To receive the Ada User Journal, apply to Ada-Eur_ope. at:
http://www.ada-europe.org/join

ADA Volume 43
USER —
JOURNAL

Contents

Page

Editorial Policy for Ada User Journal 2
Editorial 3
Quarterly News Digest 4
Conference Calendar 35
Forthcoming Events 41
Proceedings of the 11thAda Developer Room at FOSDEM 22

D. Craeynest

“Overview” 43

S. Carrez

“Implementing a Build Manager in Ada” 44

J. Carter

“Overview of Ada GUI” 52

G. Galeotti

“SweetAda: Lightweight Development Framework for Ada-Based Sofiware Systems” 56

S. Hild

“Ada Looks Good, Now Program a Game Without Knowing Anything”’ 59

P. Jarret

“The Outsider's Guide to Ada Lessons from Learning Ada in 2021 61

A. Mosteo, F. Choteau

“Alire 2022 Update” 62

A. Mosteo

“Use (and Abuse?) of Ada 2022 Features to Design a JSON-like Data Structure” 65

Y. Moy

“Proving the Correctness of the GNAT Light Runtime Library” 68

M. Reznik

“Getting Started with AdaWebPack” 70

J-P. Rosen

“The Ada Numerics Model” 72

J. Verschelde

“Exporting Ada Software to Python and Julia” 75
Ada-Europe Associate Members (National Ada Organizations) 78
Ada-Europe Sponsors Inside Back Cover

Ada User Journal Volume 43, Number 1, March 2022

http://www.ada-europe.org/join

Quarterly News Digest

Alejandro R. Mosteo

Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; Instituto de Investigacién en
Ingenieria de Aragon, Mariano Esquillor s/n, 50018, Zaragoza, Spain; email: amosteo@unizar.es

Contents

Preface by the News Editor 4
Ada-related Events 4
Ada-related Resources 6
Ada-related Tools 7
Ada Inside 13
Ada and Other Languages 15
Ada Practice 23

[Messages without subject/newsgroups
are replies from the same thread.
Messages may have been edited for minor
proofreading fixes. Quotations are
trimmed where deemed too broad.
Sender’s signatures are omitted as a
general rule. —arm]

[1] “Ada Developer Room at FOSDEM
20227, in Ada-related Events.

[2] “CfC Ada-Europe 2022 Conference”,
in Ada-related Events.

[3] “AdaCore Joins with Ferrous Systems
to Support Rust”, in Ada and Other
Languages.

[4] “macOS GCC 12.0.1, SPARK2014”,
in Ada-related Resources.

[5] “Ada in James Webb Space
Telescope?”, in Ada Inside.

Preface by the News
Editor

Dear Reader,

As | write this preface, we are in between
two big Ada events: the FOSDEM Ada
Developers Room, which brings together
open source enthusiasts presenting their
latest developments [1], and the Ada-
Europe Int. Conf. on Reliable Software
Technologies (AEIC 2022), which this
year will return, fingers crossed, as an in-
person event at Ghent, Belgium [2].
Information about both can be found in
the “Ada-related Events” section.

A piece of news that has made some
ripples in the Ada community is the
recently announced collaboration between
AdaCore and Ferrous Systems to provide
a safety-qualified Rust toolchain. The
newsgroup saw some reactions to this
announcement [3], and a discussion about
the merits, similarities and differences
between Rust and Ada and their
respective strong points.

Glad tidings come for macOS users with
the announcement of builds of GCC 12
and SPARK 2014 for this operating
system, thanks to the volunteer efforts of
Simon Wright [4], with GCC also
available for the M1 architecture. And for
the lovers of space, some of us wonder
whether there is some Ada in the Webb
telescope [5]. (Spoiler: probably not.)

Sincerely,
Alejandro R. Mosteo.

Ada-related Events

CfC Ada-Europe 2022
Conference

[Deadline is past; announcement kept for
the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: CfC Ada-Europe 2022 Conference
- 27 Feb - second deadline

Date: Mon, 31 Jan 2022 16:44:08 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

UPDATED Call for Contributions

26th Ada-Europe International
Conference on Reliable Software
Technologies
(AEIC 2022)

14-17 June 2022, Ghent, Belgium
www.ada-europe.org/conference2022

Organized by Ada-Europe in cooperation
with ACM SIGAda, SIGPLAN, SIGBED
and the Ada Resource Association (ARA)

* 2nd DEADLINE 27 February 2022 *

#AEiIC2022 #AdaEurope
#AdaProgramming

General Information

The 26th Ada-Europe International
Conference on Reliable Software
Technologies (AEiIC 2022) will take place
in Ghent, Belgium, in the week of 14-17
June, in dual mode, with a solid core of
in-presence activities accompanied by
digital support for remote participation.
The conference schedule comprises a
journal track, an industrial track, a work-

in-progress track, a vendor exhibition,
parallel tutorials, and satellite workshops.

Schedule

16 January 2022 Submission deadline for
journal-track papers, tutorials and
workshop proposals.

27 February 2022: Submission deadline
for industrial-track and work-in-progress-
track abstracts.

14 March 2022 Notification of
invitations-to-present for journal-track
papers. Notification of acceptance for all
other types of submission.

3 April 2022: Publication of advance
program.

Topics

The conference is an established
international forum for providers,
practitioners and researchers in reliable
software technologies. The conference
presentations will illustrate current work
in the theory and practice of developing,
running and maintaining challenging
long-lived, high-quality software systems
for a variety of application domains
including manufacturing, robotics,
avionics, space, health care,
transportation, cloud environments, smart
energy, serious games. The program will
allow ample time for keynotes, Q&A
sessions and discussions, and social
events. Participants include practitioners
and researchers from industry, academia
and government organizations active in
the promotion and development of
reliable software technologies.

The topics of interest for the conference
include but are not limited to:

- Real-Time and Safety-Critical Systems:
design, implementation and verification
challenges, novel approaches, e.g.,
Mixed-Criticality Systems, novel
scheduling algorithms, novel design and
analysis methods;

- High-Integrity Systems and Reliability:
theory and practice of High-Integrity
Systems, languages vulnerabilities and
countermeasures, architecture-centred
development methods and tools;

- Reliability-oriented Programming
Languages (not limited to Ada):
compilation and runtime challenges,
language profiles, use cases and
experience reports, language education
and training initiatives;

Volume 43, Number 1, March 2022

Ada User Journal

mailto:amosteo@unizar.es

Ada-related Events

- Experience Reports: case studies,
lessons learned, and comparative
assessments.

Refer to the conference website for the
full list of topics.

Call for Journal-track Submissions

Following the journal-first model
inaugurated in 2019, the conference
includes a journal-track that seeks original
and high-quality submissions that
describe mature research work in the
scope of the conference. Accepted papers
for this track will be published in the
"Reliable Software Technologies
(AEiC2022)"

[Submission details removed. Call is
closed now.]

Authors who have successfully passed the
first round of review will be invited to
present their work at the conference. Ada-
Europe, the main conference sponsor, will
cover the Open Access fees for the first
four papers to gain final acceptance,
which do not already enjoy OA from
personalized bilateral agreements with the
Publisher.

Call for Industrial-track Submissions

The conference seeks industrial
practitioner presentations that deliver
insight on the challenges of developing
reliable software. Given their applied
nature, such contributions will be subject
to a dedicated practitioner-peer review
process. Interested authors shall submit a
short (one-to-two pages) abstract, by 27
February 2022, via
https://easychair.org/conferences/?
conf=aeic2022, strictly in PDF, following
the Ada User Journal style (cf.
http://www.ada-europe.org/auj/).

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be invited to expand their
contributions into full-fledged articles for
publication in the Ada User Journal,
which will form the proceedings of the
Industrial track of the Conference.

Prospective authors may direct all
enquiries regarding this track to the
corresponding chair, Alejandro R.
Mosteo, at the listed address.

Call for Work-in-Progress-track
Submissions

The Work-in-Progress track seeks two
kinds of submissions: (a) ongoing
research, and (b) early-stage ideas.
Ongoing research submissions are 4-page
papers that describe research results that
are not mature enough to be submitted to
the journal track as yet. Early-stage ideas,
are 1-page papers that pitch new research
directions that fall in the scope of the

conference. Both kinds of submission
must be original and shall undergo
anonymous peer review. Submissions by
recent MSc graduates and PhD students
are especially sought.

[Submission details removed. Call is
closed now.]

The abstract of the accepted contributions
will be included in the conference
booklet. The corresponding authors will
get a presentation slot in the prime-time
technical program of the conference, and
will also be offered the opportunity to
expand their contributions into 4-page
articles for publication in the Ada User
Journal, which will form the proceedings
of the WP track of the Conference.

Academic Listing

The Journal of Systems Architecture,
publication venue of the journal-track
proceedings of the conference, was
ranked Q1 (SJR) in the year 2020, also
featuring 72th percentile in CiteScope
(Scopus). The Ada User Journal, venue of
all other technical proceedings of the
conference, is indexed by Scopus and by
EBSCOhost in the Academic Search
Ultimate database.

Awards

Ada-Europe will offer an honorary award
for the best technical presentation, to be
announced in the closing session of the
conference.

Call for Tutorials

The conference seeks tutorials in the form
of educational seminars on themes falling
within the conference scope, with an
academic or practitioner slant, including
hands-on or practical elements.

[Submission details removed. Call is
closed now.]

The authors of accepted full-day tutorials
will receive a complimentary conference
registration, halved for half-day tutorials.
The Ada User Journal will offer space for
the publication of summaries of the
accepted tutorials.

Call for Workshops

The conference welcomes satellite
workshops centred on themes that fall
within the conference scope. Proposals
may be submitted for half- or full-day
events, to be scheduled at either end of
the conference proper.

[Submission details removed. Call is
closed now.]

Call for Exhibitors

The conference will include a vendor and
technology exhibition. Interested
providers should direct inquiries to the
Exhibition Chair.

Venue

The conference will take place in the
heart of the city of Ghent, Belgium,
capital of the East Flanders province, a
halfhour train ride north-west of Brussels.
Ghent is rich in history, culture and
higher-education, with a top-100
university founded in 1817.

Organizing Committee

* Conference Chair

Tullio Vardanega, University of Padua,
Italy

tullio.vardanega at unipd.it

* Journal-track Chair

Jérdbme Hugues, Carnegie Mellon
University, USA

jjhugues at sei.cmu.edu

* Industrial-track Chair

Alejandro R.Mosteo, Centro Universitario
de la Defensa, Zaragoza, Spain

amosteo at unizar.es

* Work-in-Progress-track Chair
Frank Singhoff, University of Brest,
France

frank.singhoff at univ-brest.fr

* Tutorial and Workshop Chair
Aurora Agar Armario, NATO, the
Netherlands

aurora.agar at ncia.nato.int

* Exhibition & Sponsorship Chair
Ahlan Marriott, White Elephant GmbH,
Switzerland

software at white-elephant.ch

* Publicity Chair

Dirk Craeynest, Ada-Belgium & KU
Leuven, Belgium

dirk.craeynest at cs.kuleuven.be

* Local Chair

Vicky Wandels, University of Ghent,
Belgium

Vicky.Wandels at UGent.be

*** Previous Editions

Ada-Europe organizes annual
international conferences since the early
80's. This is the 26th event in the Reliable
Software Technologies series, previous
ones being held at Montreux, Switzerland
('96), London, UK ('97), Uppsala, Sweden
('98), Santander, Spain ('99), Potsdam,
Germany ('00), Leuven, Belgium ('01),
Vienna, Austria ('02), Toulouse, France
('03), Palma de Mallorca, Spain ('04),
York, UK ('05), Porto, Portugal ('06),
Geneva, Switzerland ('07), Venice, Italy
('08), Brest, France ('09), Valencia, Spain
('10), Edinburgh, UK ('11), Stockholm,
Sweden ('12), Berlin, Germany ('13),
Paris, France ('14), Madrid, Spain ('15),
Pisa, Italy ('16), Vienna, Austria ('17),
Lisbon, Portugal ('18), Warsaw, Poland
('19), and online from Santander, Spain
('21).

Ada User Journal

Volume 43, Number 1, March 2022

Information on previous editions of the
conference can be found at
http://www.ada-europe.org/confs/ae.

Our apologies if you receive multiple
copies of this announcement.

Please circulate widely.

Dirk Craeynest, AEIiC 2022 Publicity
Chair
Dirk.Craeynest@cs.kuleuven.be

* 26th Ada-Europe Int.Conf. Reliable
Software Technologies (AEIC 2022)

* June 14-17, 2022, Ghent, Belgium *
www.ada-europe.org/conference2022

Ada Developer Room at
FOSDEM 2022

[Past event, for the record. —arm]

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Developer Room at FOSDEM
2022 - Sun 6 Feb - online

Date: Thu, 3 Feb 2022 20:14:24 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada

Call for Participation

11th Ada Developer Room at FOSDEM
2022

Sunday 6 February 2022, online from
Brussels, Belgium

Organized in cooperation with Ada-
Belgium [1] and Ada-Europe [2]
fosdem.org/2022/schedule/track/ada/

www.cs.kuleuven.be/~dirk/ada-
belgium/events/22/220206-fosdem.html

#AdaFOSDEM #AdaDevRoom
#AdaProgramming
#AdaBelgium #AdaEurope
#FOSDEM2022

FOSDEM [3], the Free and Open source
Software Developers' European Meeting,
is a non-commercial two-day weekend
event organized early each year in
Brussels, Belgium. It is highly developer-
oriented and brings together 8000+
participants from all over the world. The
2022 edition takes place on Saturday 5
and Sunday 6 February. It is free to attend
and no registration is necessary. This
year, for obvious reasons, it has been
turned into an online event, just like last
year.

In this edition, the Ada FOSDEM
community organizes once more 8 hours
of presentations related to Ada and Free
or Open Software in a s.c. Developer
Room. The "Ada DevRoom" at FOSDEM
2022 is held on the 2nd day of the event,
and offers introductory presentations on
the Ada programming language, as well
as more specialised presentations on

focused topics, tools and projects: a total
of 13 Ada-related presentations by 12
authors from 8 countries!

Program overview:

- Introduction to the Ada DevRoom,
by Fernando Oleo Blanco, Germany

- Introduction to Ada for Beginning and
Experienced Programmers,
by Jean-Pierre Rosen, France

- Ada Looks Good, Now Program a Game
Without Knowing Anything,
by Stefan Hild, Germany

- The Ada Numerics Model,
by Jean-Pierre Rosen, France

- 2022 Alire Update,
by Fabien Chouteau, France, Alejandro
Mosteo, Spain

- SweetAda: Lightweight Development
Framework for Ada-based Software
Systems,
by Gabriele Galeotti, Italy

- Use (and Abuse?) of Ada 2022 Features
to Design a JSON-like Data Structure,
by Alejandro Mosteo, Spain

- Getting Started with AdaWebPack,
by Max Reznik, Ukraine

- Overview of Ada GUI,
by Jeffrey Carter, Belgium

- SPARKNaCI: a Verified, Fast Re-
implementation of TweetNaCl,
by Roderick Chapman, UK

- The Outsider's Guide to Ada: Lessons
from Learning Ada in 2021,
by Paul Jarrett, USA

- Proving the Correctness of the GNAT
Light Runtime Library,
by Yannick Moy, France

- Implementing a Build Manager in Ada,
by Stephane Carrez, France

- Exporting Ada Software to Python and
Julia,
by Jan Verschelde, USA

- Closing of the Ada DevRoom,
by Dirk Craeynest, Belgium, Fernando
Oleo Blanco, Germany

The Ada at FOSDEM 2022 web-page will
have all details, such as the full schedule,
abstracts of presentations, biographies of
speakers, and pointers to more info,
including live video streaming and chat,
plus recordings afterwards. For the latest
information at any time, contact Fernando
Oleo Blanco <irvise@irvise.xyz>, or see:

[1] http://www.cs.kuleuven.be/~dirk/
ada-belgium/

[2] http://www.ada-europe.org/

[3] https://fosdem.org/2022/

Dirk Craeynest, FOSDEM Ada DevRoom
team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada-related Resources

Ada Developer Room Videos
Online

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada Developer Room at FOSDEM
2022 - videos online

Date: Sun, 20 Feb 2022 14:23:10 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada, comp.lang.misc

** Presentations and video recordings
available online ***

11th Ada Developer Room at FOSDEM
2022

held on Sunday 6 February 2022, online
from Brussels, Belgium

https://fosdem.org/2022/schedule/track/
ada/

All presentations and video recordings
from the 11th Ada Developer Room, held
at the online FOSDEM 2022 event
recently, are available.

Yet another full day with 13 Ada-related
talks by 12 authors from 8 countries!

[See program overview in the previous
message. —arm|

Thanks once more to all presenters and
helpers for their work and collaboration,
thanks to Fer for coordinating the
DevRoom, thanks to all the FOSDEM
organizers and volunteers, thanks to the
many participants for their interest, and
thanks to everyone for another nice
experience!

#AdaFOSDEM #AdaDevRoom
#AdaProgramming
#AdaBelgium #AdaEurope
#FOSDEM2022

Dirk Craeynest, FOSDEM Ada DevRoom
team

Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/Ada-Europe/SIGAda/WG9)

Ada-related Resources

[Delta counts are from Nov 1st to May
9th. —arm]

Ada on Social Media

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada on Social Media

Date: Mon, 2 May 2022 11:39:21 CET

To: Ada User Journal readership

Ada groups on various social media:
- LinkedIn: 3_302 (+88) members [1]
- Reddit: 8_005 (+357) members [2]

- Stack Overflow: 2_212 (+87)
questions [3]

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

- Libera.Chat: 75 (=) concurrent users [4]

- Gitter:115 (+24) people [5]
- Telegram: 139 (+9) users [6]
- Twitter: 30 (-197) tweeters [7]

53 (-223) unique tweets [7]

[1] https://www.linkedin.com/groups/
114211/

[2] http://www.reddit.com/r/ada/

[3] http://stackoverflow.com/questions/
tagged/ada

[4] https://netsplit.de/channels/
details.php?room=%23ada&
net=Libera.Chat

[5] https://gitter.im/ada-lang
[6] https://t.me/ada_lang
[7] http://bit.ly/adalang-twitter

Repositories of Open Source
Software

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Repositories of Open Source
software

Date: Mon, 9 May 2021 11:45:21 CET

To: Ada User Journal readership

Rosetta Code: 900 (+54) examples [1]
39 (+1) developers [2]

GitHub: 763* (=) developers [3]
Sourceforge: 274 (+1) projects [4]
Open Hub: 214 (=) projects [5]
Alire: 243 (+48) crates [6]
Bitbucket: 88 (=) repositories [7]
Codelabs: 53 (=) repositories [8]
AdaForge: 8 (=) repositories [9]

*This number is unreliable due to GitHub
search limitations.

[1] http://rosettacode.org/wiki/
Category:Ada

[2] http://rosettacode.org/wiki/
Category:Ada_User

[3] https://github.com/search?
g=language%3AAda&type=Users

[4] https://sourceforge.net/directory/
language:ada/

[5] https://www.openhub.net/tags?
names=ada

[6] https://alire.ada.dev/crates.html

[7] https://bitbucket.org/repo/all?
name=ada&language=ada

[8] https://git.codelabs.ch/?
a=project_index

[9] http://forge.ada-ru.org/adaforge

Language Popularity
Rankings

From: Alejandro R. Mosteo
<amosteo@unizar.es>

Subject: Ada in language popularity
rankings

Date: Mon, 9 May 2021 11:50:21 +0100

To: Ada User Journal readership

[Positive ranking changes mean to go up
in the ranking. —arm]

- TIOBE Index: 27 (+4) 0.46%

(+0.04%) [1]
- PYPL Index: 17 (=) 0.81%

(-0.13%) [2]
- IEEE Spectrum (general): 31 (=)

Score: 38.8 (=) [3]
- IEEE Spectrum (embedded): 9 (=)

Score: 38.8 (=) [3]

[1] https://www.tiobe.com/tiobe-index/
[2] http://pypl.github.io/PYPL.html

[3] https://spectrum.ieee.org/top-
programming-languages/

Ada ""Coin"" Updated for
Ada 2022

From: Dirk Craeynest
<dirk@orka.cs.kuleuven.be>

Subject: Ada - In Strong Typing We Trust -
"coin" updated for Ada 2022

Date: Sat, 5 Feb 2022 16:04:59 -0000

Newsgroups: comp.lang.ada,
fr.comp.lang.ada

Ada - In Strong Typing We Trust - "coin"
updated for Ada 2022

As of today, a new version of the
traditional "Ada coin" is available for
promotional use at
http://www.cs.kuleuven.be/~dirk/
ada-belgium/pictures/ada-strong.html

Coinciding with the final stages in the
ISO standardization of the latest Ada
programming language revision, referred
to as "Ada 2022", and for the occasion of
the 11th Ada Developer Room at
FOSDEM 2022, a new update was made
available, adding "2022".

Enjoy!

Dirk Craeynest
Dirk.Craeynest@cs.kuleuven.be (for Ada-
Belgium/-Europe/SIGAda/WG9 mail)

New Ada Forge

From: William <william@sterna.io>

Subject: New Ada Forge: catalog of
(almost) all Ada open source code &
tools

Date: Sat, 12 Feb 2022 19:47:36 +0100

Newsgroups: comp.lang.ada

Hello Ada lovers!

I’ve the pleasure to announce a ground-up
update of AdaForge.org

https://www.adaforge.org

The purpose of this site is to bring to the
Ada developer a catalog of (almost) all
Ada open source code and tools existing
in different public repositories.

==> This catalog is structured according
to a software developer perspective
(taxonomy).

Note: AdaForge.org references 100% of
the Alire ‘crates’ packaging repo. :-)

I’m excited to hear some feedback from
you,

Kind regards,
William

Ada-related Tools

AdaStudio-2021 Release
01/10/2021 Free Edition

From: Leonid Dulman
<leonid.dulman@gmail.com>

Subject: Announce: AdaStudio-2021 release
01/10/2021 free edition

Date: Fri, 1 Oct 2021 22:31:52 -0700

Newsgroups: comp.lang.ada

I'm pleased to announce AdaStudio-2021
new release, based on Qt-6.2.0-
everywhere Qt 6.2.0 opensourc without
gtwebengine,extended with modules from
Qt-5.15: gtgraphicaleffect gtlocatio
gtgamepad gtspeech gtx1lextras
gtwinextras Qt 6 is a new long time
project and | hope to add gtwebengine in
next releases.

