw=N

[This AI deals with the problem of times
that happen twice at the boundaries of
daylight savings time. —arm]

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Tue, 3 Mar 2020 17:49:31 -0600

> There was a conversation on Ada-
Comment in June last year, in which it
turned out that compiler implementers
may have been misinterpreting the
ARM. It was quite confusing.

Not just a conversation, but also a
Binding Interpretation AI (which
therefore applies to Ada 2012 compilers),
AI12-0336-1.

Essentially, the formal definition of
Time_Offset, and the way it was actually
implemented by every compiler except
mine, was completely different. We
decided to match practice, especially as
that matches the way the Internet uses
time offsets. So that part of the RM was
rewritten.

As Dmitry says, the default Time_Offset
on GNAT gives one UTC. If you want
CST or CDT (my time zones, which
change on this coming Sunday), one
needs to use -360 or -300. We've added a
new renaming Local_Time_Image to
make this relatively easy (dunno if GNAT
has it yet).

The advantage of this definition is that the
base UTC time doesn't jump during the
year, but if you are interested in local
time, you have to determine the offset
based on the time-of-year.

Your example suggests that GNAT is
doing something weird with times that are
far away from today. That's certainly not
intended, sounds like a bug to me.
Certainly is a bug with the rewritten rules
for Time_Image.

Enforcing Instantiations at
Library Level

From: Vincent Marciante
<vincent.marciante@l3harris.com>

Subject: Good/best way to enforce library-
level instantiation a generic package

Date: Mon, 16 Mar 2020 11:51:25 -0700
Newsgroups: comp.lang.ada

I made a generic package that I want only
to be instantiated at library level. I'm
working on compile-time a way to
enforce that desire which involves access
type accessibility level checking but have
not yet set it up correctly. Is there a
better/standard way?

From: "Randy Brukardt"
<randy@rrsoftware.com>

Date: Mon, 16 Mar 2020 20:21:16 -0500

For Ada 95, deriving from Controlled
does the trick, but that was eliminated (at
substantial cost) in Ada 2005 and later.

I suppose you could use type
String_Access (which is a library-level
access type) for this:

 with Ada.Strings.Unbounded;

 generic

 ...

 package My_Generic is

 -- Real stuff here.

 Library-Level: constant aliased String

 := "Library-Level";

 Check : Ada.Strings.

 Unbounded.String_Access :=

 Library_Level'Access;

 -- 'Access is illegal if My_Generic is not

 -- instantiated at the library level.

 end My_Generic;

String_Access is a silly type that isn't
used in the spec of
Ada.Strings.Unbounded, and thus
shouldn't be there, but it does work for
this use.

You can of course use any library-level
access type in your program for this
purpose; I picked this one 'cause it is
already sitting around.

From: briot.emmanuel@gmail.com
Date: Mon, 16 Mar 2020 23:29:56 -0700

The way I do this is using gnat-specific
pragmas and attributes:

generic

package Generics is

 pragma Compile_Time_Error

 (not Generics'Library_Level,

 "must be at library level");

 ...

end Generics;

From: Vincent Marciante
<vincent.marciante@l3harris.com>

Date: Tue, 17 Mar 2020 03:15:14 -0700

'Library_Level is nice and clean! It should
be part of the Standard! I am using GNAT
but still have to be compatible with other
compiler so will have to go with
something along the lines of Randy's
suggestion.