Qt6ada version 6.2.0 open source and
gtébase.dll ,qtéext.dll
(win64),libgt6base.so,libqt6txt.so(x86-64)
built with Microsoft Visual Studio 2019
x64 Windows, gcc x86-64 in Linux.

Package tested with GNAT gpl 2020 Ada
compiler in Windows 64bit, Linux x86-64
Debian 10.4 Qt-6.2.0 everywhere
opensource prebuilt binaries for win64
and amd64 are included into AdaStudio-
2021

AdaStudio-2021 includes the following
modules: gt6ada, vtkada, gt6avada,
gt6écvada and voice recognizer.

Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
Igpl-3.0.html.

Qt6Ada modules for Windows, Linux
(Unix) are available from Google drive
https://drive.google.com/folderview?id=0
B2QuZLoe-yiPbmNQRI83M1dTRVE
&usp=sharing

[List of detailed file contents omitted.
—arm]

Ada User Journal

Volume 43, Number 1, March 2022

https://www.openhub.net/tags
https://drive.google.com/folderview?id=0B2QuZLoe-yiPbmNQRl83M1dTRVE
https://drive.google.com/folderview?id=0B2QuZLoe-yiPbmNQRl83M1dTRVE

The full list of released classes is in "Qt6
classes to Qt6Ada packages relation
table.docx"

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Sat, 2 Oct 2021 16:00:50 +0200

Hi Leonid,

I have been following your work for a few
years. | like the Qt ecosystem (even with
their change of heart) and very specially
VTK. Thank you for your work. | hope to
use it in the future for my projects.

| first wanted to say that the webpage that
is indicated on your CV and where QtAda
has been living is unreachable. Google
says it has been blocked since it is
suspicious. Do you receive the same
message?
[https://r3fowwcolhrzycn2yzlzzw-
on.drv.tw/AdaStudio/adastudio.html]

> Qt6Ada is built under GNU GPLv3
license https://www.gnu.org/licenses/
Igpl-3.0.html.

Is it GPLv3 or LGPLv3? | am asking
since you mention GPLv3 but link
LGPLvV3.

Once again, thank you for maintaining
this lovely software suite!

From: Leonid Dulman
<leonid.dulman@gmail.com>
Date: Thu, 7 Oct 2021 22:59:20 -0700

Qt6Ada is built under GNU LGPLv3
license, sorry for my mistake.

I built a web page from my google drive
and it worked well, but now | have got a
message from Google and | don't know
why. Old link to AdaStudio no longer
works. The new is
https://drive.google.com/drive/folders/
0B2QuZLoe-yiPbmNQRI83M1dTRVE?
resourcekey=0-b-M35gZhynB6-
LOQww33Tg&usp=sharing

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 6 Oct 2021 23:28:33 +0200

I have been playing today with gtbada and
I think I can shed some light on the issue
[of some seemingly missing C files
—arm].

The Ada sources that call the Qt
procedures are in the
AdaStudio/qt5ada/qt5adasrc.tar.bz?2 file.
That is the source file. There are no C
files there. That library contains all of the
Ada wrapper.

However, that is indeed not enough to use
it. It requires a fully functional Qt5
installation (and a very complete one,
with bells and whistles). The binaries are
provided in the other *.tar.bz2 files
(except the demos file). There is also the
qt5adax86-64.tar.bz2 file which weighs
about 6Mb. That seems to be the relevant
file to build gt5ada from source in Linux.

It comes with different files to setup the
file structure and environment. | must
admit, | have not tried to build it with the
provided files in qt5adax86-64.tar.bz2

These "build files" expect you to have a
Qt5 installation in your local /usr/local
folder. I suppose that is where the
qt5.15x86-64.tar.bz2 comes into place,
after all, it should unpack in the directory
written in the environment file.

Of course, the question is: where are the
instructions to build this all from source?
The short answer is in the document
"How to use Qt5Ada.docx" that is present
in AdaStudio/qt5ada. That sheds more
light into the procedure. But it still
expects you to use the precompiled Qt5
binary. And, I must be honest, it is not
clear and easy to follow, you need to
adapt the generic instructions to what is
on your system...

Then the question becomes: "How can |
build _everything_ from source?
Specially with the system provided
libraries, such as the system provided
Qt5." Well... That is not so simple. |
understand why Leonid has set up things
this way. Correctly setting the compiler
flags and directories for system installed
libraries is a nightmare. | tried to compile
gtbada with my system provided Qt5
(OpenSUSE Tumbleweed), it is not trivial
atall. There can be problems with the
Qt5 version, there can be problems with
the plugins, compiler flags, etc. Can it be
done? Most likely, but it will require
some elbow grease. There is a reason to
why most Qt projects use CMAKE to
build and link themselves; because it is
not an easy task.

So I would say that the instructions need
to be cleaner and that in its current state,
there is only one easy solution to building
gtbada, and it requires the binaries
provided. But | would also say that all the
source files needed are in there. The
prebuilt Qt5 binary seems to be the
standard unmodified Qt5 distribution, so
no surprises there. And that a lot of extra
work would be needed to make qt5ada
work seamlessly with the system provided
libraries.

SweetAda 0.9

From: Gabriele Galeotti
<gabriele.galeotti.xyz@gmail.com>
Subject: ANN: SweetAda 0.9 released
Date: Sun, 3 Oct 2021 06:32:40 -0700
Newsgroups: comp.lang.ada

I've just released SweetAda 0.9.

SweetAda is a lightweight development
framework to create Ada systems on a
wide range of machines. Please refer to
https://www.sweetada.org.

Release notes @
https://www.sweetada.org/
release_notes.html (delayed)

Ada-related Tools

Downloads available @
https://sourceforge.net/projects/sweetada.

Clone repository @ https://github.com/
gabriele-galeotti/SweetAda

Release notes

There are too many changes, so | will list
only the most important features of this
release.

- Windows environment does not need the
grep utility, nor a dos2unix utility
(which is now provided internally);
elftool is now optionals and its use is
configurable in configuration.in

- RTS can be build from sources by
means of "CPU=<cpu> make rts"
command (the RTS type is being picked
up from configuration.in as usual), every
RTS branch will be named like the
toolchain triplet being used

- Both SweetAda and RTS are fully
buildable in Linux, Windows/cmd.exe,
Windows/MSYS and OS X; you should
only to have online a "make" and "sed"
(and for Windows these are available as
zip packages in Sourceforge); due to
this, there are no RTS packages anymore

- SweetAda does not relies on SweetAda
toolchains, you can use your own GNU
toolchain, or whatever GNAT you can
pick, just be sure to use Ada 2020

The final result is a package that is fully
auto-consistent, because the core, RTS
and utilities are fully provided in both
source form and executable form. Since
SweetAda toolchains are by no means
eligible as the unique compilers for the
system, they will slowly fade away.

GCC Release Notes, aka,
Ada Is Still Alive!

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: GCC release notes, aka, Ada is still
alive!

Date: Mon, 11 Oct 2021 20:41:18 +0200

Newsgroups: comp.lang.ada

Hi everybody,

I have been meaning to write this message
for a long while, so here it goes.

Reading Phoronix [1] for years, | noticed
that with every new GCC release, the
biggest changes to GCC and its languages
were mentioned. However, Ada was
pretty much never present.

Today, just a few moments ago in
#netbsd, someone asked whether Ada had
finally been dropped out of GCC... | am
not even mad. GCC's release notes have
not mentioned Ada since GCC 8 [2], [3],
[4]; and even in GCC 7 and 8 the notes
are minute.

So I would like to ask whether someone
would like to help me get release notes
ready. | am not saying that | will be doing

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

much, but | would like to breathe some
fresh air into how Ada is seen and how
much people hear about it.

I personally do not like marketing since
good products stand on their merits, not
slogans or shininess. But there is no
reason to not put publicly what is going
on.

Yes, AdaCore has been doing some very
nice followups to the development of Ada
in their blog [5]. But the people that go
there are already aware of Ada. And since
AdaCore is phasing out their GNAT CE
system in favour of FSF builds (included
in Alire), the relevance of GCC's releases
grows.

Note, I am not implying that AdaCore
should write the releases. They are doing
the bulk of work in GNAT, so | do not
think they _need_ to do more. Personally
I am glad with what they are doing, but of
course, they can write the releases if they
S0 want.

I am especially saddened by the fact that
GCC has gotten a substantial amount of
support for Ada 2022 and it is not even
mentioned. No wonder why people think
Ada is dead!

So, if you have any recommendation, or
would like to help, then you are more than
welcomed!

P.S.: I am already doing my part GNAT
in NetBSD x86_64 is working! It has 9
failed ACATS tests, but they are minor. A
thousand thanks go to J. Marino and
Tobiasu for their enormous help in #ada.
Today | will see if | can compile it for
armvé and run it on my RPi!

[1] https://www.phoronix.com/scan.php?
page=home

[2] https://gce.gnu.org/gee-7/changes.html
[3] https://gce.gnu.org/gee-8/changes.html
[4] https://gce.gnu.org/gec-9/changes.html
[5] https://blog.adacore.com/

From: Fabien Chouteau
<fabien.chouteau@gmail.com>
Date: Tue, 12 Oct 2021 05:54:33 -0700

Most, if not all, of what is in this blog
post [1] is applicable to GNAT/GCC 11.

[1] https://blog.adacore.com/ada-202x-
support-in-gnat

From: Tero Koskinen
<tero.koskinen@iki.fi>
Date: Tue, 12 Oct 2021 21:37:25 +0300

> Most, if not all, of what is in this blog
post [1] is applicable to GNAT/GCC
11.

I guess the main point of Fernando was
that it would be nice if someone could add
all the new changes between versions 11
and 12 to https://gcc.gnu.org/gec-
12/changes.html before GCC 12 is
released.

gcc-X/changes.html traditionally lists
some items for all other language
frontends, but there is never anything for
Ada.

The git history for gcc-12/changes.html
page is visible at

https://gcc.gnu.org/git/?
p=gcc-wwwdocs.qgit;a=history;
f=htdocs/gcc-12/changes.html;
h=f38fd2bef9c4089369e6f9315590ebffd8
b24f5¢;hb=HEAD

(that is gcc-wwwdocs repository at
gcc.gnu.org/git).

Maybe someone with enough free time
(and enough knowledge about the
changes) could take look and provide a
patch for GCC web page maintainers?

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 13 Oct 2021 18:32:30 +0200

Thank you to everybody that commented
on the topic.

We could use the Changelog present in
the gcc/ada directory to triage commits
more precisely (credit goes to Stéphane).

> | decided to try an example. | must
confess that | don't know where the
cutoff point for GCC 11 was and what
it changes actually did

To be honest, we could try to write the
changelog for GCC 11 with the
information given by Fabien (AdaCore)
and what we find out. If for whatever
reason the GCC people do not want to
make large changes to the already
released changelog, we could compile a
larger list for GCC 12.

I think the most important aspects are:

- Ada 2022, which has a long list of
changes on its own;

- Improvements to systems (VxWorks,
RTMS, etc), as it shows that Ada is
present in more places than what meets
the eye;

- Deprecations and fixes;

- General improvements in the library,
SPARK and with the GCC ecosystem.

I think Ada has somewhat acceptable
support for OpenMP, which was
improved in the past few years, for
example. It has also been increasing
SPARK support in the libraries.

(-]

I want to sign up for GCC's gcc mailing
list (general discussion) and ask the GCC
people what would be the preferred way
to move forward. Hey, maybe they would
like to have Ada changelogs for all past
releases! If | hear anything back I will tell
you.

Though if someone wants to start, | see no
problem on sharing diffs here. Not the

most ideal place, but it is a good forum to
share ideas.

From: Simon Wright
<simon@pushface.org>
Date: Wed, 13 Oct 2021 20:59:47 +0100

> - General improvements in the library,
SPARK and with the GCC ecosystem.

Not sure how to work SPARK into a GCC
note, since it's not part of the GCC
ecosystem?

"There's extensive support for possible
static analysis of code, e.g. via SPARK, in
the form of annotations that can
optionally be compiled as runtime
assertions."

From: Stéphane Riviére
<stef@genesix.org>
Date: Thu, 14 Oct 2021 10:24:20 +0200

> So, if you have any recommendation, or
would like to help, then you are more
than welcomed!

I second that and | would like to help, if |
may.

According to gcc-mirror on github, Ada
basecode is above C++

C47.7%

Ada 17.5%

C++14.9%

Go 7.4%

GCC Machine Description 4.7%
Fortran 2.4%

Other 5.4%

git clone https://github.com/gcc-mirror/
gce

git log > log.gcc (volume: 124M)

cat log.gcc | grep AdaCore > log.ada
(1M, ~25K contribs since 2005)

grep "\[Ada\]" ./log.gcc >
log-oneliner.ada (190K, 3200 lines)
grep -B 2 -A 20 AdaCore log.gcc >
log-detail.ada

cat log-detail.ada | grep -B 2 -A 20 [ada]
log.gcc > log-changes.ada

It seems that everything is there to create
a more or less relevant changelog.

But AdaCore's comments are one thing,
sorted and relevant information for
developers are another.

A raw copy/paste would be useless, we
would have to analyze the changelog to
give back useful information.

We should also edit a changelog for each
GCC release. The above metrics were
made on master.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 10:42:20 +0200

The discussion thread on the GCC ML
has been started. You can find it here:
https://gcc.gnu.org/pipermail/gcc/
2021-October/237600.html

Do not hesitate to add any comments!

Ada User Journal

Volume 43, Number 1, March 2022

10

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 22:14:57 +0200

> The discussion thread on the GCC ML
has been started.

Okay, we already had a couple of
comments and they cover everything
needed. Arnaud has volunteered to be the
"supervisor". So here is my plan:
crowdsourcing! :D

I would like to write a (simple) list of
changes for each version here, on the
CLA. If you want to add something
__copy__ (do not quote) the list from the
previous person/reply/modification and
add your proposed changes. You can also
make comments if you would like
anything changed. If "CHECK" or if
"TODO" are written by somebody, it
means that something needs to be checked
or that it needs to be expanded,;
respectively. After the list is mostly
completed, we could create a patch(es) to
send to GCC. The quality of this list is not
going to be great, treat it like a checklist.
Obviously, if you want to discuss
something about the changes, do quote
the relevant section.

[.]

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Mon, 25 Oct 2021 20:47:05 +0200

Diff: add to GCC 12 the deletion of
gnatxref and gnatfind (the patch was
posted today in the ML). The -gnat2020
has been commented too in GCC 10 and -
gnat2022 in GCC 12. Also, we have
explicit permission by Arnaud to copy as
much code as necessary from AdaCore's
blog.

LIST OF CHANGES

GCC 12

- Introduction of the -gnat2022 flag in
gnatmake (-gnat2020 is a deprecated
alias).

- gnatfind and gnatxref tools have been
deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

- Further library improvements in both
quality and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC11

- Better Ada 2022 support. The parallel
keyword is still unsupported.

- TODO name the additional features. See
[1], obviously, with some code
examples.

- Addition of the Jorvik profile. CHECK,
see [2], maybe code examples?

- Additional non-standard features [3].
CHECK if this applies to GCC 11 or 12.

- A bug was fixed were previous GCC
versions allowed XXX construct
CHECK. This is not allowed by the
standard. Some software was making
use of XXX (which is, once again, not
allowed) and it has to be patched.

- General library improvements in both
clarity and performance.

- The use of contracts has been extended
in the "Ada library" allowing for further
checks at runtime or a deeper static
analysis with the SPARK prover.

- Further improvements to embedded
systems such as VxWorks and RTMS.
CHECK maybe be more
specific/generic.

GCC 10

- Introduction of the -gnat2020 flag in
gnatmake (-gnat2020 is a deprecated
alias). It enables newer features present
in Ada 2022 (still to be ratified). These
features are still experimental.

- Some Ada 2022 features are available
already with the use of the -gnatX (gnat
eXtensions switch).

From: Stephen Leake
<stephen_leake@stephe-leake.org>
Date: Wed, 27 Oct 2021 09:52:26 -0700

> - gnatfind and gnatxref tools have been
deleted. They have been deprecated for
years and have been substituted by
gprbuild tools.

What "gprbuild tool" replaces gnatxref?

From recent discussions in an AdaCore
ticket, the replacement for gnatxref is
libadalang, either via the LSP Ada
Language Server, or a similar custom
wrapper.

GCC Updated in NetBSD!

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>

Subject: GCC updated in NetBSD!

Date: Tue, 19 Oct 2021 23:47:36 +0200

Newsgroups: comp.lang.ada

Hello everybody! | bring good news!

GCC with Ada support has been updated
in NetBSD! Now versions 10 and 11
should work on x86 and x86_64 NetBSD
machines! You can find them in pkgsrc-
wip (gccl0-aux) [1] and Ravenports
(gcell) [http://www.ravenports.com/]!

First things first, the acknowledgements: a
big thank you goes to J. Marino who did
the original gcc-aux packages and who
provided most if not all the work when it

Ada-related Tools

came to fixing the threads and symbols.
Another big thank you goes to tobiasu
who correctly picked up that the pthread
structure wrappers were not correct and
had to be remade. Another big thank you
goes to Jay Patelani for his help with
pkgsrc.

So, long story short. Most of the work that
had been done up until a few weeks ago
was done correctly, but the failing tests
(most related to tasking) were failing in
very strange ways. It happened that the
pthread structure memory that the Ada
wrapper was using was incorrect, so we
were getting completely erratic behaviour.
Once that got fixed, pretty much all tests
passed. J. Marino also took the time and
effort to create __gnat_* function
wrappers to all the symbols that the
NetBSD people have renamed. This is a
much cleaner fix and allows for the
renamed functions to generate the correct
symbols since now they are getting
preprocessed. It should also be more
"upstream friendly". The issue, however,
remains if NetBSD decides to rename
more functions that are still being linked
directly.

There are still some failing ACATS tests
(about 10). Some are related to numerical
precision and a couple others. They are
mostly the same failing tests in both GCC
10 and 11. J. Marino ran the ACATS tests
on a DragonflyBSD (or was it FreeBSD?)
machine and the same tests were failing
there too. So we suspect is is a common
limitation on *BSDs and it is unlikely that
this will ever affect anybody. There is
also the issue of stack unwinding when it
contains a signal trampoline [2], read the
following thread to gain more information
about this.

[1] https://github.com/NetBSD/
pkgsrc-wip/tree/master/gcc10-aux

[2] https://mail-index.netbsd.org/
tech-kern/2021/10/15/msg027703.html

I have started trying to get GCC to
xcompile to arm* on NetBSD. | think |
am somewhat close, but further hacking
on NetBSD's src is needed (and | think the
RTS is not getting picked up correctly).
So do not get your hopes up. | mean, |
have a working gcc x86_64 NetBSD host
to NetBSD arm* xcompiler, it is the
native gcc on arm* that is not getting built
correctly.

From: Richard Iswara
<haujekchifan@gmail.com>
Date: Wed, 20 Oct 2021 12:01:40 +0700

A big applause for your hard work
identifying the problem in the first place.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>
Date: Tue, 19 Oct 2021 23:43:23 -0700

When | was working at AdaCore, we used
to run our internal CRM and the ticket-
management tool that processes all email

Volume 43, Number 1, March 2022

Ada User Journal

Ada-related Tools

on a FreeBSD machine, because the
sysadmin was very fond of that system.
The CRM was (is?) based on AWS (Ada
Web Server), so using tasking pretty
heavily. We never had any problem at the
time.

I guess AdaCore has given up on
FreeBSD, like they have macOS.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Wed, 20 Oct 2021 20:44:01 +0200

> | guess AdaCore has given up on
FreeBSD, like they have macOS.

Well, GCC officially supports FreeBSD
x86* and AFAIK, arm too. Though,
AFAIK, the gcc-aux packages from
freshports have been left without a
maintainer...

And good news everybody! | have
managed to get GPRBuild working and
Alire too! | even got the GNATColl
components built using Alire . Pretty
easy if you ask me :P

The mayor issue | am facing now is with
make... | tried building AWS with Alire
but it could not, since it was using make,
which in *BSD world is BSD make, aka,
bmake, not GNU make, aka gmake...
Anyhow, | am very happy to see so many
packages getting built without issues in
NetBSD :D

There is the problem where GPRBuild
says that the "lib" option is not supported
on the OS. | don't think it is suprissing
since GPRBuild probably does not know
anything about NetBSD.

| am also getting warnings from
gnatmake:
/home/fernando/bootstrap_ada/alire/src/
alire/alire-toolchains.adb:331:8:

warning: frame size too large for reliable
stack checking which probably come
from NetBSD having a small stack by
default.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Tue, 2 Nov 2021 21:32:56 +0100

A bit of a followup.

The package gccl0-aux has been updated
in pkgsrc-wip. I am now the maintainer.
As requested by some pkgsrc developer, |
have made the package explicitly depend
on gcc6-aux. That way, it may be used as
a base Ada compiler for all the packages
that need Ada (although this is just the
first step). | have also rebased it on the
new skeleton of gcc10 from pkgsrc-
current. Hopefully the review period and
inclusion into pkgsrc-current will not take
much time.

[...]
From: Fernando Oleo Blanco

<irvirse_ml@irvise.xyz>
Date: Thu, 23 Dec 2021 12:52:42 +0100

Well well well...

I come with a Christmas present... Ada
running on NetBSD-powerpc! It should
run on any powerpc “port”, in NetBSD
terms also known as evbppc, macppc and
amigappc.

It is not perfect, but it is there.

Here are the results from ACATS 4.1X
running natively on the macppc port (as
created by https://github.com/alarixnia/
mkimg-netbsd)

=== acats Summary ===

of expected passes 2490
of unexpected failures 62
of expected failures 1487
of unresolved testcases 11
of unsupported tests 116

*** EAILURES: ¢324006 ¢350a01
¢452003 ¢452005 c452006 c452a02
€52103x €52104x ¢52104y c552a01
¢552a02 c611a04 c650b04 c760a02
€96001a c96008a c96008b ch1010a
¢b1010c cb1010d cc40001 cc51007
cdd2b03 cdd2b04 cxa4010 cxa4011
cxa4021 cxa4022 cxa4023 cxa4030
cxa4031 cxa4032 cxa4033 cxa4035
cxaa022 cxab004 cxab005 cxac004
cxag001 cxag003 cxai001 cxai009
¢xai010 cxaia01l cxaib05 cxaib06 cxaib08
cxb4002 cxb4005 cxb5002 cxb5003
¢xd1003 cxd1004 cxd1005 cxd2002
¢xd2003 cxd2004 cxd2006 cxd3001
€xd3002 cxd6001 cxd6002

/home/fernando/ACATS-master/
run_all.sh completed at Thu Dec 23
10:13:16 UTC 2021

The compiler is GCC from the NetBSD
src tree, which is an older GCC 10
version. Which means (following the
results from previous runs) that 28
failures where expected; 6 from
shortcomings from NetBSD and the rest
from GCC 10 not passing newer tests.
That means this system generated at least
34 new failures. This may be for a
number of reasons, both related and
unrelated to GCC-Ada. Still, | think they
are rather good! | believe a lot of cxa
failures were due to the system running
on low memory. Also, the compiler was
built against NetBSD 9.99.92, but the
actual host is 9.2, and NetBSD is not
backwards compatible; so that may
explain other failures.

Just for your own enjoyment, these tests
took about 2 days to run, since | am
emulating powerpc on a virtualised
NetBSD-x86_64 system :P

The reason | tried to run powerpc is
because, to put it bluntly, NetBSD has to
fix their shit with aarch64 and mips64 and
because they do not provide binaries for
POWER. NetBSD just works if you use
their tooling, but the moment something
out of the ordinary of what has to be built,

11

fecal matter impacts the air impeller
(credit to a reddit user for that one).

Merry Christmas everybody!
Fer

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Thu, 10 Feb 2022 20:21:53 +0100

One last update on GCC 10 on NetBSD.

As | have already said in other messages,
it works great. The package is still under
wip since no maintainer has stepped up to
take care of the review. | also have not
pushed it further.

I would recommend the use of
Ravenports, since it has GCC 11, which is
newer and works on FreeBSD too.

I have given up on trying to port it to
other arches. It should be as simple as
adding them to the Makefile.rtl. There is a
minor bug on my patchset, the x86
intrinsics are also present on the arm
sections, | need to delete that.

The reason for giving up on supporting
other arches is mostly due to NetBSD not
upstreaming support for those arches. For
example, the official binutils does not
have support for aarch64-netbsd. It is only
present in NetBSD's src. And it only
works when used within NetBSD's src.
This makes everything more complex
than needed and | do not have the will to
push through with it.

Regarding the use of other Ada tools in
NetBSD. | added support for grpbuild a
few months ago, so you should be able to
just use it. Notice, when using GCC 10
only V21 of AdaCore tools work. Newer
versions (currently v22) need GCC 11.
The rest of the tools seem to compile
without much fuzz at all. So | say that my
work is mostly complete.

I will try to get gcc10-aux pushed to
stable however; sometime after March.

For now, | will try to update the Ada
changelog in GCC and write an article
about Ada-Scheme for the AUJ.

From: Fernando Oleo Blanco
<irvise_ml@irvise.xyz>
Date: Mon, 14 Mar 2022 22:21:49 +0100

Quick update. The package has now been
upstreamed and is now part of the official
pkgsrc distribution!

You can find it here:
https://cdn.netbsd.org/pub/pkgsrc/current/
pkgsrc/lang/gcc10-aux/index.html

Binaries are still not available since it just
got added.

This is a nice conclusion to this journey...
But there is something else brewing
behind the scenes... AVR support is
coming to Alire thanks to Fabien and we
are ironing out some of the issues there :D

Ada User Journal

Volume 43, Number 1, March 2022

12

Simple Components v4.59

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>

Subject: ANN: Simple Components for Ada
v4.59

Date: Sat, 6 Nov 2021 13:04:27 +0100

Newsgroups: comp.lang.ada

The current version provides
implementations of smart pointers,
directed graphs, sets, maps, B-trees,
stacks, tables, string editing, unbounded
arrays, expression analyzers, lock-free
data structures, synchronization primitives
(events, race condition free pulse events,
arrays of events, reentrant mutexes,
deadlock-free arrays of mutexes), pseudo-
random non-repeating numbers,
symmetric encoding and decoding, IEEE
754 representations support, streams,
multiple connections server/client
designing tools and protocols
implementations.

http://www.dmitry-kazakov.de/ada/
components.htm

Changes to the previous version:

- The primitive operation Clear was added
to GNAT.Sockets.Server.Connect;

- Julia bindings moved to the version
1.6.3;

- The functions Eval_char_array,
Get_Safe_Restore, Load_File_String,
Set_Safe_Restore were added to Julia
bindings;

- Functions To_Julia and Value added to
Julia bindings for Ada types Time and
Day_Duration;

- To_Julia defined on tuples fixed when
types of elements are not directly
visible.

Dokan Ada Bindings 2.0

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Subject: ANN: Dokan Ada bindings 2.0
Date: Sun, 16 Jan 2022 17:07:54 +0100
Newsgroups: comp.lang.ada

Dokan is a user-space file system for
Windows 32- and 64-bit. It consists of a
driver and a library. The driver routes the
1/0 requests to the file system device to
the library callback.

A sample implementing a memory
resident files system is provided.

http://www.dmitry-kazakov.de/ada/
dokan.htm

Changes to the version 1.5.0:

- The code and the API were reworked to
accommodate the Dokan major version 2.

AdaControl 1.22r16c¢

From: J-P. Rosen <rosen@adalog.fr>
Subject: [Ann] New version of AdaControl
Date: Wed, 8 Dec 2021 17:51:44 +0100
Newsgroups: comp.lang.ada

AdaControl 1.22r16c¢ is mainly a bug fix
release (no new rule), but improvements
in the static evaluator provides better
results and avoids false positives in
several rules.

Enjoy!

Renaissance-Ada Made
Open Source

From: Pierre Van De Laar
<pierre.van.de.laar@gmail.com>
Subject: Renaissance-Ada, a toolset for
legacy Ada software, made open source
Date: Thu, 27 Jan 2022 04:32:00 -0800
Newsgroups: comp.lang.ada

Dear Members of comp.lang.ada,

We would like to inform you that we have
made Renaissance-Ada, a toolset for
legacy Ada software, open source:

https://github.com/TNO/Renaissance-Ada

The Renaissance-Ada project builds on
top of LibAdalang and includes the
following functionality

* Dependency Graph Extractor that
produces a graphml file for visualization
and querying with e.g. yEd and Neo4J.

* Rejuvenation Library that allow
analysis and manipulation of Ada code
based on concrete patterns.

* Rewriters_Library that enables
automatic rewriting of Ada code based
on concrete patterns.

* Code Reviewer that automatically
reviews Ada code based on a large list
of rewrite rules.

If you have any question about this toolset
don’t hesitate to contact me!

GWindows Release, 29-Jan-
2022

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>

Subject: Ann: GWindows release, 29-Jan-
2022

Date: Sat, 29 Jan 2022 13:48:46 -0800

Newsgroups: comp.lang.ada

GWindows is a full Microsoft Windows
Rapid Application Development
framework for programming GUIs
(Graphical User Interfaces) with Ada.
GWindows works only with the GNAT
development system, but with some
effort, GWindows could be made pure
Ada. GWindows is free and open-source!

Ada-related Tools

Changes to the framework are detailed in
gwindows/changes.txt or in the News
forum on the project site.

In a nutshell (since last announcement
here):

427: GWindows.Image_L.ists: added
color options; includes features of
"extended" Ex_Image_List_Type in
package
GWindows.Image_Lists.Ex_Image_List
s, which is marked as obsolescent.

424: GWindows.Application: added
function Screen_Visibility.

423: GWindows.Application: added
Enumerate_Display_Monitors.

422: GWindows.Base: added
Set_Foreground_Window.

421: GWindows.Base: added
Set_Active_Window.

417:
GWindows.Common_Controls.Ex_Thb
(toolbar): is now 64-bit compatible; see
LEA http://l-e-a.sf.net/ ,
LEA_GWin.Toolbars for an example.

414: GWindows.Scintilla: method names
are "de-camel-cased™: e.g.:
"Move_Caret_Inside_View" instead of
"MoveCaretInsideView".

412: GWindows.Scintilla: works on both
Intel x86 32-bit and x64 64-bit types of
platforms.

411:
GWindows.Common_Controls.Ex_List_
View: method On_Free_Payload is now
public and can be overridden with effect.
410:
GWindows.Common_Controls.Ex_List_
View: Sort can use a comparison

method not based on strings (e.g. a
numerical comparison).

GWindows Project site:
https://sf.net/projects/gnavi/
GWindows GitHub clone:
https://github.com/zertovitch/gwindows
Enjoy!

macOS GCC 12.0.1,
SPARK?2014

From: Simon Wright
<simon@pushface.org>

Subject: ANN: macOS GCC 12.0.1,
compatible SPARK2014

Date: Fri, 25 Feb 2022 18:21:04 +0000

Newsgroups: comp.lang.ada

GCC 12.0.1 of 20220204 (only Ada, C,
C++, built on El Capitan, runs up to
Monterey) available at
https://github.com/simonjwright/
distributing-gcc/releases/tag/gcc-12.0.1.

SPARK2014 built against it (provers
CVC4, Z3, Alt-Ergo; CVC4 requires
Sierra and upwards) available at

Volume 43, Number 1, March 2022

Ada User Journal

Ada Inside

https://github.com/simonjwright/
spark2014/releases/tag/macos-0.1.

Needs GCC 12.0.1 installed. Running the
test suite on the ug™* tests (the examples in
the User Guide) results in one failure
(aside from the missing CodePeer one)
unless you build with -j2 (where 2 is less
than the number of processors in your
machine).

A note on building the latter at
https://forward-in-code.blogspot.com/
2022/02/spark2014-and-fsf-gcc.html.

UXStrings Package
Available (UXS_20220226)

From: Blady <p.pll@orange.fr>

Subject: [ANN] UXStrings package
available (UXS_20220226).

Date: Tue, 1 Mar 2022 21:47:49 +0100

Newsgroups: comp.lang.ada

The objective of UXStrings is Unicode
and dynamic length support for strings in
Ada.

UXStrings API is inspired from
Ada.Strings.Unbounded in order to
minimize adaptation work from existing
Ada source codes.

Changes from last publication:

- Ada.Strings.UTF_Encoding.
Conversions fix is no longer needed
with GNAT CE 2021

- A few fix

Available on GitHub
https://github.com/Blady-Com/UXStrings
and also on Alire
https://alire.ada.dev/crates/uxstrings.html

Feedback is welcome on actual use cases.

GCC 12.0.1/Apple Silicon

From: Simon Wright
<simon@pushface.org>

Subject: [ANN] GCC 12.0.1/Apple silicon

Date: Wed, 23 Mar 2022 21:08:25 +0000

Newsgroups: comp.lang.ada

Find GCC 12.0.1 and tools for M1 Macs
at https://github.com/simonjwright/
distributing-gcc/releases/tag/
aarch64-apple-darwin21-1

About double the size of the x86_64
(Intel) equivalent.

Ada Inside

Ada in James Webb Space
Telescope?

From: Nasser M. Abbasi
<nma@12000.org>

Subject: is Ada used in James Webb Space
Telescope software?

Date: Sun, 26 Dec 2021 07:18:41 -0600

Newsgroups: comp.lang.ada

Anyone knows if Ada is used in James
Webb Space Telescope software.

Either in the control systems or in the
embedded software for the Telescope.

https://www.jwst.nasa.gov/

I sure hope they did not use javascript or
Python or C for the software.

There is some talk in the following link
about its software but I could not find
what language they used.

https://www.nasa.gov/feature/goddard/20
20/nasa-s-james-webb-space-telescope-
completes-comprehensive-systems-test

From: Peter Chapin <peter@pchapin.org>
Date: Thu, 30 Dec 2021 08:30:54 -0500

> Anyone knows if Ada is used in James
Webb Space Telescope software.

Itis likely they used C. Specifically, C99.
I say this because in my dealings with
NASA (related to my work with
CubeSats), the people I've talked with
made it clear that NASA is now a C shop.
Both my colleague and | have extolled the
virtues of Ada and SPARK to NASA
engineers, but we get the usual reaction:
too much investment in C to take any
other option seriously... except maybe
C++ (JPL, at least, does some work with
C++ so that might also be on the JWST).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sun, 26 Dec 2021 15:23:43 +0100

Since it was 30 years in development, |
would not dismiss QBasic...

From: Paul Rubin
<no.email@nospam.invalid>
Date: Sun, 26 Dec 2021 11:22:56 -0800

> Since it was 30 years in development, |
would not dismiss QBasic...

Don't forget Forth! It was used on many
space projects.

https://web.archive.org/web/19990125085
748/http://forth.gsfc.nasa.gov/

From: John Mccabe
<john@mccabe.org.uk>
Date: Sun, 26 Dec 2021 15:57:42 -0800

> Don't forget Forth! It was used on many
space projects.

Interesting. | didn't realise there had been
S0 many projects in Forth. | started to
learn/use Forth at one point, as it looked
like we (Matra Marconi Space) might be
forced to use the RTX2010 as it was one
of very few space qualified processors
with hardware floating point support. In
the end we used the MA31750, with Ada,
instead.

From: Paul Rubin
<no.email@nospam.invalid>
Date: Sun, 26 Dec 2021 16:37:00 -0800

> | didn't realise there had been so many
projects in Forth.

13

Much of Forth's early development was at
the Kitt Peak observatory where | think
Charles Moore worked for a while, so it
was popular with the astronomy
community and maybe indirectly with the
spaceflight community through there and
JPL. As a more general matter, hardware
designers (electrical engineers who
sometimes have to muck with embedded
software but aren't really into
programming as a topic) tend to like it
because of its simplicity and directness.

> In the end we used the MA31750, with
Ada, instead.

Interesting. | hadn't heard of the
MA31750 but it appears to be a 16 bit
processor that implements the MIL-STD-
1750A instruction set(!), which I didn't
know about either. Apparently it was
made in the 1980s but has since been
superseded by SPARC architecture cpu's.

I wonder if targeting GCC to the
RTX2010 might have been feasible. Can |
ask what Ada compiler you used for the
MA317507 It looks like GCC supported
the MA31750 until version 3.1, but I don't
know whether GNAT existed then.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 27 Dec 2021 09:44:26 +0200

>> | didn't realise there had been so many
projects in Forth.

Forth is of course one of the few ways to
get a self-hosted but fairly fast interactive
compiler/editor system on small
processors.

In the 1980's | was working in radio
astronomy and we were planning to use
Forth to replace HP BASIC on an
HP2100 16-bit mini for telescope control
and data acquisition. | had a little crush on
Forth at the time, but fell out of love with
it when | found that some astronomy SW
had defined the word 2000.0 as a
procedure to convert stellar coordinates to
the year 2000 ephemeris... very clear :-(

Fortunately IMO we chose to use HP-
Algol instead, and much later changed to
Ada on a MicroVAX.

> Can | ask what Ada compiler you used
for the MA31750?

Like John, | used Ada on an MA31750.
We used the TLD Ada compiler, where
(IIRC) TLD stands for the main author,
Terry L. Dunbar. GNAT was around, but
I don't remember if it had support for the
MA31750 -- | doubt it. We used gnatp 3.
<something> for testing the MA31750
SW on workstations (Sun Solaris on
SPARC, IIRC), but the customer (Matra
Marconi Space) specified TLD Ada for
the target, so there was never a question
of using GNAT instead.

That project developed the on-board SW
for the ozone-monitoring instrument
GOMOS on the ESA ENVISAT satellite.

Ada User Journal

Volume 43, Number 1, March 2022

https://github.com/Blady-Com/UXStrings

14

| believe ENVISAT used MA31750 and
TLD Ada for all its systems.

From: John Mccabe
<john@mccabe.org.uk>
Date: Tue, 28 Dec 2021 02:24:54 -0800

> [the MA31750] appears to be a 16 bit
processor that implements the MIL-
STD-1750A instruction set(!)

There were 3 or 4 different
implementations of the MIL-STD-1750A
instruction set architecture around the
time. It was an interesting one; it was
fairly small, but had some relatively
complex instructions that were really
useful. The MA31750 was GEC-Plessey
Semiconductors' 2nd version, | believe,
although if | remember correctly, this was
the one that had the FPU, or maybe it was
the MMU, integrated into a single device,
using silicon-on-sapphire for rad-
hardness. There were two other
implementations | particularly remember
that were rad-hard, one by IBM, which
had better claimed performance but was
really expensive and special order only (I
think we paid £7500 or so for each
MA31750, so you may be able to imagine
what | mean by "really expensive"), and
one by another US company that went
into Chapter 11 protection around the
time we were talking to them!

> Can | ask what Ada compiler you used
for the MA31750?

I'm almost 100% sure GNAT wasn't
available for the MIL-STD-1750A; it was
a very niche market and we weren't aware
of any C compilers we could've used at
the time, even if we'd wanted to.

The Ada compiler we used was the same
as Nikolas; TLD. | was also working on
part of ENVISAT (the Tile Control and
Interface Unit - TCIU, although some of
my colleagues were also using it on the
main ASAR control system). Although
Nikolas mentions Matra Marconi Space
mandating TLD, that would've come
down from Dornier who'd apparently
done a deal with TLD. I don't know what
happened with TLD after that, but some
geezer from the Irvine Compiler
Corporation contacted me once when they
were following up on some unpaid license
fees related to part of the TLD compiler.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Tue, 28 Dec 2021 12:59:32 +0200

> Although Nikolas mentions Matra
Marconi Space mandating TLD, that
would've come down from Dornier
who'd apparently done a deal with
TLD

Yes, a considerable part of our
requirements came from Dornier via
Matra Marconi Space (France). We
sometimes had fun trying to understand
how the French had interpreted
requirements written in English by the

Germans. The two other languages had
left their imprints on the "English™
wording :-)

From: John Mccabe
<john@mccabe.org.uk>
Date: Fri, 31 Dec 2021 02:26:14 -0800

> Yes, a considerable part of our
requirements came from Dornier via
Matra Marconi Space (France).

We didn't really have that problem. On
TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK teams
were in Portsmouth. Alcatel were only
there because of 'juste retour'™ and they
didn't even seem to bother trying to
interpret the MMS-UK ASAR
requirements, they just changed the front
page to have "Alcatel” on it. We basically
had a shed-load of requirements placed on
us that had nothing to do with what the
TCIU needed to do, and Alcatel never did
get round to formally specifying the bit
we really did need from them (the TCIU -
> T/R Module - an Alcatel device -
interface) as far as | can remember!

It was good in a way, but Alcatel
certainly, and possibly also Alenia, played
politics all the way through. We were
required to go through Alcatel to get them
to clarify some of the requirements that
were relevant and had come from MMS-
UK. As they had no idea what they meant,
Alcatel had to go to MMS-UK to get the
clarification. Fortunately Alcatel appeared
to want to do as little work as possible for
their money so they'd just forward the
clarification from MMS-UK without
bothering to try to understand it.

I'm sure lots of people have been in
similar situations, but the inefficiency
could've been disastrous, especially as we
(the MMS-UK teams) had been working
directly with each other on ASAR for
years before Alcatel were put in to split us
up, and we used the same canteen!

Ah well, those were the days. Apologies
for going so far off-topic, but it was nice
to reminisce :-)

* Similarly, the ASAR CESA (Central
Electronics SubAssembly) requirements
came Dornier - > MMS-UK - > Alenia - >
MMS-UK.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>

Subject: [OT] ESA project memories (was
Re: is Ada used in James Webb Space
Telescope software?)

Date: Fri, 31 Dec 2021 23:18:49 +0200

Newsgroups: comp.lang.ada

> We didn't really have that problem. On
TCIU most of our requirements came
from Dornier - > MMS-UK (ASAR
instrument prime) - > Alcatel - > MMS-
UK (TCIU team). Both MMS-UK
teams were in Portsmouth.

Ada Inside

Interesting :-). | had a similar, but inverse,
experience in a later project (SW for the
Flexible Combined Imager instruments on
the MTG satellites) where Thales Alenia
Space (France) was both our customer for
the whole SW and our subcontractor for a
part of the SW. It led to a number of
"direct" communications and decisions
between the two TAS-F teams that
bypassed our team (in Finland) and of
which we learned later. But not much
harm done, overall a good project.

> Alcatel were only there because of ‘juste
retour™

I can't complain about "juste retour" as
without it much less ESA work would be
given to Finnish companies, especially
earlier when Finland was a new ESA
member with no experience in ESA work.

(For those not in the know: "juste retour"
is the ESA policy by which ESA tries to
give enough project work to each of its
member countries to correspond to the
country's share of ESA membership fees.)

[.]

> I'm sure lots of people have been in
similar situations [...]

Although splitting work up into several
companies does easily make for
inefficiency, in can also have the benefit
of documenting stuff that otherwise might
be lost in internal e-mails or face-to-face
discussions. That is, if the companies
involved do their work properly, and don't
act as you describe for Alcatel. But
perhaps the Alcatel technical people did
as well as they could to mitigate a poor
higher-level decision, by being basically a
transparent conduit, as you describe.

From: John Mccabe
<john@nospam.mccabe.org.uk>
Date: Wed, 5 Jan 2022 16:43:11 -0000

> Interesting :-). | had a similar, but
inverse, experience in a later project

(-]

It would be inappropriate of me to say
whether or not that sort of behaviour
occurred on ASAR, although | seem to
remember occasions where Alcatel
waived their right to be piggy-in-the-
middle as some of the discussion about
SAR pulse timing and the effect of
shifting things around a bit, to deal with
the fact that we would've needed a mid-
90s supercomputer (and a substantial re-
design of the TCIU -> T/R Module
interface) to achieve what was originally
specified, would've fried the brains of the
people who were actually involved :-)

<snip>

> Although splitting work up into several
companies does easily make for
inefficiency, it can also have the benefit
of documenting stuff that otherwise
might be lost in internal e-mails or
face-to-face discussions. [...]

Volume 43, Number 1, March 2022

Ada User Journal

Ada and Other Languages

To be fair (to MMS!), the actual
documentation that was produced at the
instrument level was pretty good. To be
fair to Alcatel, as | mentioned, we'd been
working without them on this for a long
time before ESA decided to mandate that
they should "manage" the TCIU
development as a subcontract, so they
were forced to pick up on stuff they pretty
much hadn't cared about before.

Ironically none of this helped with the
documentation from Alcatel; the TCIU ->
T/R Module interface | mentioned, for
example. We went through 3 rounds of
TCIU Software Requirements reviews
(i.e. SRR, then re-visited at ADR and
DDR or something like that), where our
assumptions on how that interface worked
(based on rough sketch ideas we'd been
given rather than formal specification)
were described, before someone at Alcatel
bothered to read it and say "nah, doesn't
work like that" (presumably in French) :-)

Ada and Other
Languages

AdaCore Joins with Ferrous
Systems to Support Rust

From: Paul Rubin
<no.email@nospam.invalid>

Subject: Adacore joins with Ferrous
Systems to support Rust

Date: Wed, 02 Feb 2022 00:57:33 -0800

Newsgroups: comp.lang.ada

https://blog.adacore.com/adacore-and-
ferrous-systems-joining-forces-to-
support-rust

Ferrous Systems is apparently a Rust
support company based in Germany.
From the linked page:

"Ferrous Systems and AdaCore are
announcing today that they’re joining
forces to develop Ferrocene - a safety-
qualified Rust toolchain, which is aimed
at supporting the needs of various
regulated markets, such as automotive,
avionics, space, and railway."

No mention about whether there will be
any type of FOSS or community release.
No word on whether the compiler and/or
toolchain will be based on the existing
stuff, or something new. Wonder how
they will safety-certify anything in Rust
when the language itself doesn't even
have a formal spec. But, it is an
interesting development.

Is the writing on the wall for Ada?

From: Luke A. Guest
<laguest@archeia.com>
Date: Wed, 2 Feb 2022 13:04:42 +0000

| see this going one way, Ada loses out as
the Rust side uses AdaCore to get what
they want.

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Wed, 2 Feb 2022 07:29:12 -0800

If possible please tell what Rust has to
offer over Ada. From a quick look at the
Rust book it seemed weaker in structured
programming, generic programming, type
system.

Thanks.

From: Stephen Leake
<stephen_leake@stephe-leake.org>
Date: Wed, 02 Feb 2022 08:19:37 -0800

> |s the writing on the wall for Ada?
Yes. And it says:

As long as people care about quality
software engineering, they will use Ada.

)
From: Luke A. Guest

<laguest@archeia.com>
Date: Wed, 2 Feb 2022 16:36:46 +0000

> If possible please tell what Rust has to
offer over Ada.

[...] not a lot, only the borrow checker
stuff.

From: John Mccabe
<john@mccabe.org.uk>
Date: Thu, 3 Feb 2022 15:29:17 -0800

> If possible please tell what Rust has to
offer over Ada.

A very nasty syntax, and there's an
annoying thing where it moans about
what you've called your project.

TBH that's about as far as | got with Rust;
I can't be doing with pedantic restrictions
that have no technical benefit (as far as |
can see).

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>
Date: Wed, 2 Feb 2022 10:48:44 -0800

> Is the writing on the wall for Ada?

Don't worry too much, people said that
already more than 30 years ago... But
perhaps the company will rebrand itself
RustCore :-) ?

From: Paul Rubin
<no.email@nospam.invalid>
Date: Wed, 02 Feb 2022 12:03:03 -0800

> But perhaps the company will rebrand
itself RustCore :-) ?

If the new IDE is called Oxide, watch out
)
From: Paul Rubin

<no.email@nospam.invalid>
Date: Wed, 02 Feb 2022 12:06:16 -0800

> | see this going one way, Ada loses out
as the Rust side uses AdaCore to get
what they want.

I don't think this is two companies
merging. It's two companies working

15

jointly on a particular product. Idk any
more than the press release though.

Regarding Rust vs Ada, I've never heard
anything from anyone who is a real expert
at both. Superficially it looks to me like
Rust's type system really is more precise
than Ada's in general, although it doesn't
have integer range types. In other stuff
like modules, Ada is probably still ahead.

From: G.B.
<bauhaus@notmyhomepage.invalid>
Date: Wed, 2 Feb 2022 21:07:44 +0100

> If possible please tell what Rust has to
offer over Ada.

Embedded systems reportedly still mostly
use C. Consequently, C is the thing to
which a language's merits must be
compared. If Rust managers manage to
persuade C shops to use Rust, the this is a
reasonable attempt at improving C based
program production. If Ada influences the
process, then it has had a purpose. :-)

Perhaps it is easier to add guarantees to
Rust programs than to C programs. Also,
C programmers might feel more at home
when using Rust. Java programmers also,
even when it is just curly braces.

From: Luke A. Guest
<laguest@archeia.com>
Date: Thu, 3 Feb 2022 01:34:40 +0000

> [...] have integer range types.

Apparently, they have ranges as
templates, can't see how that
compensates.

[...]
From: Paul Rubin

<no.email@nospam.invalid>
Date: Wed, 02 Feb 2022 18:20:04 -0800

> [Ada vs Rust] Er, try learning both and
you'll see?

It's a big effort to become expert at either,
let alone both. Basic or superficial
knowledge isn't helpful for such
comparisons. I've read "Ada Distilled"
(Ada 95 version) but still have no clue
understanding most of the Ada
discussions in this newsgroup, so there is
a big gap between basic and advanced
knowledge of Ada.

>> [type] system really is more precise
than Ada's [...]

From what I've heard, Rust's type system
is similar to Haskell's. Haskell's type
system can verify stuff just by
typechecking, that might be doable in Ada
using SPARK and maybe an external
proof assistant, but not with just types.
Example: a red-black tree using Haskell
GADT's (Generalized Algebraic Data
Types):

https://www.reddit.com/r/haskell/commen
ts/ti5il/redblack_trees_in_haskell_using_g
adts_existential/

> Ada's ahead in most things.

Ada User Journal

Volume 43, Number 1, March 2022

16

Idk, I'd like to know more. I've never
done anything serious in Ada and nothing
at all in Rust, but C++ seems a lot more
fluid than Ada, and Rust is supposed to
compare well with C++. C++ of course is
terrible in terms of reliability but I'm only
referring to the effort needed to bang out a
chunk of code.

From: Luke A. Guest
<laguest@archeia.com>
Date: Thu, 3 Feb 2022 02:52:25 +0000

> It's a big effort to become expert at
either, let alone both. Basic or
superficial knowledge isn't helpful for
such comparisons.

You don't need to learn both languages
inside and out. You pick a project and
implement it in both languages, that
project has to be specific to what you are
wanting to know about whether it's
binding or tasking or whatever,
Ultimately with Ada, you can get by
knowing the Ada subset and the
representation clauses and do most of
what you need to do to compare to
another language, obviously if you want
to compare tasking, you need to go
further.

> [...] there is a big gap between basic and
advanced knowledge of Ada.

Learn the basic part, it's equivalent to
Pascal with proper type ranges, Pascal
only has subtypes iirc. That's the main
part of the RM, no annexes, you can do
without access and tagged/controlled
types to start with. At uni, we didn't even
touch on tagged types, but used controlled
types, it is possible.

> Haskell's type system can verify stuff
just by typechecking

So it's no different than a C++ compiler
checking against classes or a variant of C
with strong typing? Still no ranges,
subranges, ranges with holes in, etc. This
is where the power is.

[.]

From: Bjorn Lundin
<b.f.lundin@gmail.com>
Date: Thu, 3 Feb 2022 10:54:43 +0100

> a lot of effort in Ada programming goes
into making programs never crash. For
example, if the program runs out of
memory during operation it might
crash, so Ada programs are often
written to never allocate new memory
after a startup phase. In C++ or Rust,
it's important not to get wrong answers
like 2+2=5, but if your program runs
out of memory and crashes, go get a
bigger computer. So idiomatic C++ and
Rust programming uses dynamic
allocation freely, and that makes some
kinds of programming more
convenient, at the expense of tolerating
possible crashes.

That depends on the domain. Perhaps it is
true in embedded. | use Ada for large
systems, talking to databases, and lots of
administrative work. On a win/Unix
server. We would not dream of pre-
allocate memory at startup. We allocate
and dispose as needed.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Thu, 3 Feb 2022 21:20:08 -0600

> How else would you do controlled types
[if not with tagged types]?

Ada 9x originally had a bunch of magic
attributes (similar to streaming). It was
very complex and got dumped in the
dustbin during "scope reduction". Later
on, some of us were bemoaning that a
critical feature (finalization) had gotten
lost in Ada 9x, and Tucker came up with
the idea to build it on top of tagged types
as a massive simplification (at the loss of
a bit of power). People often complain
that Ada finalization is complex, and it is,
except all of the alternatives are a lot
more complex. :-)

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Thu, 3 Feb 2022 21:38:16 -0600

> Well are you familiar with red-black
trees? They are a data structure similar
to B-trees which you may have seen.
Basically the trees have nodes that are
coloured either red or black, and there
are some rules such as that internal red
nodes can have only black children, and
that enforces some invariants that keep
the trees balanced so that lookups and
updates are guaranteed to run fairly
fast.

> Now these trees have been implemented
in many languages, and if you look at
almost any implementation, there is
usually a test suite or internal
debugging code to make sure that the
invariants are preserved after doing an
update. It is quite easy to make a
mistake after all. But the Haskell code
doesn't have those tests. Why not?
Because the invariants are enforced by
the datatype! If you make a mistake and
mess up an invariant, your code won't
compile! It's the difference between
checking a subscript at runtime, and
verifying that it in range with SPARK.
SPARK lets you get rid of the runtime
check. Haskell's type system is able to
do similar things.

Cool, and most likely useless. OOP is like
that in many ways, it lets you make a
bunch of static checks, but to get them,
you have to contort your design in awful
ways. And then it is hard to extend, as
you have a huge number of routines to
override to get anything done.

(-]

Ada and Other Languages

The key for a programming language
design is to minimize what Ada calls
erroneous execution (undefined behavior),
because it is that possibility which stop
proofs in their tracks (or at least should; at
least some tools ignore that possibility
and essentially give garbage results as a
consequence). Ada needs work in that
area, but most other languages need more
-- Ada at least detects most problems with
dynamic checks.

Anyway, that's my 20 cents (inflation,
you know). :-)

From: Paul Rubin
<no.email@nospam.invalid>
Date: Thu, 03 Feb 2022 21:19:14 -0800

> In any language with dynamic checks,
one can easily reduce the problem of
correctness down to simply proving
that no check fails.

Well sure, but I'd take issue with the word
"easily" there. The invariants for the red-
black tree are fairly complicated.
Enforcing them could be done with what |
think SPARK calls a "ghost function™ or
something like that: a piece of code that is
not actually executed, but is used only by
the prover. But, what would the proof
look like I think it would likely involve
some manual work with an external proof
assistant like ISABELLE. That takes quite
a bit of effort and knowledge on the
programmer's part.

On the other hand, the RB tree type
declaration in that Haskell example is
very natural and appealing even in that
old implementation, and using newer
GHC features that have appeared since
then, it becomes even nicer.

[..]

From: Luke A. Guest
<laguest@archeia.com>

Date: Fri, 4 Feb 2022 10:28:33 +0000

> Ada 9x originally had a bunch of magic
attributes [for finalization]

Now | want to know what these magic
attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

From: Andreas Zeurcher
<zuercher_andreas@outlook.com>
Date: Fri, 4 Feb 2022 09:51:59 -0800

> Now | want to know what these magic
attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

Randy, | agree with Luke: were these
intermediate design proposals lost entirely
or have they (as still extant) have simply
not been released publicly? I suspect that
at least some of these attributes have
nowadays analogues in C++ smart
pointer's & Objective-C/Swift's ARC
{strong, weak, plain old data not needing
finalization, pointed-to-object ownership,
presence of finalization

Volume 43, Number 1, March 2022

Ada User Journal

Ada and Other Languages

subroutine/function/procedure a.k.a.
finalizer/destructor, whether this finalizer
in a subtype displaces its parent's finalizer
versus this finalizer in a subtype chains its
finalizer to all of its ancestors' finalizers
unwound from most-derived to
underived-root, ... and so forth}. Or was
Tucker's set of magic attributes going an
entirely different direction? That
intermediate proposal under consideration
back in the 1st half of the 1990s might be
a quite interesting read (especially by a
reader with an interest in envisioning an
Ada-esque analogue of Rust's borrow-
checker algorithm).

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Fri, 4 Feb 2022 22:31:40 -0600

> Now | want to know what these magic
attributes were! Were they specific to a
version of OO? Or were they to enable
finalization?

They were specifically for finalization,
and got called automatically in various
places.

Re: Andreas. So far as | know, the
documents existed only on paper - there
never were any electronically distributed
versions outside of the Ada 9x team (and
possibly the printers). I still have a set of
them on my bookshelf -- I look at them
periodically to see where current oddities
appeared in the language (and possibly to
get some idea why). [But see below.]

Looking in the RM 3.0 (the final version
was 6.0 for reference), it already had the
tagged type version, but they were
derived from an implementation defined
type "Finalization_Implementation", and
what became Adjust was named
Duplicate.

Looking in ILS 1.2 (a working document
full of ideas but not quite a complete RM,
dated Dec 1992), I can't find any sign of
finalization. It must have been gone by
then.

| do have a large number of older
documents somewhere in storage, but this
isn't worth digging around in there to find
out. Most of those were incomplete
design documents.

You might be able to find something
about that design in the Ada 9x mail
archive or in the LSNs (Language Study
Notes). You can find them in the AdalC
archives. Rooting around in there, there
are some promising looking documents in
the "history" section of the AdalC
archives. There is a directory of stuff
called "9x-history"; there probably is
interesting stuff there.

http://archive.adaic.com/pol-hist/history/
9x-history/

LSNs are found in:
http://archive.adaic.com/standards/95Isn/

The Ada 9x mail archive (These were
known as "MRT comments"):

http://archive.adaic.com/standards/95com/
mrtcomments/

The comments of interest here are
probably in the ZIPed comments rather
than the more recent ones. (These are text
files, I think, even though they don't have
a usual extension.)

From: amo...@Qunizar.es
<amosteo@unizar.es>
Date: Fri, 11 Feb 2022 09:40:14 -0800

> If possible please tell what Rust has to
offer over Ada.

In my minimally informed opinion after
going through parts of the official tutorial
a couple of times, what Rust has to offer
in general:

+ Memory safety (no leaks, double-free,
race conditions*) by default.

- Terrible illegible syntax.

+ Safer/more expressive/more modern
constructs than C.

+ Modern tooling shared by all the
community.

[*] I guess in a protected-object sense, not
in a high-level logic sense. But | don't
really know.

The thing is that C is so basic and C++ so
prone to shooting yourself in the foot, that
Rust hits a middle ground that feels like
the best thing since sliced bread to C/C++
programmers wishing for something
better. Add to that the true novel
contribution to a mainstream language
that is memory safety (this is really a new
way of thinking when you get into Rust),
that if you don't know better (e.g., Ada) it
really is overwhelmingly compelling. I'm
not surprised at the cult-like following (I
mean, we feel like that sometimes in the
Ada world, right?) In a sense, Rust is the
Ada of a younger generation, and without
the baggage.

Of course you sometimes have to use
"unsafe" programming evading the
borrow checker, just like pointers are
sometimes a necessity in Ada; and the
legibility becomes truly awful IMHO
really fast (to me, this is THE Achilles
heel nobody seems to care too much
about), but as | said, it has a couple of real
selling points over the competition. Of
course, if legibility is not your concern
because you're used to C++ templating
nightmares, you don't feel that particular
pain. It's always the same story with Ada;
most people don't know better to realize
what they're missing.

The whole memory safety thing with the
borrow checker goes beyond a gimmick,
and it has a solid quality which goes
beyond "in Ada you don't need pointers
most of the time". It's a compile-time
check, and it makes evident that runtime

17

checks are a poor substitute. I'm more
ashamed now of the whole anonymous
pointers and accessibility surprises in
Ada. Yes, SPARK added something
similar for pointers, but in Rust it is for all
variables. The equivalence in Ada would
be not being able to use the same variable
in two consecutive calls as an in-out
parameter. So it's not the same, besides
being only in SPARK.

Not having done anything of real import,
I'm not sure how inevitable it is to go
unsafe in Rust. My guess is that it will be
hidden in libraries just like the Ada
standard containers contain some scary
pointer use (and | mean that | wouldn't
like to have to understand what is going
on there with the tampering checks etc.)
At that point, obviously, you've lost the
most solid selling point IMHO. Ada is
safer not in a single sense, but as a whole
design.

All in all, Rust has one big thing that Ada
hasn't, which is the borrow checker.

And that is how | would summarize it:
Rust is better in a single narrow sense, but
Ada is better as a general language.
Which is, not surprisingly, the
consequence of the design motivations for
each, which were precisely to have a
memory-safe language and a high-
integrity-oriented language. So the funny
thing is that both have succeeded at their
objective.

I really miss not having the time to
become proficient in Rust at least to be
able to properly compare. | think the
memory safety is great to have (and if
Ada were designed today, | guess it
should play the same integral part, if
practical), but Rust is demanding on the
programmer in a way that C/C++ aren't,
and the maintainability seems suspect, so
I don't know how far it will carry Rust
into the future. | guess it could absorb a
big part of both new C and C++
development.

Boy, can | write a lot sometimes...

From: Luke A. Guest
<laguest@archeia.com>
Date: Fri, 11 Feb 2022 19:24:02 +0000

> The thing is that C is so basic and C++
so prone to shooting yourself in the
foot, that Rust hits a middle ground that
feels

I'd say C++ is like a "backgun" (search
images).

> like the best thing since sliced bread to
C/C++ programmers wishing for
something better. [...]

Exactly, people want something better,
but for some reason CAN NOT accept
anything that doesn't look like C/C++.

> [...] It's always the same story with Ada;
most people don't know better to realize
what they're missing.

Ada User Journal

Volume 43, Number 1, March 2022

18

And refuse to look for better, just
accepting to continue using the same old,
same old.

> The whole memory safety thing with
the borrow checker goes beyond a
gimmick, and it has a solid quality
which goes beyond "in Ada you don't
need pointers most of the time". It's a
compile-time check, and it makes
evident that runtime checks are a poor
substitute.

So, you'd prefer, if Ada was designed
now, it didn't do runtime checks (on
pointers) and have compile-time checks?

> Yes, SPARK added something similar
for pointers [...]

They added memory tracking at
gnatprove time, much like the borrow
checker afaik, which is an additional step.

[.]

> All in all, Rust has one big thing that
Ada hasn't, which is the borrow
checker.

I've not learnt any rust yet and that is my

conclusion from what I've read. | need to

do some tutorials at some point, but | also
need eye bleach.

[.]

From: John Perry <devotus@yahoo.com>
Date: Fri, 11 Feb 2022 21:22:50 -0800

> | really miss not having the time to
become proficient in Rust at least to be
able to properly compare.

I've followed this thread with some
interest. I've had to learn & use Rust at
work; it has its ups and downs.

> + Memory safety (no leaks, double-free,
race conditions*) by default.

Here's what Rust promises:
https://doc.rust-lang.org/nomicon/
races.html

"Safe Rust guarantees an absence of data
races, which are defined as... [omitted]
Rust does not prevent general race
conditions. This is pretty fundamentally
impossible, and probably honestly
undesirable. ... So it's perfectly "fine" for
a Safe Rust program to get deadlocked or
do something nonsensical with incorrect
synchronization. ... Still, a race condition
can't violate memory safety in a Rust
program on its own."

> In a sense, Rust is the Ada of a younger
generation, and without the baggage.

Not quite. It's kind of discouraging to me
how many of the older generation roll
their eyes when you mention Ada, or
relate stories of how it didn't work out for
previous places of employment.

> Of course you sometimes have to use
"unsafe" programming evading the
borrow checker, just like pointers are
sometimes a necessity in Ada...

The only time I've found it necessary (so
far) to use the "unsafe" keyword is when
interfacing with C or C++. There are
people, and probably entire fields of IT,
where "unsafe” may be much more
common.

> and the legibility becomes truly awful
IMHO really fast (to me, this is THE
Achilles heel nobody seems to care too
much about

I agree with this. It's not as bad as C++,
not even as bad as C IMHO, but the
braces get old. If not for IDEs that can
help navigate them, I'd get lost pretty
easily.

> The whole memory safety thing with
the borrow checker goes beyond a
gimmick [...] It's a compile-time check

In addition, the compiler's error messages
are *very* useful, better than GNAT's for
certain. The only time we have trouble
making sense of them is, again, when we
have to interface with C or C++ code.

(Well, except when | was learning. | got
pretty frustrated with the compiler error
messages at times. And | still haven't
figured out Rust's manner of organizing
modules; if I do understand it, then
"lib.rs" is a much bigger deal than | think
it should be. But | probably just don't
understand well enough yet.)

> [...] The equivalence in Ada would be
not being able to use the same variable
in two consecutive calls as an in-out
parameter.

Maybe | misunderstand, but | think the
analogy's incorrect. When you designate a
Rust variable as mutable, you can in fact
have two consecutive calls in a manner
akin to "in out", _so long as_ the function
declares it wants to "borrow" the variable
as mutable, *and* so long as the caller
gives permission for both the borrow and
the mutability. If it doesn't, the compiler
gives a very clear error message.

I'm not sure Ada has anything comparable
to that.

> Not having done anything of real
import, I'm not sure how inevitable it is
to go unsafe in Rust.

At work we have a fairly non-trivial Rust
system that, as far as | know, goes unsafe
only when... you can fill in the blank. :-)

> And that is what how | would
summarize it: Rust is better in a single
narrow sense, but Ada is better as a
general language.

I haven't played with Ada's task &
rendezvous mechanisms in a long time.
Do they guarantee an absence of data
races? If not, I'd say that's something else
Rust has that Ada doesn't. | think SPARK
does guarantee that, though. (If |
understand correctly, the key is to
disallow mutable objects being passed to
multiple tasks / threads / etc.)

Ada and Other Languages

> Rust is demanding on the programmer
in a way that C/C++ aren't...

Perhaps, C/C++ are demanding on the
programmer in all kinds of ways that Rust
isn't, and none of those ways is good. ;-)
Whereas Rust's demands are pretty much
all good (in comparison to C/C++).

I would also add that Rust has an amazing
and effective ecosystem of libraries that
are extremely easy to download and build,
all as part of the generally-used Cargo
build tool, which as far as I can tell is
much easier to use and much more robust
than ant, gradle, make, etc. | have the
impression that alire is inspired by Cargo,
but I haven't used alire at all yet, so | don't
know how it compares beyond the ability
to create projects and download libraries.

I also don't know if alire is nearly as
comprehensive as what Cargo offers (see,
for instance, https://crates.io/, which
offers tens of thousands of crates, and
https://docs.rs/, which documents them --
alire has about 220 crates).

I have a feeling that abundance of crates,
and the ease of incorporating and using
them, has at least as much appeal as the
guarantees on any safe code you may
write.

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Sat, 12 Feb 2022 02:08:11 -0800

> > and the legibility becomes truly awful
IMHO really fast [...]

> | agree with this. It's not as bad as C++

[-]

Agree too, but only because they use
K&R style. | find Allman style quite
readable.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>
Date: Sat, 12 Feb 2022 18:34:04 +0100

> So, you'd prefer, if Ada was designed
now, it didn't do runtime check (on
pointers) and have compile-time
checks?

I'd prefer that, as much as feasible, checks
were moved (not removed!) to compile-
time, yes. | know there are efforts in this
direction at AdaCore to simplify the
accessibility checks model.

>> |'m more ashamed now of the whole
anonymous pointers and accessibility
surprises in Ada.

> I'm not sure what you mean here.

My problem with runtime checks (which
are undoubtedly better than no checks,
sure), and in particular with accessibility
checks, is that sometimes you get a failure
much later during testing. By that time,
understanding the problem may be 1) hard
and 2) require painful redesign. At
compile-time you get to deal with the
problem immediately.

Volume 43, Number 1, March 2022

Ada User Journal

Ada and Other Languages

This is something in which Rust and Ada
share the sentiment: "if it compiles, it
works". So having something in another
language found at compile-time makes
me want to have it also in Ada at compile-
time. It really spoils you against runtime
checks. Much like I prefer the static
elaboration model in GNAT instead of the
dynamic one.

Also there are times in Ada where static
checks are false positives that require
some 'Unchecked_Access, and other
times there is no failure yet you're doing
something wrong. | find these from time
to time in pretty obscure combinations not
easy to provide a reproducer and frankly,

I hate it. I'm never sure if I'm at fault, the
compiler is at fault, or I've hit a corner
case in the "heart of darkness". Nowadays
I won't use a pointer even if it means
obscene underperformance, until the thing
is unavoidable.

There are also situations in which
marking a parameter as aliased, even if
you know it is already by reference (a
limited/tagged type), will alter the things
you can do with
'Access/'Unchecked_Access. There have
been a couple of recent posts about that.
Even if it's my fault, I find too hard to
repeatably remember the finer details.

From: Alejandro R. Mosteo
<alejandro@mosteo.com>
Date: Sat, 12 Feb 2022 19:24:02 +0100

> | agree with this. It's not as bad as C++,
not even as bad as C IMHO, but the
braces get old.

For me, it's not so much the braces as the
reference/lifetime &'!<> soup.

> Maybe | misunderstand, but | think the
analogy's incorrect. [...]

Yes, it is as you say. It is not a perfect
analogy, and rethinking a bit more about
it it's possible | was wrong including non-
pointers. In Ada there's no trouble by
default either; you have to mark things
aliased, or take an
'Access/'Unchecked_Access to start to get
into trouble.

With tasking involved is another matter,
there Ada provides no safety when using
global variables.

> I'm not sure Ada has anything
comparable to that.

No, I think that's the novelty in Rust, the
single-ownership model.

> | haven't played with Ada's task &
rendezvous mechanisms in a long time.
Do they guarantee an absence of data
races?

Not for global variables, yes for task-local
ones. For any decent design you'd
encapsulate any shared data in a protected
object or task, which would give the same
assurance as the bit you quoted for Rust.
Then there's Pragma Detect_Blocking, but

that will only work for protected
operations, and two tasks getting in a
mutual deadlock needs not to involve
protected operations.

> If not, I'd say that's something else Rust
has that Ada doesn't. | think SPARK
does guarantee that, though. (If |
understand correctly, the key is to
disallow mutable objects being passed
to multiple tasks / threads / etc.)

I agree here. Rust prevents misuse of
global variables at the low level of
simultaneous access (from what you
referenced before). This certainly can be
useful in refactorings going from a single-
to a multi-threaded design. In Ada you'd
have to inspect every package for global
state. SPARK deals with that, of course,
but again: not Ada.

>> Rust is demanding on the programmer
in a way that C/C++ aren't...

>

> Perhaps, C/C++ are demanding on the
programmer in all kinds of ways that
Rust isn't, and none of those ways is
good. ;-) Whereas Rust's demands are
pretty much all good (in comparison to
CIC++).

Sure, that's a good point: it's not easy but
it's for a good cause. That's another point I
see in common with the Ada compiler.
Still, I feel Ada is simpler for beginners.
You don't need to face the harshness of
the more complex aspects of the
language, perhaps owing to simpler
imperative roots. In Rust you must face
the borrow checker head on.

> | would also add that Rust has an
amazing and effective ecosystem of
libraries that are extremely easy to
download and build, all as part of the
generally-used Cargo build tool,

The ecosystem certainly is a selling point.
Look at Python; for quick and dirty there's
nothing better simply because you know
there's going to be the library you need.

> | have the impression that alire is
inspired by Cargo, but | haven't used
alire at all yet, so | don't know how it
compares beyond the ability to create
projects and download libraries.

The inspiration is there in a broad sense,
but Alire is much younger and the
manpower behind it is a fraction. For now
we strive to cover the basics. There's also
ideas from opam, virtualenvs, ... In some
aspects Alire may be even more
comprehensive (like crate configuration).

> | also don't know if alire is nearly as
comprehensive as what Cargo offers
[...] alire has about 220 crates).

No need to guess, given the difference in
size of the communities.

> | have a feeling that abundance of
crates, and the ease of incorporating
and using them, has at least as much

19

appeal as the guarantees on any safe
code you may write.

Sure it's appealing. In many (most?)
cases, as you say, it can tip the scales.
Still, I don't think anyone that keeps on
using Ada is doing it for the amount of
ready-to-use libraries. It's a problem to
attract new people, though. And it may
disqualify Ada when a particular
dependency is important and too costly to
bind.

From: John Perry <devotus@yahoo.com>
Date: Sat, 12 Feb 2022 15:59:33 -0800

First, | agree with Alejandro about the
reference/lifetime soup. The other day |
saw an expression along the lines of
&[&something] and thought, "what"? If |
look & think hard enough, I can figure out
what that means, but words would be so
much nicer, and searching for the
meaning of a word is a bit easier than
searching for "[]".

On the other hand, again: the tooling and
error messages are really very good.
"cargo clippy" gives a lot of helpful
advice/lint. I think one of the regular
correspondents here sells or maintains one
for Ada, but | can't remember the name
[AdaControl —arm].

Anyway, | want to walk back part of what
| said about Rust's safety, related to a post
in a reddit thread where someone writes,
"having students develop in Ada lead to
them jumping from exception to
exception until it worked, while other
students writing code for the same
problem in Rust lead to them swearing for
4 days until their code compiled and then
being surprised that their code works,
100% as they expected and not ever
producing a runtime error until the end of
the two week practicum.”

https://www.reddit.com/r/ada/comments/
Twzrgi/why_rust_was_the_best_thing_
that_could_have/

Maybe, but long term I'm not so sure.

Rust doesn't have a null in safe mode, so
the idiomatic way to indicate an error is
via a Result enum, which has two
variants: Ok(result), where "result” is the
desired result, or Err(msg), where "msg"
is an error message.

https://doc.rust-lang.org/std/
result/enum.Result.html

[...] In any case, handling the Result can
be a little tedious (only a little but still!)
so people often use the standard library's
".unwrap()" function instead. That means
something akin to, "I'm confident the
preceding expression had an Ok result, so
just hand me the result. If it's an Err then
go ahead and panic with Err's msg."”

[...] But a lot of Rust users default to
.unwrap() all the same, which makes me
think that issue about Ada users jumping

Ada User Journal

Volume 43, Number 1, March 2022

20

from exception to exception may be a
feature of a lot of Rust code, too. Depends
on the self-discipline, I guess.

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 13 Feb 2022 09:10:01 +0100

> In Ada you'd have to inspect every
package for global state.

AdaControl has a rule for that:
Global_References

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 14 Feb 2022 17:25:54 -0600

> Not for global variables, yes for task-
local ones.

Ada 2022 has "conflict checking" to
detect and reject bad uses of global
variables. It's especially important for the
parallel constructs (for which you don't
have the syntactic guardrails that you get
with tasks. It doesn't prevent every data
race, but it eliminates most of them. (You
can still get in trouble with accesses to
multiple objects; that isn't necessarily safe
even if accesses to the individual objects
are.)

But, so far as | know, GNAT doesn't
implement it yet.

From: Paul Rubin
<no.email@nospam.invalid>
Date: Mon, 14 Feb 2022 20:29:34 -0800

> It doesn't prevent every data race, but it
eliminates most of them

I wonder if we need software
transactional memory:
https://research.microsoft.com/
en-us/um/people/simonpj/papers/
stm/stm.pdf

https://research.microsoft.com/~simonpj/
Papers/stm/beautiful.pdf

In the second paper, jump to the bottom
of page 7 to skip a bunch of introductory
stuff.

From: Kevin Chadwick
<kevc3no4@gmail.com>
Date: Fri, 18 Feb 2022 05:24:15 -0800

> If possible please tell what Rust has to
offer over Ada.

I haven't written a single line of Rust and
do not intend to but I have done some
research before and after choosing Ada, to
confirm my choice due to Rusts
popularity. My biggest preference is Ada's
readability, of course some love brevity
even when it adds complexity for some
reason that | cannot understand.

Ada’s type system has already been
mentioned, but is fantastic.

Another is that Ada has a focus on stack
and has tried to offer more heap tools in
recent decades.

Rust has a focus on heap. | prefer the
simpler stack default! Personally |
avoided the heap, even with C.

I have heard that Rusts ownership model
can cause problem with local/stack usage
of owned memory (podcast interviewing a
core maintainer "Rust with Steve
Klabnik" but from 2015).

I have seen Rusts unsafe used even for
simple things in embedded Rust whilst
removing ALL of their 3 protections.
Whereas with Ada you can more precisely
permit pointer use and rarely need to.

https://docs.rs/svd2rust/0.19.0/
svd2rust/#peripheral-api

struct PAO{_0: () }
impl PAO {
fn is_high(&self) -> bool {
/I NOTE(unsafe) actually safe
/I because this is an atomic read with
/I no side effects
unsafe { (*GPIOA::ptr()).idr.read().bits()
&11=0}
}
fn is_low(&self) -> bool {
Iself.is_high()
}
}

Ada has been engineered to avoid pointer
use, which | find appealing. Rust users
would cite memory flexibility as
appealing.

"Why Pascal is Not My Favorite
Programming Language" by Kernighan is
sometimes brought up, though much of it
does not apply to Ada and no longer
applies in any case and is clearly biased.
Does he really promote the use of
#include! Personally | blame flexibility
points of view like his as the primary
cause, as to why | have critical updates on
my phone every single month and spend
many days per year vulnerable to known
exploits. Though really it is management
at Vendors relentlessly pushing C. Maybe
Rust can shift that closed point of view? |
am aware that if my business does not
succeed then the opportunity to write
Ada, may go with it.

WRT compile time checks vs runtime:
GO was written precisely because its
authors were fed up waiting for C++ to
compile. For me it is not important but
worth bearing in mind. Personally | like
the simplicity of runtime checks. | have
much more faith in them than compile
time checks! Though I confess to not
knowing the details well enough to make
that statement with complete confidence.
It would also be nice to handle them more
easily in a ZFP runtime.

SPARK sounds great and | like how it is
intended to be applied where needed but |
am dubious of any text that says it proves
this or that, when it often depends on the
tests implemented. | much prefer the
language used by one AdaCore member
in a podcast (Paul Butcher) along the lines
of providing a high degree of
confidence/assurance.

Ada and Other Languages

Ada versus Pascal

From: 711 Spooky Mart
<711@spooky.mart>

Subject: Ada versus Pascal

Date: Thu, 21 Oct 2021 22:29:15 -0500

Newsgroups: comp.lang.ada

The little snippets of Ada code I've seen
look _alot_ like Pascal.

What degree of learning curve is there to
learn Ada, coming from a Pascal
background? What kind of rough
timeframes to get comfortable with
programming without always looking into
the manuals?

Where is the best starting point for a
Pascal programmer to get up and running
with Ada?

From: Ldries46 <bertus.dries@planet.nl>
Date: Fri, 22 Oct 2021 08:18:07 +0200

> Where is the best starting point for a
Pascal programmer to get up and
running with Ada?

I learned programming in 1966/1967 in
Algol 60. As seen in the Algol report that
can be found on the internet, Algol 60 is
mostly a language for defining
algorithms. It does not define Input and
Output procedures. Pascal is one of the
languages that have Algol 60 as a
predecessor as is Ada. | did learn Pascal
from some course and later on | did learn
Ada, the latter by just reading the book
"Software Engineering with Ada" by
Grady Booch. That was Ada 85, the first
version of Ada. Ada is stricter than other
languages and is meant to have NO
Operating system dependent items, so if
you cannot go around something there
must be a package on each operating
system having the same interface
everywhere.

From: Paul Rubin
<no.email@nospam.invalid>
Date: Thu, 21 Oct 2021 23:40:51 -0700

> What degree of learning curve is there
to learn Ada [...]

Ada is not that hard to get started with,
but it has orders of magnitude more stuff
in it than Pascal does, and getting familiar
with all the intricacies is a big task. I've
fooled with Ada a little, | consider myself
a language geek, I've been following this
newsgroup on and off for years, but | can't
understand that many of the discussions |
see here.

If | wanted to do something serious with
Ada, I'd start by working through an in-
depth textbook rather than just an intro or
tutorial.

For just getting started, | used "Ada
Distilled" (easy to find online). It is pretty
good, but there is an enormous amount of
material that it doesn't cover.

Volume 43, Number 1, March 2022

Ada User Journal

Ada and Other Languages

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Fri, 22 Oct 2021 11:57:17 +0300

> The little snippets of Ada code I've seen
look _alot_ like Pascal.

Yes. Pascal syntax had a lot of influence
on Ada syntax. But, as others have said,
(current) Ada has a lot more features than
(original) Pascal.

Very roughly speaking, and off the cuff,
Ada has evolved as follows, which also
gives you a list of the main things to
learn, in addition to the Pascal base:

- Ada 83: Pascal + much improved type
system + modules (packages) +
exception handling + generic
programming + concurrency (tasks)

- Ada 95: added modular (unsigned)
integer types, object-oriented
programming (classes = tagged types),
package hierarchies (child packages),
and asynchronous inter-task
communication (protected objects)

- Ada 2005: added Java-like interface
types (limited multiple inheritance), a
standard container library, and further
standard libraries

- Ada 2012: added support for program
proof and logical run-time checks
(preconditions, postconditions, type
predicates), more forms of expressions
(if expressions, case expressions,
quantified expressions), and more
standard libraries.

- Ada 2022 (upcoming): adds fine-grained
parallel execution, extends the ability to
do static (compile-time) computations,
adds library packages for arbitrary-
precision and arbitrary-range integer and
real arithmetic ("bignums"), and makes
lots of sundry improvements.

> What degree of learning curve is there
to learn Ada?

As you can see from the list above, there
is quite a lot to learn before you know
all of Ada. A Pascal-like subset should
not be hard to learn, and if you learn the
rest of the features in more or less the
same order as they were added to Ada,
you will pass from one consistent,
working language subset to a larger such
subset at each step.

The only point where | suggest to learn
features in a different order is in inter-task
communication: asynchronous
communication via protected objects is
much easier than was the original,
synchronous rendez-vous method in Ada
83 (but which is of course still supported).

> Where is the best starting point for a
Pascal programmer to get up and
running with Ada?

I think this depends a lot on how you like
to learn - by reading technical text
(manuals) or by experimentation. I'm a
"read the manual" type (I learned Ada

from the Ada 83 Reference Manual) so
perhaps | would start with the Ada
Wikibook at https://en.m.wikibooks.org/
wiki/Ada_Programming, which extends
up to the 2012 Ada standard (or so it
claims, I haven't really read it, but I've
heard good reports of it).

Perhaps you could take one of your
smaller Pascal programs and translate it to
Ada as a first step? As the next step, you
could divide that program into packages,
then add exception handling. And then
take a new problem and write an Ada
program from scratch.

Ask for help here, or in some other Ada
forum, whenever in doubt about
something.

From: 711 Spooky Mart
<711@spooky.mart>
Date: Fri, 22 Oct 2021 04:59:25 -0500

> Ada is stricter than other languages and
is meant to have NO Operating system
dependent items, so if you cannot go
around something there must be a
package on each operating system
having the same interface everywhere.

By this do you mean the same syntax and
libs will run on all target systems without
fiddling with {IFDEF} and architecture
compiler switch woo foo for USES and
repetitive cross-arch boilerplate?

One thing | can't stand about Pascal is the
totally different functions and logic from
several operating systems that MUST be
re-written several times in the same code
base to do the same job. This drives me
mad. In fact it irks me so much I was
thinking of writing some libraries for
things | do that would handle this all
automatically across arches. There would
go a couple months of Sundays.

Think IPC with Pascal. Get a good IPC
routine going for Linux in your app, then
you have to re-write it for MAC and
Windows, and even some other flavors of
*nix.

So am | to understand that the Ada
compiler has somehow eliminated this
problem, by ensuring every target OS has
a syntactically conformant package to
execute its methods using the same
statements?

If I'm understanding you rightly, even
though Ada sounds like a much more
complex language than Pascal, it also
sounds like it would have less surprises
across arches.

Please elaborate if I'm misunderstanding.
And thanks to everyone else who has
responded.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>
Date: Fri, 22 Oct 2021 13:49:11 +0200

21

> What degree of learning curve is there
to learn Ada, coming from a Pascal
background?

Pascal was the starting point for the Green
language, which became Ada in 1980
(and also for the Blue, Red, and Yellow
languages, which did not). Ada is firmly
in the ALGOL family of languages.

There is a sequential subset of Ada that
Pascal users can learn very quickly: the
sequential language + packages (packages
[modules] are fundamental to Ada, and
you can't do anything useful without
them). One should then quickly learn
generics, as much of the standard library
is generic. Ada's features are mostly
orthogonal, so one can use this subset
without surprises from the other aspects
of the language.

One can then learn programming by type
extension (tagged types and interfaces)
and concurrent programming (tasks and
their friends) to complete your
understanding of the language.

I generally recommend “Ada Distilled”

(https://www.adaic.org/wp-content/
uploads/2010/05/Ada-Distilled-24-
January-2011-Ada-2005-Version.pdf)

to those familiar with another imperative
language. It's ISO/IEC 8652:2007 Ada,
but you can easily pick up the new Ada-
12 features when you've finished. (There's
also now an Ada-12 version available on
Amazon.)

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Fri, 22 Oct 2021 18:12:49 +0300

> By this do you mean the same syntax
and libs will run on all target systems
without fiddling with {IFDEF} and
architecture compiler switch woo foo
for USES and repetitive cross-arch
boilerplate?

I'm not Idries46, but here is an answer:
Ada standardizes _some_ functions for
which some other languages use "OS"
services, principally threading, which in
Ada is the "tasking" feature. Indeed Ada
tasking works in the same way whichever
OS is used, and also in the "bare board",
no-OS situation. This is very useful for
developing multi-threaded embedded SW,
because the Ada tasking code can be
tested on desk-top workstations and then
executed on the target system unchanged.
(and no "ifdefs").

But real operating systems (as opposed to
simpler real-time kernels) provide many
services that are not standardized in Ada,
for example inter-process communication.

> Think IPC with Pascal. Get a good IPC
routine going for Linux in your app,
then you have to re-write it for MAC
and Windows, and even some other
flavors of *nix.

Ada User Journal

Volume 43, Number 1, March 2022

22

Indeed.

> So am | to understand that the Ada
compiler has somehow eliminated this
problem, by ensuring every target OS
has a syntactically conformant package
to execute its methods using the same
statements?

Sadly no.

However, there are some rudiments:

- There is a standardized Ada interface
(binding) to POSIX services. This is
implemented in an Ada library called
Florist. If you find or make a Florist
implementation for the OSes you use,
your Ada program can use the same OS
service interfaces on all those OSes.

The gcc-based Ada compiler GNAT
comes with a GNAT-specific library that
provides some OS services with the
same Ada API on any OS that GNAT
supports. This includes some IPC, but |
don't know exactly how far that goes,
and the library may of course change
from one GNAT version to the next.

There is an Ada library called
Win32Ada that provides an extensive set
of Microsoft Windows services, but it is
a "thin binding" meaning that even the
API is Windows-specific.

The Ada applications I have created and
worked with have needed only a few OS
services, basically some IPC: text in and
out via pipes to and from a child process.
We implemented our own binding to the
required OS services (pipe and process
creation and destruction). The interface
consisted of a package declaration (.ads
file) that was basically the same for all the
supported OSes (Windows, Linux, Mac
OS X) but had different OS-specific
package body files (implementations, .adb
files). In practice | think the Linux and
Mac OS X implementations were the
same and used direct binding to fork() and
pipe() etc. The Windows implementation
used Win32Ada.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 22 Oct 2021 17:47:59 +0200

> But real operating systems (as opposed
to simpler real-time kernels) provide
many services that are not standardized
in Ada, for example inter-process
communication.

Ada 83 predates threads. Initially a task
meant to be either scheduled internally or
mapped onto system processes. It is not
late now. One could allow the pragma
Import for tasks (and protected objects) in
order to communicate to an external
process using rendezvous and protected
actions.

> - The gcc-based Ada compiler GNAT
comes with a GNAT-specific library
that provides some OS services with the
same Ada API on any OS that GNAT
supports.

It provides sockets and serial 1/0O, one or
both are vital for many applications.

- There is the annex E providing RPC and
shared objects. Unfortunately it is very
vague and underdocumented. [...]

- The simple components library provides
inter-process communication primitives:
mutexes, events, streams, pools, RPCs
etc.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>
Date: Fri, 22 Oct 2021 13:05:01 -0400

>The little snippets of Ada code I've seen
look _alot_ like Pascal.

No surprise. The teams that took part in
the DoD competition to design a language
to replace the mish-mash of languages
being used in the 70s tended to choose
Pascal as the starting point (Modula-2
hadn't escaped ETH-Zurich yet <G>).

The main difference is that Ada
incorporated block closing syntax at the
base, finding Pascal (and C) [begin/end,
{/} respectively] usage error-prone
(dangling else, etc.) along with using ; as
a terminator instead of separator. Oh, and
using (/) for both function arguments and
array indexing (back then, most US
keypunches didn't support [/] or {/}).

Declarations do not have a defined
sequence (type, constant, variable).

Also, Pascal of the era typically did not
support separate compilation and/or
include files -- programs were all single
monolithic files, any change required
recompiling the entire program.

Pascal also had a relatively limited I/O
system -- with the bad quirk that it did
"pre-reads" of files. Made
interactive/console programs difficult (or
required special handling by the run-time
startup) -- starting a program would result
in stdin reading at least one character, if
not one line, into the file buffer variable...
But the program may not want the data
until after lots of initialization and
prompts.

>What degree of learning curve is there to
learn Ada, coming from a Pascal
background?

If all one is writing is "Pascal” type
applications, without using complex data
types (ie; defining specific types for each
"concept") -- it shouldn't take too long.

Tasking, rendezvous, protected objects
(not to be confused with private objects),
and generics, may take longer to get
comfortable with.

The appendices of the LRM will tend to
get lots of usage; there are many
subtleties to the standard libraries.

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>
Date: Fri, 22 Oct 2021 13:00:45 -0700

Ada and Other Languages

> What degree of learning curve is there
to learn Ada, coming from a Pascal
background?

You don't need to read more manuals than
you were used to for Pascal (so, it can be
a wide range, depending on your way of
learning). The most outstanding
difference between both languages is the
degree of unification.

Here are a couple of links, with a Pascal-
then-Ada perspective, that could be
useful:

http://p2ada.sourceforge.net/pascada.htm

http://p2ada.sourceforge.net/

From: Paul Rubin
<no.email@nospam.invalid>
Date: Fri, 22 Oct 2021 17:29:26 -0700

> Also, Pascal of the era typically did not
support separate compilation and/or
include files

I thought Ada was originally like that too.
The program could be split into multiple
files, but they were expected to all be
compiled together.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Fri, 22 Oct 2021 20:17:02 -0500

> | thought Ada was originally like that
too.

No. Some implementations were like that,
but most supported fully separate
compilations from the beginning.
Janus/Ada certainly did (once we got
packages implemented, and Ada without
packages really isn't Ada at all). You
might have been thinking about the
original permission to require generic
bodies to be available when compiling an
instantiation, but that only applied to
generic units, never "regular” units. And
some compilers (like Janus/Ada) never
used that permission.

From: Dennis Lee Bieber
<wlfraed@ix.netcom.com>
Date: Sat, 23 Oct 2021 13:24:19 -0400

>| thought Ada was originally like that
too. The program could be split into
multiple files, but they were expected
to all be compiled together.

No... Pretty much every build system for
Ada focused on only rebuilding the parts
affected by a changed file -- by following
WITH statements to find required units
(see the LRM for what a "unit"
comprises) /and/ determining if that unit
requires compilation. Timestamps or
intermediate files may be used in that
determination. Changes in
implementation (body) require the body
to be recompiled, but if the specification
did not change, then units WITHing the
specification don't need to be compiled --
they just need relinking with the updated
body.

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

GNAT's build system -- using the host OS
filesystem as the "database" -- required
that separate files are generated for each
unit. (cf: GNATCHOP) All-in-One was
the optional source file format accepted
by some compilers -- but other than the
early language reference manuals, |
haven't encountered any text books that
use that means of presenting code
examples (unless it is discussing the use
of GNATCHORP itself <G>).

https://en.wikisource.org/wiki/Stoneman_
requirements [Link replaced. See below
Rosen’s comment. —arm] is the
requirements document that DoD used to
define the desired environment around
Ada development.

4.E APSE TOOLSET
REQUIREMENTS

4.E.1 The tools in an APSE shall support
the development of programs in the Ada
language as defined by the Ada reference
manual. In particular an APSE shall
support the separate compilation features
of the language.

Note the last sentence

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 24 Oct 2021 09:04:29 +0200

>
https://www.adahome.com/History/Sto
neman/stoneman.htm is the
requirements document that DoD used
to define the desired environment
around Ada development.

Please don't provide links to adahome,
this site is frozen since 1998, and there
are copyright issues with the owner.

Stoneman can be obtained from:

https://en.wikisource.org/wiki/
Stoneman_requirements

From: J-P. Rosen <rosen@adalog.fr>
Date: Sun, 24 Oct 2021 09:04:29 +0200

> https://www.adahome.com/History/
Stoneman/stoneman.htm is the
requirements document that DoD used
to define the desired environment
around Ada development.

Please don't provide links to adahome,
this site is frozen since 1998, and there
are copyright issues with the owner.

Stoneman can be obtained from:

https://en.wikisource.org/wiki/
Stoneman_requirements

From: Jerry <list_email@icloud.com>
Date: Sat, 23 Oct 2021 21:33:14 -0700

This thread began as a comparison of Ada
and the original Pascal. So how does Ada
compare to Free Pascal Compiler and
Delphi which have gone far past original
Pascal?

From: Ldries46 <bertus.dries@planet.nl>
Date: Sun, 24 Oct 2021 08:32:01 +0200

> how does Ada compare to Free Pascal
Compiler and Delphi which have gone
far past original Pascal?

You can also ask can you compile a Free
Pascal program in Delphi or in the other
direction. Ada was intended to do so and
to keep it that way

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>
Date: Sun, 24 Oct 2021 09:51:26 -0700

> how does Ada compare to Free Pascal
Compiler and Delphi [...]?

You find a very partial answer in the
comparison here:

http://p2ada.sourceforge.net/
pascada.htm#tables

Made around year 2000, so ~30 after
original Pascal but ~20 years ago.

Note that both FPC and Delphi descend
from Turbo Pascal, which is itself
completely different from other
extensions like ISO Extended Pascal.

In a nutshell, Pascal is an extreme
example of fragmentation of a language
into dialects.

Ada is on the other extremity: you can
build the same source sets (I mean exactly
the same sources, without preprocessing
gimmicks) on completely different
compilers & OSes.

From: 711 Spooky Mart
<711@spooky.mart>
Date: Sun, 24 Oct 2021 18:24:21 -0500

> Ada is on the other extremity: you can
build the same source sets (I mean
exactly the same sources, without
preprocessing gimmicks) on completely
different compilers & OSes.

I think that answers the important original
query.

Does modern Ada have facility for
writing boot loaders, inline Assembly,
kernels, etc.?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 25 Oct 2021 11:23:49 +0300

> Does modern Ada have facility for
writing boot loaders, inline Assembly,
kernels, etc.?

In-line assembly is supported by most of
the Ada compilers | have used, but the
syntax may differ across compilers.

The run-time systems (real-time kernels)
associated with Ada compilers for bare-
board embedded systems are typically
written in Ada, with minor amounts of
assembly language inserted for the very
HW-specific parts such as HW context
saving and restoring.

23

I'm not very familiar with boot loaders,
but I see no reason why a boot loader
could not be written in Ada. However,
usually (and as for other languages) there
will be a small start-up routine in
assembly language to initialize the
processor, set up a stack, and so forth.
The "Ada Bare Bones" project is doing
something like this, | believe:

https://wiki.osdev.org/Ada_Bare_bones

From: Luke A. Guest
<laguest@archeia.com>
Date: Mon, 25 Oct 2021 09:40:38 +0100

Boot loaders and kernels are just another
application area any general purpose
language can target, even Ada.

> I'm not very familiar with boot loaders

If you're talking x86 on PC's, then you'll
need to read up on the x86 boot process in
which x86 starts up in 16-bit (real) mode,
then has to be taken into protected and
then long modes. You would need a GCC
that can target all those modes.

> The "Ada Bare Bones" project is doing
something like this, | believe

Thanks for pointing out my project :) It's
out of date and doesn't build as is any
more, but others have written Ada pages
on that site since.

IIRC, the changes that need to happen is
that gprbuild

--target=arm-<whatever> be used instead
of arm-<whatever>-gprbuild

Ada Practice

Custom Storage Pool
Questions

From: Jere <jhb.chat@gmail.com>
Subject: Custom Storage Pool questions
Date: Sun, 12 Sep 2021 17:53:47 -0700
Newsgroups: comp.lang.ada

I was learning about making user defined
storage pools when | came across an
article that made me pause and wonder
how portable storage pools actually can
be. In particular, | assumed that the
Size_In_Storage_Elements parameter in
the Allocate operation actually indicated
the total number of storage elements
needed.

procedure Allocate(
Pool : in out Root_Storage_Pool;
Storage_Address : out Address;
Size_In_Storage_Elements : in
Storage_Elements.Storage_Count;
Alignment : in
Storage_Elements.Storage_Count)

is abstract;

But after reading the following AdaCore
article, my assumption is now called into
question: https://blog.adacore.com/
header-storage-pools

Ada User Journal

Volume 43, Number 1, March 2022

http://p2ada.sourceforge.net/pascada.htm
http://p2ada.sourceforge.net/pascada.htm

24

In particular, the blog there advocates for
separately counting for things like
unconstrained array First/Last indices or
the Prev/Next pointers used for
Controlled objects. Normally | would
have assumed that the
Size_In_Storage_Elements parameter in
Allocate would account for that, but the
blog clearly shows that it doesn't

So that seems to mean to make a storage
pool, | have to make it compiler specific
or else risk someone creating a type like
an array and my allocation size and
address values will be off.

Is it intended not to be able to do portable
Storage Pools or am | missing some Ada
functionality that helps me out here. |
scanned through the list of attributes but
none seem to give any info about where
the object's returned address is relative to
the top of the memory actually allocated
for the object. | saw the attribute
Max_Size_In_Storage_Elements, but it
doesn't seem to guarantee to include
things like the array indices and it still
doesn't solve the issue of knowing where
the returned address needs to be relative
to the top of allocated memory.

I can easily use a generic to ensure that
the types | care about are portably made
by the pool, but | can't prevent someone
from using my pool to create other objects
that | hadn't accounted for. Unless there is
a way to restrict a pool from allocating
objects of other types?

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 13 Sep 2021 00:29:35 -0500

Not sure what you are expecting. There is
no requirement that objects are allocated
contiguously. Indeed, Janus/Ada will call
Allocate as many times as needed for
each object; for instance, unconstrained
arrays are in two parts (descriptor and
data area).

The only thing that you can assume in a
portable library is that you get called the
same number of times and
sizes/alignment for Allocate and
Deallocate; there's no assumptions about
size or alignment that you can make.

If you want to build a pool around some
specific allocated size, then if it needs to
be portable, (A) you have to calculate the
allocated size, and (B) you have to have a
mechanism for what to do if some other
size is requested. (Allocate a whole block
for smaller sizes, fall back to built-in heap
for too large is what | usually do).

More likely, you'll build a pool for a
particular implementation. Pools are very
low level by their nature, and useful ones
are even more so (because they are using
target facilities to allocate memory, or
need to assume something about the
allocations, or because they are doing
icky things like address math, or ...).

From: J-P. Rosen <rosen@adalog.fr>
Date: Mon, 13 Sep 2021 13:12:39 +0200

> | was learning about making user
defined storage pools when | came
across an article that made me pause
and wonder how portable storage pools
actually can be. [...]

That blog shows a special use for
Storage_Pools, where you allocate /user/
data on top of the requested memory.
When called by the compiler, it is up to
the compiler to compute how much
memory is needed, and your duty is to
just allocate that.

From: Jere <jhb.chat@gmail.com>
Date: Mon, 13 Sep 2021 17:48:15 -0700

> That blog shows a special use for
Storage_Pools

Yes, but if you look at that blog, they are
allocating space for the /user/ data and for
the Next/Prev for controlled types and
First/Last for unconstrained arrays in
addition to the size specified by allocate.

I agree | feel it is up to the compiler to
provide the correct size to Allocate, but
the blog would indicate that GNAT does
not (or did not..old blog..so who knows?).
Does the RM require that an
implementation pass the full amount of
memory needed to Allocate when new is
called

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 14 Sep 2021 08:08:48 +0200

The RM says that an allocator allocates
storage from the storage pool. You could
argue that it does not say "allocates all
needed storage...", but that would be a bit
far fetched.

Anyway, a blog is not the proper place to
get information from for that kind of
issue. Look at the GNAT documentation.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Tue, 14 Sep 2021 08:23:08 +0200

> Yes, but if you look at that blog, they
are allocating space for the /user/ data
and for the Next/Prev for controlled
types and First/Last for unconstrained
arrays in addition to the size specified
by allocate.

I do not understand your concern. The
blog discusses how to add service data to
the objects allocated in the pool.

I use such pools extensively in Simple
Components. E.g. linked lists are
implemented this way. The list links are
allocated in front of list elements which
can be of any type, unconstrained arrays
included.

The problem with unconstrained arrays is
not that the bounds are not allocated, they
are, but the semantics of X'Address when
applied to arrays.

Ada Practice

A'Address is the address of the first array
element, not of the array object. For a
pool designer it constitutes a problem of
getting the array object by address. This is
what Emmanuel discusses in the blog.

[The motivation behind Ada choice was
probably to keep the semantics
implementation-independent.]

Consider for example a list of String
elements. When Allocate is called with
String, it returns the address of all String.
But that is not the address you would get
if you applied 'Address. You have to
add/subtract some offset in order to get
one from another.

In Simple Components this offset is
determined at run-time for each generic
instance.

Of course, a proper solution would be
fixing Ada by adding another address
attribute:

X'Object_Address

returning the first address of the object as
allocated.

From: J-P. Rosen <rosen@adalog.fr>
Date: Tue, 14 Sep 2021 08:42:52 +0200

> X'Object_Address

> returning the first address of the object
as allocated.

But you cannot assume that the object is
allocated as one big chunk. Bounds can be
allocated at a different place. What would
be X'Object_Address in that case?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Tue, 14 Sep 2021 09:00:13 +0200

The object address, without bounds, same
as X'Address.

What Allocate returns is not what
A'Address tells. The compiler always
knows the difference, the programmer has
to know it too. Nothing more.

From: Jere <jhb.chat@gmail.com>
Date: Tue, 14 Sep 2021 17:21:04 -0700

> | use such pools extensively in Simple
Components. E.g. linked lists are
implemented this way. The list links are
allocated in front of list elements which
can be of any type, unconstrained
arrays included.

The blog | saw was old, so it is
completely possible it no longer is true
that GNAT does what the blog suggests.
I'll take a look at your storage pools and
see how they handle things like this.

From: Jere <jhb.chat@gmail.com>
Date: Tue, 14 Sep 2021 17:39:43 -0700

> Anyway, a blog is not the proper place
to get information from for that kind of
issue. Look at the GNAT
documentation.

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

I'll take a look at the GNAT docs to see
(and of course that blog is old, so GNAT
may not do this anymore anyways), but |
am mainly asking in the frame of what
Ada allows and/or expects. I'd like to be
able to allocate storage simply without
worrying how the compiler does it under
the hood and just assume that any calls to
Allocate will ask for the full amount of
memory.

Am | correct to assume that Ada doesn't
provide any language means to restrict
what types a pool can make objects of.
The times that | have wanted to make a
pool are generally for specific types and it
is often simpler to design them if I can
assume only those types are being
generated

Thanks for the response. I'm sorry for all
the questions. That's how I learn and |
realize it isn't a popular way to learn in
the community, but | have always learned
very differently than most.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Wed, 15 Sep 2021 08:54:07 +0200

It seems that you are under the impression
that Allocate must allocate more size than
its Size parameter asks. The answer is no,
unless *you* wanted to add something to
each allocated object.

[.]

Again, if attributes are added, then it
should be the object address as allocated.
The compiler always knows the proper
address because this address is passed to
Free, not X'Address!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Wed, 15 Sep 2021 21:07:22 +0200

[Continuing on the subject of how to
retrieve the object in the pool from its
‘Address, when there is hidden data like a
fat pointer, Dmitry challenges readers to
implement a function that needs to do so.
—arm]

Now define and implement the following
function:

type Type_Pointer is access Some_Type
with Storage_Pool => Pool;
function Get_Allocation_Time
(Pointer : Type_Pointer) return Time;

The function returns the time when the
pointed object was allocated in the pool.

[..]

From: Emmanuel Briot
<briot.emmanuel@gmail.com>

Date: Thu, 16 Sep 2021 00:12:58 -0700

I am the original implementer of
GNATCOLL.Storage_Pools.Headers, and
I have been silent in this discussion
because | must admit | forgot a lot of the
details... To be sure, we did not add new
attributes just for the sake of

GNATCOLL, those existed previously so
likely had already found other uses.

As has been mentioned several times in
the discussion, the compiler is already
passing the full size it needs to Allocate,
and the storage pool only needs to
allocate that exact amount in general. This
applies for the usual kinds of storage
pools, which would for instance
preallocate a pool for objects of fixed
sizes, or add stronger alignment
requirements.

In the case of the GNATCOLL headers
pool, we need to allocate more because
the user wants to store extra data. For that
data, we are left on our own to find the
number of bytes we need, which is part of
the computation we do: we of course need
the number of bytes for the header's
object_size, but also perhaps some extra
bytes that are not returned by that
object_size in particular for controlled
types and arrays.

Note again that those additional bytes are
for the header type, not for the type the
user is allocating (for which, again, the
compiler already passes the number of
bytes it needs).

The next difficulty is then to convert from
the object's 'Address back to your extra
header data. This is when you need to
know the size of the prefix added by the
compiler (array bounds, tag,...) to skip
them and then take into account the
alignment, and finally the size of your
header.

Dmitry's suggested exercise (storing the
timestamp of the allocation) seems like a
useful one indeed. It would be nice indeed
if GNATCOLL's code wasn’t too
complicated, but | am afraid this isn't the
case. We had used those pools to
implement reference counting for various
complex types, and ended up with that
complexity.

AdaCore (Olivier Hainque) has made a
change to the implementation since the
blog was published
(https://github.com/AdaCore/gnatcoll-
core/commits/master/src/gnatcoll-
storage_pools-headers.adb), so | got some
details wrong in the initial
implementation apparently.

From: Jere <jhb.chat@gmail.com>
Date: Thu, 16 Sep 2021 16:21:58 -0700

> In the case of the GNATCOLL headers
pool, we need to allocate more because
the user wants to store extra data. For
that data, we are left on our own to find
the number of bytes we need, which is
part of the computation we do: we of
course need the number of bytes for the
header's object_size, but also perhaps
some extra bytes that are not returned
by that object_size in particular for
controlled types and arrays.

25

> Note again that those additional bytes
are for the header type, not for the type
the user is allocating (for which, again,
the compiler already passes the number
of bytes it needs).

Thanks for the response Emmanuel. That
clears it up for me. I think the confusion
for me came from the terminology used
then. In the blog, that extra space for
First/Last and Prev/Next was mentioned
as if it were for the element, which |
mistook was the user's object being
allocated and not the header portion. |
didn't catch that as the generic formal's
name, so that is my mistake. | guess in my
head, | would have expected the formal
name to be Header_Type or similar so |
misread it in my haste.

| appreciate the clarity and apologize if |
caused too much of a stir. | was asking the
question because | didn't understand, so |
hope you don't think too poorly of me for
it, despite my mistake.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 17 Sep 2021 15:56:20 +0200

> | was asking the question because |
didn't understand, so | hope you don't
think too poorly of me for it, despite
my mistake.

Nope, especially because the issue with
X'Address being unusable for memory
pool developers is a long standing painful
problem that needs to be resolved. That
will never happen until a measurable
group of people start asking questions. So
you are doubly welcome.

From: Simon Wright
<simon@pushface.org>
Date: Fri, 17 Sep 2021 20:46:26 +0100

> the issue with X'Address being
unusable for memory pool developers
is a long standing painful problem that
needs to be resolved.

There are two attributes that we should all
have known about, Descriptor_Size[1]
(bits, introduced in 2011) and
Finalization_Size[2] (storage units, |
think, introduced in 2017)

[1] https://docs.adacore.com/live/
wave/gnat_rm/html/gnat_rm/gnat_rm/
implementation_defined_attributes.htm
I#attribute-descriptor-size

[2] https://docs.adacore.com/live/
wave/gnat_rm/html/gnat_rm/gnat_rm/
implementation_defined_attributes.htm
I#attribute-finalization-size

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 17 Sep 2021 22:39:05 +0200

They are non-standard and have murky
semantics | doubt anybody really cares
about. What is needed is the address
passed to Deallocate should the object be
freed = the address returned by Allocate.
Is that too much to ask?

Ada User Journal

Volume 43, Number 1, March 2022

26

BTW, finalization lists (#2) should have
been removed from the language long
ago. They have absolutely no use, except
maybe for debugging, and introduce huge
overhead. The semantics should have
been either Unchecked_Deallocation or
compiler allocated objects/components
may call Finalize, nothing else.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Sat, 18 Sep 2021 00:17:50 +0300

> What is needed is the address passed to
Deallocate should the object be freed =
the address returned by Allocate. Is that
too much to ask?

That is already required by RM
13.11(21.7/3): "The value of the
Storage_Address parameter for a call to
Deallocate is the value returned in the
Storage_Address parameter of the
corresponding successful call to
Allocate.”

The "size" parameters are also required to
be the same in the calls to Deallocate and
to Allocate.

> BTW, finalization lists (#2) should have
been removed from the language long
ago.

Huh? Where does the RM _require_
finalization lists? | see them mentioned
here and there as a _possible_
implementation technique, and an
alternative "PC-map" technique is
described in RM 7.6.1 (24.r .. 24.1).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sat, 18 Sep 2021 09:49:16 +0200

> That is already required by RM
13.11(21.7/3): "The value of the
Storage_Address parameter for a call to
Deallocate is the value returned in the
Storage_Address parameter of the
corresponding successful call to
Allocate.”

You missed the discussion totally. It is
about the X'Address attribute.

The challenge: write pool with a function
returning object allocation time by its
pool-specific access type.

> Huh? Where does the RM _require_
finalization lists?

7.6.1 (11 1/3)

> | see them mentioned here and there as
a _possible_ implementation technique,
and an alternative "PC-map" technique
is described in RM 7.6.1 (24.r .. 24.1).

I don't care about techniques to implement
meaningless stuff. It should be out, at
least there must be a representation aspect
for turning this mess off.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Sat, 18 Sep 2021 12:03:03 +0300

> You missed the discussion totally. It is
about X'Address attribute.

Sure, I understand that the address
returned by Allocate, and passed to
Deallocate, for an object X, is not always
X'Address, and that you would like some
means to get the Allocate/Deallocate
address from (an access to) X. But what
you stated as not "too much to ask" is
specifically required in the RM paragraph
I quoted. Perhaps you meant to state
something else, about X'Address or some
other attribute, but that was not what you
wrote.

Given that an object can be allocated in
multiple independent pieces, it seems
unlikely that what you want will be
provided. You would need some way of
iterating over all the pieces allocated for a
given object, or some way of defining a
"main” or "prime" piece and a means to
get the Allocate/Deallocate address for
that piece.

>> Huh? Where does the RM _require_
finalization lists?

>7.6.1(11 1/3)

RM (2012) 7.6.1 (11.1/3) says only that
objects must be finalized in reverse order
of their creation. There is no mention of
"list".

(-]

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sat, 18 Sep 2021 12:22:45 +0200

> Perhaps you meant to state something
else, about X'Address or some other
attribute, but that was not what you
wrote.

I wrote about attributes, specifically
GNAT-specific ones used in the blog to
calculate the correct address. "*Too much
to ask" was about an attribute that would
return the object address directly.

> Given that an object can be allocated in
multiple independent pieces, it seems
unlikely that what you want will be
provided.

Such implementations would
automatically disqualify the compiler.
Compiler-generated piecewise allocation
is OK for the stack, not for user storage
pools.

And anyway, all this equally applies to
X'Address.

>RM (2012) 7.6.1 (11.1/3) says only that
objects must be finalized in reverse
order of their creation. There is no
mention of "list".

It talks about "collection."

> Then your complaint seems to be about
something specified for the order of
finalization, but you haven't said clearly
what that something is.

Ada Practice

No, it is about the overhead of
maintaining "collections" associated with
an access type in order to call Finalization
for all members of the collection.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Sat, 18 Sep 2021 18:59:27 +0300

>> Given that an object can be allocated
in multiple independent pieces, it seems
unlikely that what you want will be
provided.

> Such implementations would
automatically disqualify the compiler.

That is your opinion (or need), to which
you are entitled, of course, but it is not an
RM requirement on compilers -- see
Randy's posts about what Janus/Ada does.

[.]

> No, it is about the overhead of
maintaining "collections” associated
with an access type in order to call
Finalization for all members of the
collection.

So you want a way to specify that for a
given access type, although the accessed
object type has a Finalize operation or
needs finalization, the objects left over in
the (at least conceptually) associated
collection should _not_ be finalized when
the scope of the access type is left? Have
you proposed this to the ARG?

To me it seems a risky thing to do,
subverting the normal semantics of
initialization and finalization. Perhaps it
could be motivated for library-level
collections in programs that are known to
never terminate (that is, to not need any
clean-up when they do stop or are
stopped).

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sat, 18 Sep 2021 18:19:23 +0200

> So you want a way to specify that for a
given access type, although the
accessed object type has a Finalize
operation or needs finalization, the
objects left over in the (at least
conceptually) associated collection
should _not_ be finalized when the
scope of the access type is left?

Exactly, especially because these objects
are not deallocated, as you say they are
left over. If they wanted GC they should
do that. If they do not, then they should
keep their hands off the objects
maintained by the programmer.

> To me it seems a risky thing to do,
subverting the normal semantics of
initialization and finalization.

Quite the opposite, it is the collection rule
that subverts semantics because objects
are not freed, yet mangled.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Sun, 19 Sep 2021 13:36:11 +0300

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

> Quite the opposite, it is the collection
rule that subverts semantics because
objects are not freed, yet mangled.

Local variables declared in a subprogram
are also not explicitly freed (deallocated),
yet they are automatically finalized when
the subprogram returns.

My understanding of Ada semantic
principles is that any object that is
initialized should also be finalized. Since
the objects left in a collection associated
with a local access type become
inaccessible when the scope of the access
type is left, finalizing them automatically,
even without an explicit free, makes sense
to me. If you disagree, suggest a change
to the ARG and see if you can find
supporters.

Has this feature of Ada caused you real
problems in real applications, or is it only
a point of principle for you?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Sun, 19 Sep 2021 13:41:00 +0200

> Local variables declared in a
subprogram are also not explicitly freed
(deallocated), yet they are
automatically finalized when the
subprogram returns.

Local objects are certainly freed. Explicit
or not, aggregated or not, is irrelevant.

> My understanding of Ada semantic
principles is that any object that is
initialized should also be finalized.

IFF deallocated.

An application that runs continuously will
never deallocate, HENCE finalize certain
objects.

> Has this feature of Ada caused you real
problems in real applications, or is it
only a point of principle for you?

1. It is a massive overhead in both
memory and performance terms with no
purpose whatsoever. | fail to see where
that sort of thing might be even
marginally useful. Specialized pools, e.g.
mark-and-release will deploy their own
bookkeeping, not rely on this.

2. What is worse is that a collection is not
bound to the pool. It is to an access type,
which may have a narrower scope. So the
user could declare an unfortunate access
type, which would corrupt objects in the
pool and the pool designer has no means
to prevent that.

From: Jere <jhb.chat@gmail.com>
Date: Sun, 19 Sep 2021 17:31:26 -0700

> Not sure what you are expecting. There
is no requirement that objects are
allocated contiguously. Indeed,
Janus/Ada will call Allocate as many
times as needed for each object; for
instance, unconstrained arrays are in
two parts (descriptor and data area).

Followup question cause Randy's
statement got me thinking: I1f a compiler
is allowed to break up an allocation into
multiple calls to Allocate (and of course
Deallocate), how does one go about
enforcing that the user's header is only
created once In the example Randy gave
(unconstrained arrays), in Janus there is
an allocation for the descriptor and a
separate allocation for the data. If | am
making a storage pool that is intending to
create a hidden header for my objects, this
means in Janus Ada (and potentially other
compilers) | would instead create two
headers, one for the descriptor and one for
the data, when | might intend to have one
header for the entire object.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 20 Sep 2021 09:34:47 +0300

I think one cannot enforce that, because
the calls to Allocate do not indicate (with
parameters) which set of calls concern the
same object allocation.

This is probably why Dmitry said that
such compiler behaviour would
"disqualify the compiler" for his uses.

From: Emmanuel Briot
<briot.emmanuel@gmail.com>
Date: Sun, 19 Sep 2021 23:48:20 -0700

> | think one cannot enforce that, because
the calls to Allocate do not indicate
(with parameters) which set of calls
concern the same object allocation.

I think the only solution would be for this
compiler to have another attribute similar
to 'Storage_Pool, but that would define
the pool for the descriptor:

for X'Storage_Pool use Pool;
for X'Descriptor_Storage_Pool use
Other_Pool;

That way the user can decide when to add
(or not) extra headers.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 20 Sep 2021 10:05:14 +0300

> Local objects are certainly freed.
Explicit or not, aggregated or not, is
irrelevant.

Objects left over in a local collection may
certainly be freed automatically, if the
implementation has created a local pool
for them. See ARM 13.11 (2.a):
"Alternatively, [the implementation]
might choose to create a new pool at each
accessibility level, which might mean that
storage is reclaimed for an access type
when leaving the appropriate scope."

> An application that runs continuously
will never deallocate, HENCE finalize
certain objects.

And | agreed that in this case it could be
nice to let the programmer specify that
keeping collections is not needed.

27

> 1. It is a massive overhead in both
memory and performance terms with
no purpose whatsoever. [...]

Have you actually measured or observed
that overhead in some application?

> 2. What is worse is that a collection is
not bound to the pool. It is to an access
type, which may have a narrower
scope. So the user could declare an
unfortunate access type, which would
corrupt objects in the pool and the pool
designer has no means to prevent that.

So there is a possibility of programmer
mistake, leading to unintended
finalization of those (now inaccessible)
objects.

However, your semantic argument (as
opposed to the overhead argument) seems
to be based on an assumption that the
objects "left over" in a local collection,
and which thus are inaccessible, will still,
somehow, participate in the later
execution of the program, which is why
you say that finalizing those objects
would "corrupt" them.

It seems to me that such continued
participation is possible only if the objects
contain tasks or are accessed through
some kind of unchecked programming.
Do you agree?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Mon, 20 Sep 2021 09:35:35 +0200

> Objects left over in a local collection
may certainly be freed automatically, if
the implementation has created a local
pool for them. See ARM 13.11 (2.a):
"Alternatively, [the implementation]
might choose to create a new pool at
each accessibility level, which might
mean that storage is reclaimed for an
access type when leaving the
appropriate scope.”

May or may not. The feature which
correctness depends on scopes and lots of
further assumptions has no place in a
language like Ada.

> Have you actually measured or
observed that overhead in some
application?

How?

However you could estimate it from the
most likely implementation as a doubly-
linked list. You add new element for each
allocation and remove one for each
deallocation. The elements are allocated
in the same pool or in some other pool.
Finalization is not time bounded, BTW.
Nice?

> |t seems to me that such continued
participation is possible only if the
objects contain tasks or are accessed
through some kind of unchecked
programming. Do you agree?

Ada User Journal

Volume 43, Number 1, March 2022

28

No. You can have them accessible over
other access types with wider scopes:

Collection_Pointer := new X;
Global_Painter :=
Collection_Pointer.al'lUnchecked_Access;

access discriminants etc. As | said, hands
offl

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Mon, 20 Sep 2021 11:08:52 +0300

> Global_Pointer :=
Collection_Pointer.all'Unchecked_Acce
ss;

So, unchecked programming, as | said.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Mon, 20 Sep 2021 10:28:28 +0200

> So, unchecked programming, as | said.

Right, working with pools is all that thing.
Maybe "new" should be named
"unchecked_new" (:-))

Finalize and Initialize certainly should
have been Unchecked_Finalize and
Unchecked_Initialize as they are not
enforced. You can override the parent's
Initialize and never call it. It is a plain
primitive operation anybody can call any
time any place. You can even call it
before the object is fully initialized!

So, why bother with objects the user
manually allocates (and forgets to free)?

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 18:48:02 -0500

> The problem with unconstrained arrays
is not that the bounds are not allocated,
they are, but the semantics of
X'Address when applied to arrays.

> A'Address is the address of the first
array element, not of the array object.
For a pool designer it constitutes a
problem of getting the array object by
address. This is what Emmanuel
discusses in the blog.

Right, this is why Janus/Ada never
"fixed" 'Address to follow the Ada
requirement. (Our Ada 83 compiler treats
the "object" as whatever the top-level
piece is, for an unconstrained array, that's
the bounds -- the data lies elsewhere and
is separately allocated -- something that
follows from slice semantics.)

| suppose your suggestion of
implementing yet-another-attribute is
probably the right way to go, and then
finding every use of 'Address in existing
RRS Janus/Ada code and changing it to
use the new attribute that works "right".

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 18:51:15 -0500

Sorry about that, | didn't understand what
you were asking. And | get defensive

about people who think that a pool should
get some specific Size (and only that
size), so | leapt to a conclusion and
answered accordingly.

The compiler requests all of the memory
IT needs, but if the pool needs some
additional memory for its purposes (pretty
common), it will need to add that space
itself. It's hard to imagine how it could be
otherwise, | guess | would have thought
that goes without saying. (And that rather
proves that there is nothing that goes
without saying.)

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 18:58:34 -0500

> But you cannot assume that the object is
allocated as one big chunk. Bounds can
be allocated at a different place. What
would be X'Object_Address in that
case?

The address of the real object, which is
the bounds. (I'm using "object" in the
Janus/Ada compiler sense and not in the
Ada sense.) The only way | could make
sense of the implementation requirements
for Janus/Ada was to have every object be
statically sized. If the Ada object is *not*
statically sized, then the Janus/Ada object
is a descriptor that provides access to that
Ada object data.

Generally, one wants access to the
statically sized object, as that provides
access to everything else (there may be
multiple levels if discriminant-dependent
arrays are involved). That's not what
'Address is supposed to provide, so the
address used internally to the compiler is
the wrong answer in Ada terms, but it is
the right answer for most uses (storage
pools being an obvious example).

When one specifies 'Address in
Janus/Ada, you are specifying the address
of the statically allocated data. The rest of
the object lives in some storage pool and
it makes absolutely no sense to try to
force that somewhere.

There's no sensible reason to expect
'‘Address to be implementation-
independent; specifying the address of
unconstrained arrays is nonsense unless
you know that the same Ada compiler is
creating the object you are accessing --
hardly a common case.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 19:19:38 -0500

> | don't care about techniques to
implement meaningless stuff. It should
be out, at least there must be a
representation aspect for turning this
mess off.

There is: Restriction
No_Controlled_Types. - Randy

Ada Practice

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 19:26:19 -0500

> Such implementations would
automatically disqualify the compiler.
Compiler-generated piecewise
allocation is OK for the stack, not for
user storage pools.

If someone wants to require contiguous
allocation of objects, there should be a
representation attribute to specify it. And
there should not be nonsense restrictions
on records with defaulted discriminants
unless you specify that you require
contiguous allocation. There is no good
reason to need that for 99% of objects,
why insist on a very expensive
implementation of slices/unconstrained
arrays unless it's required??

> No, it is about the overhead of
maintaining "collections" associated
with an access type in order to call
Finalization for all members of the
collection.

How else would you ensure that Finalize
is always called on an allocated object?
Unchecked_Deallocation need not be
called on an allocated object. The Ada
model is that Finalize will ALWAYS be
called on every controlled object before
the program ends; there are no "leaks" of
finalization. Otherwise, one cannot
depend on finalization for anything
important; you would often leak resources
(especially for simple kernels that don't
try to free unreleased resources
themselves).

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 19:37:56 -0500

> 1. It is a massive overhead in both
memory and performance terms with
no purpose whatsoever. | fail to see
where that sort of thing might be even
marginally useful.

The classic example of Finalization is file
management on a simple kernel (I use
CP/M as the example in my head). CP/M
did not try to recover any resources on
program exit, it was the program's
responsibility to recover them all (or
reboot after every run). If you had holes
in finalization, you would easily leak files
and since you could only open a limited
number of them at a time, you could
easily make a system non-responsive.

You get similar things on some embedded
kernels.

If you only write programs that live in
ROM and never, ever terminate, then you
probably have different requirements.
Most likely, you shouldn't be using
Finalization at all (or at least not putting
such objects in allocated things).

> 2. What is worse is that a collection is
not bound to the pool. It is to an access
type, which may have a narrower

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

scope. So the user could declare an
unfortunate access type, which would
corrupt objects in the pool and the pool
designer has no means to prevent that.

Pools are extremely low-level things that
cannot be safe in any sense of the word. A
badly designed pool will corrupt
everything. Using a pool with the "wrong"
access type generally has to be
programmed for (as | answered earlier, if
I assume anything about allocations, |
check for violations and do something
else.) And a pool can be used with many
access types; many useful ones are.

Some of what you want is provided by the
subpool mechanism, but it is even more
complex at runtime, so it probably doesn't
help you.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 20 Sep 2021 19:45:28 -0500

> You can override the parent's Initialize
and never call it. It is a plain primitive
operation anybody can call any time
any place. You can even call it before
the object is fully initialized!

User calls on Initialize and Finalize have
no special meaning; they're ignored for
the purposes of language-defined
finalization. The fact that they're normal
routines and can be called by someone
else means that some defensive
programming is needed. That all
happened because of the "scope
reduction” of Ada 9x; the dedicated
creation/finalization mechanism got
dumped. Finalization was too important to
lose completely, so Tucker cooked up the
current much simpler mechanism in order
to avoid the objections. It's not ideal for
that reason -- but Finalize would still have
been a normal subprogram that anyone
could call (what else could it have been --
the mechanism of stream attributes could
have been used instead). | don't think
there is a way that one could have
prevented user-defined calls to these
routines (even if they had a special name,
you still could have renamed an existing
subprogram to the special name).

From: Simon Wright
<simon@pushface.org>
Date: Tue, 28 Sep 2021 08:52:31 +0100

>> Deallocation is irrelevant. Finalization
is called when objects are about to be
destroyed, by any method.

> And no object may be destroyed unless
deallocated.

Well, if it's important that an allocated
object not be destroyed, don't allocate it
from a storage pool that can go out of
scope!

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Tue, 28 Sep 2021 10:07:52 +0200

> Well, if it's important that an allocated
object not be destroyed, don't allocate it

from a storage pool that can go out of
scope!

That was never the case.

The case is that an object allocated in a
pool gets finalized because the access
type (not the pool!) used to allocate the
object goes out of the scope.

This makes no sense whatsoever.

Again, finalization must be tied with
[logical] deallocation. Just like
initialization is with allocation.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Tue, 28 Sep 2021 17:04:05 -0500

> Again, finalization must be tied with
[logical] deallocation. Just like
initialization is with allocation.

But it is. All of the objects allocated from
an access type are logically deallocated
when the access type goes out of scope
(and the memory can be recovered).
Remember that Ada was designed so that
one never needs to use
Unchecked_Deallocation.

I could see an unsafe language (like C)
doing the sort of thing you suggest, but
not Ada. Every object in Ada has a
specific declaration point, initialization
point, finalization point, and destruction
point. There are no exceptions.

Code Flow Control

From: Kevin Chadwick
<kevc3no4@gmail.com>

Subject: Code flow control

Date: Fri, 15 Oct 2021 08:08:42 -0700

Newsgroups: comp.lang.ada

Although surprised that pragma
No_Exception_Propagation seems to
prevent access to some exception
information, I am happy with Ada’s
exception mechanism. | have read that
exceptions should not be used for code
flow.

For Ada after perusing various threads on
this mailing list around best practice | am
considering using exceptions locally but
also have an in out variable for code flow
control at the point of use. Is that the way
with the caveat that it all depends on the
task at hand?

In Go with vscode a static checker will
warn if an error type variable is returned
without a following if error utilisation
(check usually of the form if err /= nil).

I have read that Spark has some kind of
static analysis to achieve something
similar as it forbids exceptions.

It is not the end of the world but is there
any static analyser that could do similar
for Ada. IOW save me some time or
perhaps worse whenever | have simply

29

omitted the check by accident, in haste or
distraction.

I'm sure | could quickly write a shell
script easily enough for a specific design
as in if keyword appears once but not
again within x lines then shout at me but |
am wondering if I am missing a tool or
better practice before | do so?

From: J-P. Rosen <rosen@adalog.fr>
Date: Fri, 15 Oct 2021 19:48:06 +0200

> | have read that exceptions should not
be used for code flow.

Some people reserve exceptions for
signalling errors. | regard them as a way
to handle "exceptional” situations, i.e.
when the normal flow of control cannot
continue. For example, in a deep recursive
search, they are handy to stop the
recursion and go back to top level when
you have found what you were looking
for. Some would disagree with that.

> | am considering using exceptions
locally but also have an in out variable
for code flow control at the point of
use.

I definitely would prefer an exception, on
the ground that you can omit the check,
but you cannot ignore an exception.

> In Go with vscode a static checker will
warn if an error type variable is
returned without a following if error
utilisation (check usually of the form if
err /=nil).

An interesting idea for AdaControl,
especially if you have some funding for it

From: Jeffrey R. Carter
Date: Fri, 15 Oct 2021 19:53:06 +0200

What you're talking about is result codes.
Exceptions exist because of problems
people encountered with result codes.
Using result codes when you have
exceptions is like using conditional go-tos
when you have if statements.

So, yes, there is better practice. It's called
exceptions.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Fri, 15 Oct 2021 20:03:16 +0200

[.]

What | do wish is carefully designed
exception contracts in Ada.

Named vs Anonymous
Pointer Types

From: Simon Belmont
<shelmont700@gmail.com>

Subject: Is this legal?

Date: Sat, 16 Oct 2021 12:00:18 -0700

Newsgroups: comp.lang.ada

I'm trying to learn the 2012 changes to
accessibility rules, e.g. aliased parameters,
additional dynamics checks, and some

Ada User Journal

Volume 43, Number 1, March 2022

30

eliminated unnecessary typecasts. But |
am also aware of the... fluid nature of
GNATS correctness of implementing
them, and the following situation seems
dubious. In particular, when ‘current' is an
anonymous access type, it compiles
without issue, but not when it's a named
access type (or when explicitly converted
to one). Does anyone know off hand
which is the correct behavior?

Thanks
-sb
procedure Main is

subtype str5 is string(1..5);
type s5_ptris access all str5;

type Tis
record
current : access strb;
--current : s5_ptr; -- "aliased actual has

-- wrong accessibility"

foo : aliased str5;
end record;

function F (y : aliased in out str5)
return access str5is
begin
return y'Access;
end F;

procedure P (x :in out T) is
begin

x.current := F(x.foo);
end P;

0 : T :=(current => null, foo =>"Hello");

begin
P(o);
end Main;

From: Gautier Write-Only Address
<gautier_niouzes@hotmail.com>
Date: Sun, 17 Oct 2021 01:35:22 -0700

For information, ObjectAda v.10.2

accepts both variants (in Ada 2012 mode).

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Mon, 18 Oct 2021 22:50:52 -0500

>I'm trying to learn the 2012 changes to
accessibility rules [...] Does anyone
know off hand which is the correct
behavior?

| can assure you that no one anywhere
will *ever* know "off-hand" the correct
behavior. :-) It takes quite a bit of looking
to be sure.

> function F (y : aliased in out str5)
return access str5 is

> begin
> return y'Access;

> endF;

This is always legal (we hope :-). There
should be a static (or dynamic) check on
Y when F is called that Y has an
appropriate lifetime for the result. (I can't
grok "accessibility", either. | always think
in terms of lifetimes, and then try to
translate to the wording.)

> procedure P (X :inout T) is
> begin

> x.current := F(x.foo);

> endP;

This should always be statically illegal. X
here has the lifetime of P (as the actual
lifetime is unknown). That's not long
enough regardless of how you declare
Current (since it's type is necessarily
outside of P). There is no special
accessibility rules for anonymous access
components (unlike most other cases);
they always have the accessibility (think
lifetime) of the enclosing type.

(-]

Read a long UTF-8 File,
Incrementally

From: Marius Amado-Alves
<amado.alves@gmail.com>

Subject: How to read in a (long) UTF-8 file,
incrementally?

Date: Tue, 2 Nov 2021 10:42:37 -0700

Newsgroups: comp.lang.ada

As | understand it, to work with Unicode
text inside the program it is better to use
the Wide_Wide (UTF-32) variants of
everything.

Now, Unicode files usually are in UTF-8.

One solution is to read the entire file in
one gulp to a String, then convert to
Wide_Wide. This solution is not memory
efficient, and it may not be possible in
some tasks e.g. real time processing of
lines of text.

If the files has lines, | guess we can also
work line by line (Text_IO). But the text
may not have lines. Can be a long XML
object, for example.

So it should be possible to read a single
UTF-8 character, right? Which might be
1, 2, 3, or 4 bytes long, so it must be read
into a String, right? Or directly to
Wide_Wide. Are there such functions?

Thanks a lot.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Tue, 2 Nov 2021 19:17:58 +0100

> So it should be possible to read a single
UTF-8 character, right? Which might
be 1, 2, 3, or 4 bytes long, so it must be
read into a String, right? Or directly to
Wide_Wide. Are there such functions?

You simply read a stream of Characters
into a buffer. Never ever use Wide or

Ada Practice

Wide_Wide, they are useless. Inside the
buffer you must have 4 Characters ahead
unless the file end is reached. Usually you
read until some separator like line end.

Then you call this:

http://www.dmitry-kazakov.de/ada/
strings_edit.htm#Strings_Edit. UTF8.Get

That will give you a code point and
advance the cursor to the next UTF-8
character.

However, normally, no text processing
task needs that. Whatever you want to do,
you can accomplish it using normal String
operations and normal String-based data
structures like maps and tables. You need
not to care about any UTF-8 character
boundaries ever.

From: Vadim Godunko
<vgodunko@gmail.com>
Date: Wed, 3 Nov 2021 00:43:02 -0700

> [...] Are there such functions?

There is a special library to process
Unicode text, see
https://github.com/AdaCore/VSS;
‘contrib’ directory contains
VSS.Utils.File_IO package to load file
into Virtual_String. However, attempting
to load a whole file into the memory is
usually a bad decision.

From: Luke A. Guest
<laguest@archeia.com>
Date: Wed, 3 Nov 2021 08:48:58 +0000

> As | understand it, to work with
Unicode text inside the program it is
better to use the Wide_Wide (UTF-32)
variants of everything.

You can take a look at my simple lib:
https://github.com/Lucretia/uca

It can read into a large string buffer. And
can break it up into lines. There's no
Unicode consistency checks.

The lib is a bit hacky, but seems to work
for now. There's nothing more than what
I've mentioned so far.

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Thu, 4 Nov 2021 04:43:22 -0700

Great libraries, thanks.

It still seems to me that
Wide_Wide_Character is useful. It allows
to represent the character directly in the
source code e.g.

if C="+"then ...
And Wide_Wide_Character'Pos should
give the codepoint.

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Thu, 4 Nov 2021 13:13:12 +0100

> fC='t"then...

If the source supports Unicode, it should
do UTF-8 as well. So, you would write

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

if C ="+"then ...

where C is String.

> And Wide_Wide_Character'Pos should
give the codepoint.

Yes, but you need no Wide_Wide to get
an integer value and if your objective is
Unicode categorization, that is too
complicated for manual comparisons. Use
a library function [generated from
UnicodeData.txt] instead.

From: Luke A. Guest
<laguest@archeia.com>
Date: Thu, 4 Nov 2021 14:30:25 +0000

> And Wide_Wide_Character'Pos should
give the codepoint.

Characters no longer exist as a thing as
one can even be represented as multiple
utf-32 code points.

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Fri, 5 Nov 2021 03:56:42 -0700

You're alluding to combining characters?

From: Simon Wright
<simon@pushface.org>
Date: Fri, 05 Nov 2021 19:55:33 +0000

> You're alluding to combining
characters?

Fun & games on macOS[1]:

>$
GNAT_FILE_NAME_CASE_SENSIT
IVE=1 gnatmake -c p*.ads

> gcc -¢ pack3.ads

> pack3.ads:1:10: warning: file name does
not match unit name, should be
"pack3.ads"

>

> The reason for this apparently-bizarre
message is that macOS takes the
composed form (lowercase a acute) and
converts it under the hood to what
HFS+ insists on, the fully decomposed
form (lowercase a, combining acute);
thus the names are actually different
even though they _look_ the same.

[1] https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=81114#cl

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Tue, 16 Nov 2021 03:55:05 -0800

I'm worried. | need the concept of
character, for proper text processing. For
example, | want to reference characters in
a text file by their position. Any
tips/references on how to deal with
combining characters, or any other
perturbing feature of Unicode, greatly
appreciated.

(For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Tue, 16 Nov 2021 13:36:00 +0100

> |'m worried. | need the concept of
character, for proper text processing.

Simply ignore or reject decomposed
characters.

> For example, | want to reference
characters in a text file by their
position.

That is no problem either. There are two
alternatives:

1. Fixed font representation. Reduce
everything to normal glyphs, use string
position corresponding to the beginning
of an UTF-8 sequence.

2. Proportional font. Use a graphical user
interface like GTK. The GTK text buffer
has a data type (iterator) to indicate a
place in the buffer, e.g. when a selection
happens. These iterators are consistent
with the glyphs as rendered on the
screen and you can convert between
them and string position.

> (For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

No, Unicode disagrees, e.g. E can be
composed from E and acute accent. But it
is advised just to ignore all this nonsense
and consider:

code point = character

From: Marius Amado-Alves
<amado.alves@gmail.com>
Date: Tue, 16 Nov 2021 05:52:59 -0800

> Simply ignore or reject decomposed
characters.

Brilliant!

> 1. Fixed font representation. Reduce
everything to normal glyphs, use string
position corresponding to the beginning
of an UTF-8 sequence.

I am indeed resorting to byte position in
UTF-8 files as the character position.
Treating UTF-8 entities as the strings that
they are:-)

(Not dealing with fonts nor graphics yet,
just plain text.)

Thanks a lot.

From: Luke A. Guest
<laguest@archeia.com>
Date: Tue, 16 Nov 2021 15:25:10 +0000

> [...] I want to reference characters in a
text file by their position. [...]

You can't. The concept of character is
dead, the new concept are grapheme
clusters.

From: Vadim Godunko
<vgodunko@gmail.com>
Date: Tue, 16 Nov 2021 09:38:13 -0800

31

> (For me, a combining character is not a
character, the combination is. Unicode
agrees, right?)

You can use VSS and
Grapheme_Cluster_lterator to lookup for
grapheme cluster at given position and to
obtain position of the grapheme cluster in
the string (as well as UTF-8/UTF-16 code
units).

However, the concept of grapheme
clusters doesn't handle special cases like
tabulation stops; TAB is just a single
grapheme cluster.

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Tue, 16 Nov 2021 14:23:28 -0600

> Simply ignore or reject decomposed
characters.

Unicode calls that "requiring
Normalization Form C". ("Form D" is all
decomposed characters.) You'll note that
what Ada compilers do with text not in
Normalization Form C is implementation-
defined; in particular, a compiler could
reject such text.

My understanding is that various Internet
standards also require Normalization
Form C. For instance, web pages are
supposed to always be in that format.
Whether browsers actually enforce that is
unknown (they should enforce a lot of
stuff about web pages, but generally just
try to muddle through, which causes all
kinds of security issues).

Happy Birthday, Ada!

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>

Subject: Happy Birthday, Ada!

Date: Fri, 10 Dec 2021 10:37:41 +0100

Newsgroups: comp.lang.ada

Born this day in 1815 and 1980. New
version on this date in 2012.

From: Luke A. Guest
<laguest@archeia.com>
Date: Fri, 10 Dec 2021 11:30:11 +0000

Are new revisions always released on this
date?

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>
Date: Fri, 10 Dec 2021 13:36:32 +0100

No. 83, 95, and ISO/IEC 8652:2007 were
not published on Dec 10. Probably 2X
won't be, either.

From: Adamagica <christ-usch.grein@t-
online.de>
Date: Fri, 10 Dec 2021 06:23:44 -0800

A list of dates Ada 93 .. Ada 2012 can be
found here:
https://www.ada-deutschland.de/
sites/default/files/AdaTourCD/
AdaTourCD2004/Ada%20Magica/
Contents.html

Ada User Journal

Volume 43, Number 1, March 2022

32

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Fri, 10 Dec 2021 23:28:05 -0600

> Are new revisions always released on
this date?

No. It was mostly a coincidence. We were
told that the Ada 2012 Standard would be
published in the December 15th batch of
Standards. Joyce Tokar made a request to
date it December 10th in honor of Ada's
birthday; she got a response that 1SO
couldn't do that. When it actually was
published (around December 15th), we
found they had dated it December 10th as
requested. Not sure when/where/how they
changed their mind.

If it had been scheduled for, say, February
15th, such a request wouldn't make any
sense. We wouldn't want to delay the
Standard for months just so it can have a
cool date.

Big_Integer Has a Limit of
300 Digits?

From: Michael Ferguson
<michaelblakeferguson@gmail.com>

Subject:
Ada.Numerics.Big_Numbers.Big_Integer
has a limit of 300 digits?

Date: Tue, 21 Dec 2021 21:57:08 -0800

Newsgroups: comp.lang.ada

| just started using the Big_Integer library
that is a part of the 202X version of Ada.

It is repeatedly described as an "arbitrary
precision library" that has user defined
implementation.

I was under the impression that this
library would be able to infinitely
calculate numbers of any length, but there
is clearly a default limit of 300 digits.

Is there any way to get rid of this
problem?

[Example code omitted, as it is not
referenced in later discussion. —arm]

From: Mark Lorenzen
<mark.lorenzen@gmail.com>
Date: Wed, 22 Dec 2021 00:25:26 -0800

How did you determine the limit of 300
digits? I see nothing in your example, that
would imply such a limit. Are you sure
that you are not reaching a line length
limit in Text_lO or maybe a limit in the
Image attribute?

From: Adamagica <christ-usch.grein@t-
online.de>
Date: Wed, 22 Dec 2021 03:14:12 -0800

There is a limit
Bignum_Limit : constant := 200;

in System.Generic_Bignums body,
function Normalize, lines 1100ff.

| do not see an implementation advice,
implementation permission or

implementation requirement about such
limits in A.5.5, A.5.6.

But there is somewhere in the RM a
paragraph stating that implementation
may pose limits on certain features. | just
cannot find the place in the RM.

From: Adamagica
<christ-usch.grein@t-online.de>
Date: Wed, 22 Dec 2021 03:32:23 -0800

See RM 1.1.3(2).

I guess this limit is just a transient
arbitrary limit until Ada 2022 is
standardized.

From: Adamagica
<christ-usch.grein@t-online.de>
Date: Wed, 22 Dec 2021 08:04:29 -0800

> Bignum_Limit : constant := 200;

RM 2.2(14) limits the line length and the
length of lexical elements to 200.

From: Luke A. Guest
<laguest@archeia.com>
Date: Wed, 22 Dec 2021 17:01:56 +0000

What are you doing that requires that
number of digits?

From: Michael Ferguson
<michaelblakeferguson@gmail.com>
Date: Wed, 22 Dec 2021 09:27:56 -0800

> What are you doing that requires that
number of digits?

I am working on ProjectEuler.net problem
number 48.

The questions asks you to sum the
numbers n”n for (2 <= n <= 1000) and
determine what the last ten digits of this
number are.

Obviously, this is quite a trivial problem
when using any arbitrary precision
library.

I had incorrectly determined that 7007700
had 300 digits, in fact 700700 =
3.7E1991.

However, my code strictly breaks when
the loop range is set to 683, which
6837683 = 8.12E1935.

So, it is interesting that the Big_Integer
type works with numbers of just under
2000 digit length despite Bignum_Limit :
constant := 200.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Wed, 22 Dec 2021 19:37:45 +0200

>> Bignum_Limit : constant := 200;

> RM 2.2(14) limits the line length and
the length of lexical elements to 200.

To express it more clearly, RM 2.2(14)
requires implementations to support lines
and lexical elements of /at least/ 200
characters, but /allows/ implementations
to support longer lines and lexical
elements.

Ada Practice

I'm not sure if GNAT supports more than
200 characters, though. And of course an
Ada program that uses more than 200
characters may not be portable to
compilers that support only 200.

But | don't see any direct logical
connection to the number of digits that
Big_Integers can support. While one
cannot write a big-number literal longer
than a line or longer than the maximum
length of a lexical element, that should
not directly limit the size of big-number
values in computations.

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Wed, 22 Dec 2021 19:48:42 +0200

> | was under the impression that this
library would be able to infinitely
calculate numbers of any length,

I have the same impression (up to
Storage_Etrror, of course).

How does it break? Some exception, or
something else?

Mark Lorenzen suggested in an earlier
post that the limit might be in the
Big_Integer'Image function. The package
Ada.Numerics.Big_Numbers.Big_Integer
s has some other output operations that
you could try:

function To_String

(Arg : Valid_Big_Integer; ...) return String;
procedure Put_Ilmage

(Buffer : ... ; Arg: in Valid_Big_Integer);

Of course those might be internally linked
to the 'Image function and have the same
possible limitation.

From: Michael Ferguson
<michaelblakeferguson@gmail.com>
Date: Wed, 22 Dec 2021 10:02:41 -0800

[.]

Niklas also gave me an epiphany as the
exact error my program gives for the
upper limit is

raised STORAGE_ERROR :
Ada.Numerics.Big_Numbers.Big_Integer
s.Bignums.Normalize: big integer limit
exceeded

I had thought that since the end of this
error said big integer limit exceeded it
was a problem with the library, but now
I'm starting to think | need to get GNAT
to allocated more memory for the
program.

From: Ben Bacarisse
<ben.usenet@bsh.me.uk>
Date: Wed, 22 Dec 2021 17:43:46 +0000

Does Ada’'s Big_Integer type work with
modular ranged types?

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Wed, 22 Dec 2021 21:05:18 +0200

[.]

Volume 43, Number 1, March 2022

Ada User Journal

Ada Practice

Modular types are not connected to
Big_Integers, except that the particular
problem you are trying to solve could be
computed "mod 10**10" because it asks
for only the last 10 digits. However, the
Big_Integers package does not directly
support computations "mod" something
(perhaps this should be an extension in a
later Ada standard, because such
computations are quite common).

Using "mod 10**10" operations in
solving the problem would limit the
number of digits in all intermediate results
drastically.

> Niklas also gave me an epiphany as the
exact error my program gives for the
upper limit is

>
Ada.Numerics.Big_Numbers.Big_Integ
ers.Bignums.Normalize: big integer
limit exceeded

[...] the very specific exception message
("big integer limit exceeded") suggests
that this exception is not a typical
Storage_Error (say, heap or stack
exhaustion) but may indeed stem from
exceeding some specific limit in the
current Big_Integer implementation in
GNAT.

The size of your problem, with only a few
thousand digits, suggests that heap
exhaustion is unlikely to happen.
However, if the Big_Integer computations
are internally recursive, and use stack-
allocated local variables, stack overflow
could happen, so the first thing to try
would be to increase the stack size.
Unfortunately, for the main subprogram
that has to be done with some compiler or
linker options which I don't recall now.
(We should really extend pragma
Storage_Size to apply also to the
environment task, by specifying it for the
main subprogram!)

From: Paul Rubin
<no.email@nospam.invalid>
Date: Wed, 22 Dec 2021 12:31:32 -0800

> | am working on ProjectEuler.net
problem number 48. ...

The thing about Euler problems is they
usually want you to figure out a clever
math trick to get to the solution, rather
than using brute calculation. In the case of
this problem, you want to reduce all the
intermediate results mod 1e10 (which fits
in an int64 easily, though not quite in an
int32). That gets rid of the need for
bignums.

From: Simon Wright
<simon@pushface.org>
Date: Wed, 22 Dec 2021 20:34:20 +0000

> There is a limit
> Bignum_Limit : constant := 200;

> in System.Generic_Bignums body,
function Normalize, lines 1100ff.

This is the maximum length of a
Digit_Vector, where

subtype SD is Interfaces.Unsigned_32;
-- Single length digit
type Digit_Vector is array
(Length range <>) of SD;
-- Represent digits of a number
(most significant digit first)

I think this should give a maximum value
of ~10**2000.

I printed out sum'image’length; the last
value before the exception was 1937.

From: Luke A. Guest
<laguest@archeia.com>
Date: Thu, 23 Dec 2021 08:31:11 +0000

Is mod overloadable?

From: Dmitry A. Kazakov
<mailbox@dmitry-kazakov.de>
Date: Thu, 23 Dec 2021 09:54:34 +0100

It is as any operator.

P.S. For large numbers one needs rather
full division than separate /, mod, rem.

From: Adamagica <christ-usch.grein@t-
online.de>
Date: Thu, 23 Dec 2021 03:41:13 -0800

> However, the Big_Integers package
does not directly support computations
llmodll

It does A.5.6(18/5).

From: Niklas Holsti
<niklas.holsti@tidorum.invalid>
Date: Thu, 23 Dec 2021 14:18:34 +0200

Yes, there is a "mod" operator for
Big_Integer. My point was that there are
no Big_Integer operations, such as
multiplication, that are intrinsically
modular in the same way as the
operations for modular types are. So the
only way to perform a modular
multiplication of Big_lIntegers is to first
multiply the numbers in the usual way,
producing a possibly very large product,
and then apply "mod" to reduce that
product.

In my imperfect understanding,
intrinsically modular big-number
computations can be much more efficient
than such post-computation applications
of "mod", at least if the modulus is not
itself a big number.

From: Ben Bacarisse
<ben.usenet@bsb.me.uk>
Date: Thu, 23 Dec 2021 14:01:47 +0000

Yes, there are efficient algorithms for "x *
y mod n" so almost all "big num" libraries
provide a function to do it. Ada has the
type system for the mod operation to be
explicit in the type.

From: Jeffrey R.Carter
<spam.jrcarter.not@spam.acm.org.not>
Date: Thu, 23 Dec 2021 16:48:17 +0100

As it appears from the rest of the
discussion that there is a limit in the

33

implementation of the pkg, you could try
using PragmARC.
Unbounded_Numbers.Integers

https://github.com/jrcarter/PragmARC/
blob/Ada-12/pragmarc-
unbounded_numbers-integers.ad

where the implementation restricts a
number to Integer'Last "digits" or the
available heap memory, whichever is less.

Note that with recent versions of GNAT
for 64-bit processors, the "digits" will be
64 bits.

Pure vs Preelaborate

From: Simon Belmont
<sbelmont700@gmail.com>

Subject: Re: Ada Pure or Preelaborate or ?
in Adare_net

Date: Mon, 3 Jan 2022 17:11:36 -0800

Newsgroups: comp.lang.ada

> | and a friend created an Ada network
lib where, from the begining, we tried
very hard to make It a Ada Pure.

> From the examples dir, the lib worked
as expected (in gcc-10.2 gce-11.2 and
gce-12). To our surprise, what most
caught the attention of the group's
friends was the fact that the lib was Ada
Pure and if that was correct.

> For this reason, if really 'is' pure, not
pure, preelaborate or what (?),
pleeeeeeaaase, we ask the group's Ada
Language Lawyers to help analyze and
suggest modifications if necessary.

> link:
https://gitlab.com/daresoft/network/ada
re_net/-/tree/202x

> for Ada version use 2012 and or 202x.

It seems to be mostly just a thin binding
to a bunch of C functions, so the
applicability of any Ada feature is mostly
a moot point. The Ada compiler has no
control or visibility into the C domain, so
while on the one hand your packages are
technically Pure, on the other hand the C
functions can violate those "purity rules"
all they want, which might be misleading
to users expecting otherwise. You don't
use 'Unchecked_Access either, but
obviously that doesn't mean the C
functions are somehow prevented from
creating dangling pointers. Personally, |
would have the interfaces reflect the
reality of the actual behavior (which in
the case of C code you don't control, is
usually assume-the-worst).

From: Fabien Chouteau
<fabien.chouteau@gmail.com>

Date: Tue, 4 Jan 2022 05:52:41 -0800

> For this reason, if really 'is' pure, not
pure, preelaborate or what (?)

I recommend reading this:
https://stackoverflow.com/questions/
19353228/when-to-use-pragma-pure-
preelaborate

Ada User Journal

Volume 43, Number 1, March 2022

34

If your units are declared as Pure, the
compiler considers that they have no side
effects and can decide to call the sub-
programs only once and cache the result,
or even not call the sub-program if the
result is not used after.

From: Daniel Norte Moraes
<danielcheagle@gmail.com>
Date: Wed, 5 Jan 2022 08:11:52 -0800

> It seems to be mostly just a thin binding
to a bunch of C functions, so the
applicability of any Ada feature is
mostly a moot point. [...]

The C pointers are only created in
c_initialize_socket.c (c_init_address())
and data pointed copied

to an Ada array, and then immediately
free by c part. This is the only time there
is a dynamic allocation.

We managed to make libadare_net very
close to 100% static allocation!

Because of this, there aren’t dangling
pointers.

There is still the problem of omitting the
execution of subprograms by the compiler
by pure packages.

Would ‘preelaborate’ solve this?

From: Randy Brukardt
<randy@rrsoftware.com>
Date: Wed, 5 Jan 2022 17:40:04 -0600

Yes. The permission to omit calls only
applies to Pure (see 10.2.1(18/3)).
http://www.ada-

Ada Practice

auth.org/standards/2xaarm/html/AA-10-2-
1.html#p18. (I gave a reference to the Ada
2022 AARM, but this rule hasn't changed
in spirit since it was introduced in Ada
95.)

From: Daniel Norte Moraes
<danielcheagle@gmail.com>

Date: Thu, 6 Jan 2022 12:39:21 -0800

> Yes. The permission to omit calls only
applies to Pure (see 10.2.1(18/3)).

Thanks!

We will change the packages in
LibAdare_Net to 'preelaborate’. :-) and
continue from here.

Volume 43, Number 1, March 2022

Ada User Journal

